首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An enzyme (nitrilase) that converts the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) to its metabolite 3,5-dibromo-4-hydroxybenzoic acid was shown to be plasmid encoded in the natural soil isolate Klebsiella ozaenae. The bromoxynil-specific nitrilase was expressed in Escherichia coli by direct transfer and stable maintenance in E. coli of a naturally occurring 82-kilobase K. ozaenae plasmid. Irreversible loss of the ability to metabolize bromoxynil both in E. coli and K. ozaenae was associated with the conversion of the 82-kilobase plasmid to a 68-kilobase species. In E. coli this conversion was the result of a host recA+-dependent recombinational event. A gene, designated bxn, encoding the bromoxynil-specific nitrilase was constitutively expressed in K. ozaenae and E. coli and subcloned on a 2.6-kilobase PstI DNA segment. The polarity and the location of the gene were determined by assaying hybrid constructs of the bromoxynil-specific nitrilase gene fused with the heterologous lac promoter.  相似文献   

2.
Enrichment of soil samples for organisms able to utilize the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) as a nitrogen source yielded bacterial isolates capable of rapidly metabolizing this compound. One isolate, identified as Klebsiella pneumoniae subsp. ozaenae, could completely convert 0.05% bromoxynil to 3,5-dibromo-4-hydroxybenzoic acid and use the liberated ammonia as a sole nitrogen source. Assays of cell extracts of this organism for the ability to produce ammonia from bromoxynil revealed the presence of a nitrilase (EC 3.5.51) activity. The enzyme could not utilize 3,5-dibromo-4-hydroxybenzamide as a substrate, and no 3,5-dibromo-4-hydroxybenzamide could be detected as a product of bromoxynil transformation. Comparison of related aromatic nitriles as substrates demonstrated that the Klebsiella enzyme is highly specific for bromoxynil.  相似文献   

3.
Enrichment of soil samples for organisms able to utilize the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) as a nitrogen source yielded bacterial isolates capable of rapidly metabolizing this compound. One isolate, identified as Klebsiella pneumoniae subsp. ozaenae, could completely convert 0.05% bromoxynil to 3,5-dibromo-4-hydroxybenzoic acid and use the liberated ammonia as a sole nitrogen source. Assays of cell extracts of this organism for the ability to produce ammonia from bromoxynil revealed the presence of a nitrilase (EC 3.5.51) activity. The enzyme could not utilize 3,5-dibromo-4-hydroxybenzamide as a substrate, and no 3,5-dibromo-4-hydroxybenzamide could be detected as a product of bromoxynil transformation. Comparison of related aromatic nitriles as substrates demonstrated that the Klebsiella enzyme is highly specific for bromoxynil.  相似文献   

4.
The amino acid sequences of the NH2 terminus and internal peptide fragments of a Rhodococcus rhodochrous J1 nitrilase were determined to prepare synthetic oligonucleotides as primers for the polymerase chain reaction. A 750-base DNA fragment thus amplified was used as the probe to clone a 5.4-kilobase PstI fragment coding for the whole nitrilase. The nitrilase gene modified in the sequence upstream from the presumed ATG start codon was expressed to approximately 50% of the total soluble protein in Escherichia coli. The predicted amino acid sequence of the nitrilase gene showed similarity to that of the bromoxynil nitrilase from Klebsiella ozaenae. The 5,5'-dithiobis(2-nitrobenzoic acid) modification of the nitrilase from R. rhodochrous J1 resulted in inactivation with the loss of one sulfhydryl group/enzyme subunit. Of 4 cysteine residues in the Rhodococcus nitrilase, only Cys-165 is conserved in the Klebsiella nitrilase. Mutant enzymes containing Ala or Ser instead of Cys-165 did not exhibit nitrilase activity. These findings suggest that Cys-165 plays an essential role in the function of the active site.  相似文献   

5.
From an Arabidopsis thaliana cDNA expression library, a cDNA clone was isolated, characterized and sequenced which, at the amino acid level, resembled the Klebsiella ozaenae bromoxynil nitrilase encoded by the bxn gene. The cDNA contained a long open reading frame, starting from two possible neighbouring ATG codons and capable of encoding 340 or 346 amino acids with calculated molecular masses of 37526 Da or 38176 Da, respectively. The sequence similarity between the deduced polypeptides from the Arabidopsis cDNA and bxn was clustered in three domains, one at the C-terminus, one in the center and one near the N-terminus of the two proteins, suggesting important functional elements in these parts of the proteins. The cDNA was cloned into different vectors under the control of the lacZ promotor and was functionally expressed by induction with isopropyl-beta-D-thiogalactoside. Using a combination of high-performance liquid chromatography, monoclonal-antibody based enzyme-linked immunosorbent assay and mass spectroscopy, it was shown that the isolated cDNA clone encodes an enzymatically active nitrilase which is able to convert indole-3-acetonitrile to the plant growth hormone, indole-3-acetic-acid.  相似文献   

