首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HIV‐infected patients possess anti‐integrase (IN) IgGs and IgMs that, after isolation by chromatography on IN‐Sepharose, unlike canonical proteases, specifically hydrolyze only IN but not many other tested proteins. Hydrolysis of intact globular IN first leads to formation of many long fragments of protein, while its long incubation with anti‐IN antibodies, especially in the case of abzymes (Abzs) with a high proteolytic activity, results in the formation of short and very short oligopeptides (OPs). To identify all sites of IgG‐mediated proteolysis corresponding to known AGDs of integrase, we have used a combination of reverse‐phase chromatography, matrix‐assisted laser desorption/ionization spectrometry, and thin‐layer chromatography to analyze the cleavage products of two 20‐mer OPs corresponding to these AGDs. Both OPs contained 9–10 mainly clustered major, medium, and minor sites of cleavage. The main superficial cleavage sites of the AGDs in the intact IN and sites of partial or deep hydrolysis of the peptides analyzed do not coincide. The active sites of anti‐IN Abzs are localized on their light chains, whereas the heavy chains are responsible for the affinity of protein substrates. Interactions of intact globular proteins with both light and heavy chains of Abzs provide high specificity of IN hydrolysis. The affinity of anti‐IN Abzs for intact integrase was ~1000‐fold higher than for the OPs. The data suggest that both OPs interact mainly with the light chains of different monoclonal Abzs of the total pool of IgGs, which possesses lower affinity for substrates; and therefore, depending on the oligopeptide sequences, their hydrolysis may be less specific and remarkably different in comparison with the cleavage of intact globular IN. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
3.
IgGs from patients with multiple sclerosis and systemic lupus erythematosus (SLE) purified on MBP-Sepharose in contrast to canonical proteases hydrolyze effectively only myelin basic protein (MBP), but not many other tested proteins. Here we have shown for the first time that anti-MBP SLE IgGs hydrolyze nonspecific tri- and tetrapeptides with an extreme low efficiency and cannot effectively hydrolyze longer 20-mer nonspecific oligopeptides corresponding to antigenic determinants (AGDs) of HIV-1 integrase. At the same time, anti-MBP SLE IgGs efficiently hydrolyze oligopeptides corresponding to AGDs of MBP. All sites of IgG-mediated proteolysis of 21-and 25-mer encephalytogenic oligopeptides corresponding to two known AGDs of MBP were found by a combination of reverse-phase chromatography, TLC, and MALDI spectrometry. Several clustered major, moderate, and minor sites of cleavage were revealed in the case of 21- and 25-mer oligopeptides. The active sites of anti-MBP abzymes are localised on their light chains, while heavy chains are responsible for the affinity of protein substrates. Interactions of intact globular proteins with both light and heavy chains of abzymes provide high affinity to MBP and specificity of this protein hydrolysis. The affinity of anti-MBP abzymes for intact MBP is approximately 1000-fold higher than for the oligopeptides. The data suggest that all oligopeptides interact mainly with the light chains of different monoclonal abzymes of total pool of IgGs, which possesses a lower affinity for substrates, and therefore, depending on the oligopeptide sequences, their hydrolysis may be less specific than globular protein and can occur in several sites.  相似文献   

4.
In contrast to canonical proteases, myelin basic protein (MBP)-Sepharose-purified IgG from multiple sclerosis (MS) and systemic lupus erythematosus (SLE) patients efficiently hydrolyze only MBP, but not many other tested proteins. It was shown that anti-MBP SLE IgGs cleave nonspecific tri- and tetrapeptides with an extremely low efficiency and cannot efficiently hydrolyse longer oligopeptides corresponding to antigenic determinants (AGDs) of HIV-1 integrase. To identify all sites of IgG-mediated proteolysis corresponding to two AGDs of MBP, we have used a combination of reverse-phase chromatography (RPhC), MALDI spectrometry, and TLC to analyze the cleavage products of two (17- and 19-mer) encephalytogenic oligopeptides corresponding to these AGDs. Both oligopeptides contained several clustered major and minor sites of cleavage. The active sites of anti-MBP abzymes are localized on their light chains, while the heavy chains are responsible for the affinity of protein substrates. Interactions of intact globular proteins with both light and heavy chains of abzymes provide high specificity of MBP hydrolysis. The affinity of anti-MBP abzymes for intact MBP was ~10(3)-fold higher than for the oligopeptides. The data suggest that both oligopeptides interact mainly with the light chain of different monoclonal abzymes of total pool of IgGs, which possesses lower affinity for substrates, and therefore, depending on the oligopeptide sequences, their hydrolysis may be less specific.  相似文献   