6.
Peptides obtained by cleavage of a Rhodococcus rhodochrous K22 nitrilase, which acts on aliphatic nitriles such as acrylonitrile, crotonitrile, and glutaronitrile, have been sequenced. The data allowed the design of oligonucleotide probes which were used to clone a nitrilase encoding gene. Plasmid pNK21, in which 2.05-kb sequence covering the region encoding the nitrilase was was placed under the control of the lac promoter, directed overproduction of enzymatically active nitrilase in response to addition of isopropyl beta-D-thiogalactopyranoside in Escherichia coli. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the cell extract showed that the amount of nitrilase was about 40% of the total soluble proteins, leading to the establishment of a simple purification of the nitrilase. The nucleotide sequence of the nitrilase gene predicts a protein composed of 383 amino acids (M(r) = 42,275), including only one cysteine. The amino acid sequence homology between the Rhodococcus nitrilase and the Klebsiella ozaenae bromoxynil nitrilase [Stalker et al. (1988) J. Biol. Chem. 263, 6310-6314] was 38.3%, and a unique cysteinyl residue (Cys-170) in the former nitrilase was conserved at the corresponding position in the latter nitrilase. Cys-170 of the Rhodococcus nitrilase was replaced by Ala or Ser by site-directed mutagenesis. Both mutations resulted in the complete loss of nitrilase activity, clearly indicating that this cysteinyl residue is essential for the catalytic activity.  相似文献   

7.
腈水解酶基因bxn的结构与功能研究   总被引:2,自引:0,他引:2  
前期研究发现腈水解酶基因bxnRD127表达产物无功能,测序证明该基因结构中存在4处突变。本文对4处突变逐点进行结构与功能回复突变研究,发现其中2处突变能使基因表达产物丧失功能,1处使基因表达产物活性降低,1处对基因表达产物活性基本无影响。进一步将完全回复突变的bxn基因转化烟草,获得的转基因烟草具有抗溴苯腈除草剂特性,结果证明结构中的3处突变与活性中心功能有关。  相似文献   

8.
Using the Autodisplay system, a recombinant Escherichia coli strain displaying the dimeric nitrilase from Klebsiella pneumoniae subsp. ozaenae (NitKp) on the cell surface was constructed. Localization of the nitrilase in the cell envelope of E. coli was monitored by sodium dodecyl sulfate polyacrylamide gel electrophoresis and surface exposure was verified by its accessibility to externally added protease. The whole-cell biocatalyst obtained converted the substrates analyzed in the following order: chloroxynil?>?bromoxynil?>?ioxynil?>?3-bromo-4-hydroxybenzonitrile (1.67, 0.89, 0.13, and 0.09 mM product formation within 72 h, respectively), indicating the same substrate specificity for the displayed enzyme as for the free enzyme. The whole-cell biocatalyst was also able to convert 3-fluoro-4-hydroxybenzonitrile and 3,5-dimethyl-4-hydroxybenzonitrile to the corresponding carboxylic acids. In contrast, it was not possible to detect any enzyme activity when 4-methoxybenzonitrile was used as substrate. The temperature optimum determined was 45 °C for the surface-displayed enzyme instead of 35 °C for the purified enzyme. In addition, the optimum activity of the displayed nitrilase was shifted to more acidic pH in comparison to the free enzyme.  相似文献   

9.
The soil actinobacteria Rhodococcus rhodochrous PA-34, Rhodococcus sp. NDB 1165 and Nocardia globerula NHB-2 grown in the presence of isobutyronitrile exhibited nitrilase activities towards benzonitrile (approx. 1.1–1.9 U mg?1 dry cell weight). The resting cell suspensions eliminated benzonitrile and the benzonitrile analogues chloroxynil (3,5-dichloro-4-hydroxybenzonitrile), bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) and ioxynil (3,5-diiodo-4-hydroxybenzonitrile) (0.5 mM each) from reaction mixtures at 30°C and pH 8.0. The products were isolated and identified as the corresponding substituted benzoic acids. The reaction rates decreased in the order benzonitrile ? chloroxynil > bromoxynil > ioxynil in all strains. Depending on the strain, 92–100, 70–90 and 30–51% of chloroxynil, bromoxynil and ioxynil, respectively, was hydrolyzed after 5 h. After a 20-h incubation, almost full conversion of chloroxynil and bromoxynil was observed in all strains, while only about 60% of the added ioxynil was converted into carboxylic acid. The product of ioxynil was not metabolized any further, and those of the other two herbicides very slowly. None of the nitrilase-producing strains hydrolyzed dichlobenil (2,6-dichlorobenzonitrile). 3,5-Dibromo-4-hydroxybenzoic acid exhibited less inhibitory effect than bromoxynil both on luminescent bacteria and germinating seeds of Lactuca sativa. 3,5-Diiodo-4-hydroxybenzoic acid only exhibited lower toxicity than ioxynil in the latter test.  相似文献   