5.
Antibodies hydrolyzing myelin basic protein (MBP) can play an important role in the pathogenesis of multiple sclerosis (MS) and systemic lupus erythematosus (SLE). An immunoglobulin light chain phagemid library derived from peripheral blood lymphocytes of patients with SLE was used. Small pools of phage particles displaying light chains with different affinities for MBP were isolated by affinity chromatography on MBP‐Sepharose, and the fraction eluted with 0.5 M NaCl was used for preparation of individual monoclonal light chains (MLChs, 26–27 kDa). Seventy‐two of 440 individual colonies were randomly chosen, expressed in Escherichia coli in a soluble form, and MLChs were purified by metal chelating chromatography. Twenty‐two of 72 MLChs have high affinity and efficiently hydrolyze only MBP (not other control proteins) demonstrating various pH optima in a 5.7–9.0 range and different substrate specificity in the hydrolysis of four different MBP oligopeptides. Four MLChs demonstrated serine protease‐like and three thiol protease‐like activities, while 11 MLChs were metalloproteases. The activity of three MLChs was inhibited by both phenylmethylsulfonyl fluoride (PMSF) and Ethylenediaminetetraacetic acid (EDTA), two other by EDTA and iodoacetamide, and one by PMSF, EDTA, and iodoacetamide. The ratio of relative activity in the presence of Ca2+, Mg2+, Mn2+, Ni2+, Zn2+, Cu2+, and Co2+ was individual for each of 22 MLCh preparations. It is the first examples of human MLChs, which probably can possess two or even three different proteolytic activities. These observations suggest an extreme diversity of anti‐MBP abzymes in SLE patients. The immune systems of individual SLE patients can generate a variety of anti‐MBP abzymes, which can attack MBP of myelin‐proteolipid sheath of axons and play an important role in MS and SLE pathogenesis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Novel hydrolytic activity of the anti‐histone H1 antibodies (Ab) toward histone H1 and myelin basic protein (MBP) was shown. Blood serum of ten patients with clinically diagnosed systemic lupus erythematosus (SLE), and nine healthy donors (control) were screened for the anti‐histone H1 antibody‐ and anti‐MBP antibody‐mediated specific proteolytic activity. IgGs were isolated by chromatography on Protein G‐Sepharose, and four of ten SLE patients appeared to possess IgGs that were capable of cleaving both histone H1 and MBP. Such activity was confirmed to be an intrinsic property of the IgG molecule, since it was preserved at gel filtration at alkaline and acidic pH. At the same time, proteolytic activity was absent in the sera‐derived Ab of all healthy donors under control. Anti‐histone IgGs were purified by the affinity chromatography on histone H1‐Sepharose. Their cross‐reactivity toward cationic proteins (histones, lysozyme, and MBP) and their capability of hydrolyzing histone H1 and MBP were detected. However, these IgGs were not cleaving core histones, lysozyme, or albumin. Capability of cleaving histone H1 and MBP was preserved after additional purification of anti‐histone H1 IgGs by the HPLC gel filtration. The protease activity of anti‐histone H1 IgG Ab was inhibited by serine protease inhibitors. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Myelin basic protein (MBP) is a major protein of myelin‐proteolipid shell of axons, and it plays an important role in pathogenesis of multiple sclerosis. In the literature, there are no data on how antibodies recognize different protein antigens including MBP. A stepwise increase in ligand complexity was used to estimate the relative contributions of virtually every amino acid residue (AA) of a specific 12‐mer LSRFSWGAEGQK oligopeptide corresponding to immunodominant sequence of MBP to the light chains and to intact anti‐MBP IgGs from sera of patients with multiple sclerosis. It was shown that the minimal ligands of the light chains of IgGs are many different free AAs (K d = 0.51–0.016 M), and each free AA interacts with the specific subsite of the light chain intended for recognition of this AA in specific LSRFSW oligopeptide. A gradual transition from Leu to LSRFSWGAEGQK leads to an increase in the affinity from 10−1 to 2.3 × 10−4 M because of additive interactions of the light chain with 6 AAs of this oligopeptide and then the affinity reaches plateau. The contributions of 6 various AAs to the affinity of the oligopeptide are different (K d, M): 0.71 (S), 0.44 (R), 0.14 (F), 0.17 (S), and 0.62 (W). Affinity of nonspecific oligopeptides to the light chains of IgGs is significantly lower. Intact MBP interacts with both light and heavy chains of IgGs demonstrating 192‐fold higher affinity than the specific oligopeptide. It is a first quantitative analysis of the mechanism of proteins recognition by antibodies. The thermodynamic model was constructed to describe the interactions of IgGs with MBP. The data obtained can be very useful for understanding how antibodies against many different proteins can recognize these proteins.  相似文献   

9.
Human myelin basic protein (hMBP)‐hydrolyzing activity was recently shown to be an intrinsic property of antibodies (Abs) from multiple sclerosis (MS) patients. Here, we present the first evidence demonstrating a significant diversity of different fractions of polyclonal IgGs (pIgGs) from MS patients in their affinity for hMBP and in the ability of pIgGs to hydrolyze hBMP at different optimal pHs (3–10.5). IgGs containing λ‐ and κ‐types of light chains demonstrated comparable relative activities in the hydrolysis of hMBP. IgGs of IgG1–IgG4 sub‐classes were analyzed for catalytic activity. IgGs of all four sub‐classes were catalytically active, with their contribution to the total activity of Abzs in the hydrolysis of hMBP and its 19‐mer oligopeptide increasing in the order: IgG1 (1.5–2.1%) < IgG2 (4.9–12.8%) < IgG3 (14.7–25.0%) < IgG4 (71–78%). Our findings suggest that the immune systems of individual MS patients generate a variety of anti‐hMBP abzymes with different catalytic properties, which can attack hMBP of myelin‐proteolipid shell of axons, playing an important role in MS pathogenesis.  相似文献   

10.
11.
Human immunodeficiency virus type 1 integrase (IN) catalyzes integration of a DNA copy of the viral genome into the host genome. It was shown previously that IN preincubation with various oligodeoxynucleotides (ODNs) induces formation of dimers and oligomers of different gyration radii; only specific ODNs stimulate the formation of catalytically active dimers. Here we have shown that preincubation of IN with specific and nonspecific ODNs leads to a significant and comparable decrease in its hydrolysis by chymotrypsin, while nonspecific ODNs protect the enzyme from the hydrolysis by trypsin worse than specific ODNs; all ODNs had little effect on the IN hydrolysis by proteinase K. In contrast to canonical proteweases, IgGs from HIV‐infected patients specifically hydrolyze only IN. While d(pT)n markedly decreased the IgG‐dependent hydrolysis of IN, d(pA)n and d(pA)n?d(pT)n demonstrated no detectable protective effect. The best protection from the hydrolysis by IgGs was observed for specific single‐ and especially double‐stranded ODNs. Although IN was considerably protected by specific ODNs, proteolytic IgGs and IgMs significantly suppressed both 3′‐processing and integration reaction catalyzed by IN. Since anti‐IN IgGs and IgMs can efficiently hydrolyze IN, a positive role of abzymes in counteracting the infection cannot be excluded. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
We present the first evidence demonstrating that small fractions of IgGs of all four subclasses (IgG1–IgG4) are catalytically active in the hydrolysis of DNA and on average their relative activity (nM supercoiled DNA/1mg IgG/1 h) increases in the order: IgG1 (0.58) < IgG2 (0.94) < IgG3 (1.4) < IgG4 (4.1), while their approximate relative contribution to the total activity of abzymes increases in the order: IgG1 (6.9%) < IgG3 (9.3%) < IgG2 (18.2%) < IgG4 (65.6%). On average IgGs containing light chains of the λ‐type are severalfold more active in the hydrolysis of DNA than IgGs with light chains of the κ‐type. Using different physicochemical methods of antibody analysis we have shown that the immune system of multiple sclerosis patients generates a variety of anti‐DNA abzymes of different type and with different catalytic properties, which can play an important role in multiple sclerosis pathogenesis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Autoantibodies with enzymic activities (abzymes) are a distinctive feature of autoimmune diseases. It was interesting whether Abs from patients with viral diseases can hydrolyze viral proteins. Electrophoretically and immunologically homogeneous IgGs were isolated from sera of AIDS patients by chromatography on several affinity sorbents. We present evidence showing that 89.5% IgGs purified from the sera of HIV-infected patients using several affinity resins including Sepharose with immobilized integrase specifically hydrolyze only HIV integrase (IN) but not many other tested proteins. Several rigid criteria have been applied to show that the IN-hydrolyzing activity is an intrinsic property of AIDS IgGs but not from healthy donors. Similar to autoimmune proteolytic abzymes, IN-hydrolyzing IgGs from some patients were inhibited by specific inhibitors of serine and metal-dependent proteases but a significant inhibition of the activity by specific inhibitors of acidic- and thiol-like proteases was observed for the first time. Although HIV infection leads to formation of Abs to many viral and human antigens, no possible biological role for most of them is known. Since anti-IN IgG can efficiently hydrolyze IN, a positive role of abzymes in counteracting the infection cannot be excluded. In addition, detection of IN-hydrolyzing activity can be useful for diagnostic purposes and for estimation of the immune status in AIDS patients.  相似文献   

15.
Several different theories of schizophrenia (SCZ) were discussed; the causes of this disease are not yet clear. Using ELISA, it was shown that titers of autoantibodies against myelin basic protein (MBP) in SCZ patients are ~1.8‐fold higher than in healthy individuals but 5.0‐fold lower than in patients with multiple sclerosis. Several rigid criteria were checked to show that the MBP‐hydrolyzing activity is an intrinsic property of SCZ IgGs. Approximately 82% electrophoretically homogeneous SCZ IgGs purified using several affinity sorbents including Sepharose with immobilized MBP hydrolyze specifically only MBP but not many other tested proteins. The average relative activity of IgGs from patients with negative symptoms was 2.5‐fold higher than that of patients with positive symptoms of SCZ, and it increases with the duration of this pathology. It was shown that abzymes are the earliest statistically significant markers of many autoimmune pathologies. Our findings surmise that the immune systems of individual SCZ patients can generate a variety of anti‐MBP abzymes with different catalytic properties, which can attack MBP of the myelin‐proteolipid shell of axons. Therefore, autoimmune processes together with other mechanisms can play an important role in SCZ pathogenesis. MBP‐hydrolyzing antibodies were previously detected in the blood of 80% to 90% of patients with systemic lupus erythematosus (SLE) and multiple sclerosis (MS). In addition, some similar neuropsychiatric indicators of disease common to SLE, MS, and SCZ were described in the literature. Thus, the destruction of the myelin sheath and the production of MBP‐hydrolyzing antibodies can be a common phenomenon for some different diseases.  相似文献   

16.
We present the first evidence that electrophoretically and immunologically homogeneous sIgAs purified from milk of healthy human mothers by chromatography on Protein A‐Sepharose and FPLC gel filtration contain intrinsically bound metal ions (Ca > Mg ≥ Al > Fe ≈ Zn ≥ Ni ≥ Cu ≥ Mn), the removal of which by a dialysis against ethylenediamine tetraacetic acid (EDTA) leads to a significant decrease in the β‐casein‐hydrolyzing activity of these antibodies (Abs). An affinity chromatography of total sIgAs on benzamidine‐Sepharose interacting with canonical serine proteases separates a small metalloprotease sIgA fraction (6.8 ± 2.4%) from the main part of these Abs with a serine protease‐like β‐casein‐hydrolyzing activity. The relative activity of this metalloprotease sIgA fraction containing intrinsically bound metal ions increases ~1.2–1.9‐fold after addition of external metal ions (Mg2+ > Fe2+ > Cu2+ ≥ Ca2+ ≥ Mn2+) but decreases by 85 ± 7% after the removal of the intrinsically bound metals. The metalloprotease sIgA fraction free of intrinsic metal ions demonstrates a high β‐casein‐hydrolyzing activity in the presence of individual external metal ions (Fe2+ > Ca2+ > Co2+ ≥ Ni2+) and especially several combinations of metals: Co2+ + Ca2+ < Mg2+ + Ca2+ < Ca2+ + Zn2+ < Fe2+ + Zn2+ < Fe2+ + Co2+ < Fe2+ + Ca2+. The patterns of hydrolysis of a 22‐mer oligopeptide corresponding to one of sIgA‐dependent specific cleavage sites in β‐casein depend significantly on the metal used. Metal‐dependent sIgAs demonstrate an extreme diversity in their affinity for casein‐Sepharose and chelating Sepharose, and interact with Sepharoses bearing immobilized monoclonal mouse IgGs against λ‐ and κ‐type light chains of human Abs. Possible ways of the production of metalloprotease abzymes (Abz) by human immune system are discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
DNase activity was analyzed in 110 IgG preparations from the blood of AIDS patients. The relative activity of the preparations varied markedly among patients, being reliably detectable in 96% of the preparations. It was shown with several rigid criteria that DNAase activity is an intrinsic property of antibodies (Abs) from AIDS patients. Not only intact IgG, but also isolated light chains of polyclonal Abs were shown to possess catalytic activity. The abzymes efficiently catalyzed DNA hydrolysis in a wide range of pH (5.0–9.5). The K M and V max values were evaluated for Ab-dependent hydrolysis of DNA.  相似文献   

18.
It was previously shown that small fractions of IgGs and IgMs from the sera of AIDS patients specifically hydrolyze only HIV integrase (IN) but not many other tested proteins. Here we present evidence showing that these IgGs and IgMs are extreme catalytically heterogeneous. Affinity chromatography on IN-Sepharose using elution of IgGs (or IgMs) with different concentration of NaCl and acidic buffer separated catalytic antibodies (ABs) into many AB subfractions demonstrating different values of K m for IN and k cat. Nonfractionated IgGs and IgMs possess serine-, thiol-, acidiclike, and metal-dependent proteolytic activity. Metal-dependent activity of abzymes increases in the presence of ions of different metals. In contrast to canonical proteases having one pH optimum, initial nonfractionated IgGs and IgMs demonstrate several optima at pH from 3 to 10. The data obtained show that IN-hydrolyzing polyclonal IgG and IgM of HIV-infected patients are cocktails of anti-IN ABs with different structure of the active centers possessing various affinity to IN, pH optima, and relative rates of the specific substrate hydrolysis.  相似文献   

19.
Multiple proteases in a system hydrolyze target substrates, but recent evidence indicates that some proteases will degrade other proteases as well. Cathepsin S hydrolysis of cathepsin K is one such example. These interactions may be uni‐ or bi‐directional and change the expected kinetics. To explore potential protease‐on‐protease interactions in silico, a program was developed for users to input two proteases: (1) the protease‐ase that hydrolyzes (2) the substrate, protease. This program identifies putative sites on the substrate protease highly susceptible to cleavage by the protease‐ase, using a sliding‐window approach that scores amino acid sequences by their preference in the protease‐ase active site, culled from MEROPS database. We call this PACMANS, Protease‐Ase Cleavage from MEROPS ANalyzed Specificities, and test and validate this algorithm with cathepsins S and K. PACMANS cumulative likelihood scoring identified L253 and V171 as sites on cathepsin K subject to cathepsin S hydrolysis. Mutations made at these locations were tested to block hydrolysis and validate PACMANS predictions. L253A and L253V cathepsin K mutants significantly reduced cathepsin S hydrolysis, validating PACMANS unbiased identification of these sites. Interfamilial protease interactions between cathepsin S and MMP‐2 or MMP‐9 were tested after predictions by PACMANS, confirming its utility for these systems as well. PACMANS is unique compared to other putative site cleavage programs by allowing users to define the proteases of interest and target, and can also be employed for non‐protease substrate proteins, as well as short peptide sequences.  相似文献   

20.
Immunoglobulins IgG and sIgA actively hydrolyzing histone H1 have been detected on analyzing proteolytic activity of antibodies isolated by chromatography on Protein A-agarose from blood serum of patients with multiple sclerosis and from colostrum of healthy mothers. These antibodies hydrolyze other histones less actively and virtually failed to cleave lysozyme of chicken egg. By gel filtration at acidic pH and subsequent analysis of protease activity of chromatographic fractions, it was shown that IgG and sIgA molecules were responsible for hydrolysis of histone H1. Anti-histone H1 antibodies of IgG and sIgA classes were purified by affinity chromatography on histone H1-Sepharose from catalytically active antibody preparations. The protease activity of anti-histone H1 IgG antibodies was inhibited by serine proteinase inhibitors, whereas anti-histone H1 sIgA antibodies were insensitive to inhibitors of serine, asparagine, and cysteine proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号