10.
It was found in field, and laboratory experiments that of 50 ppm of the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile added to grey forest soil 20-80% were still detected after three months). Bromoxynil did not influence (except for a short-termed stimulation of the number of bacteria) the amount and composition of the basic groups of soil microorganisms. In enrichment cultures of soil microorganisms metabolie products of bromoxynil decomposition (3,5-dibromo-4-hydroxybenzamide and 3,5-dibromo-4-hydroxybenzoic acid) were detected and a stimulating effect of cosubstratos on its decomposition was demonstrated. Bromoxynil concentration, aeration conditions and the presence of cosubstrates (ribose in particular) influenced the rate and degree of the decomposition process inPsevdomonas putida. In addition to the degradation products mentioned above, production of methoxylated and partially dehalogenated aromatic compounds was detected.  相似文献   

11.
Biological conversion of the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) was studied in a batch culture ofPseudomonas putida by using HPLC. The process had a cometabolic character and proceeded only in the presence of another, simultaneously metabolizable, carbon and energy source. The intensity of degradation correlated with the growth rate, the degradation stopping when the cosubstrate becomes exhausted or the pH value of the medium falls below 6.5. In a medium with glucose, no lag phase longer than one day was observed concerning growth, sugar and herbicide consumption and formation of metabolic herbicide derivatives (3,5-dibromo-4-hydroxybenzamide and 3,5-dibromo-4-hydroxybenzoic acid). In a medium with ribose, the initial lag of the above processes took 2 d. No formation of other degradation products was detected. Growth inhibition was proportional to the concentration of bromoxynil. Translated by Č. Novotny  相似文献   

12.
Desulfitobacterium chlororespirans has been shown to grow by coupling the oxidation of lactate to the metabolic reductive dehalogenation of ortho chlorines on polysubstituted phenols. Here, we examine the ability of D. chlororespirans to debrominate and deiodinate the polysubstituted herbicides bromoxynil (3,5-dibromo-4-hydroxybenzonitrile), ioxynil (3,5-diiodo-4-hydroxybenzonitrile), and the bromoxynil metabolite 3,5-dibromo-4-hydroxybenzoate (DBHB). Stoichiometric debromination of bromoxynil to 4-cyanophenol and DBHB to 4-hydroxybenzoate occurred. Further, bromoxynil (35 to 75 microM) and DBHB (250 to 260 microM) were used as electron acceptors for growth. Doubling times for growth (means +/- standard deviations for triplicate cultures) on bromoxynil (18.4 +/- 5.2 h) and DBHB (11.9 +/- 1.4 h), determined by rate of [14C]lactate uptake into biomass, were similar to those previously reported for this microorganism during growth on pyruvate (15.4 h). In contrast, ioxynil was not deiodinated when added alone or when added with bromoxynil; however, ioxynil dehalogenation, with stoichiometric conversion to 4-cyanophenol, was observed when the culture was amended with 3-chloro-4-hydroxybenzoate (a previously reported electron acceptor). To our knowledge, this is the first direct report of deiodination by a bacterium in the Desulfitobacterium genus and the first report of an anaerobic pure culture with the ability to transform bromoxynil or ioxynil. This research provides valuable insights into the substrate range of D. chlororespirans.  相似文献   

13.
The Cht gene encoding cyanide hydratase (CHT, EC 4.2.1.66), which detoxifies HCN and is thought to be important in fungal infection of cyanogenic plants, has been cloned from the phytopathogenic fungus Gloeocercospora sorghi. The gene was isolated by screening an expression library of G. sorghi using a CHT-specific antibody and using one of the positive cDNA clones as a probe in Southern hybridization to identify a 3.1 kb PstI genomic fragment. This PstI fragment expressed CHT activity when transformed into Aspergillus nidulans, a fungus that normally lacks CHT activity. Sequence analysis identified a single open reading frame of 1,107 base pairs which encodes a polypeptide of 40,904 daltons. The deduced amino acid sequence of CHT shares 36.5% identity to a nitrilase from the bacterium Klebsiella pneumoniae subsp. ozaenae.  相似文献   

14.
15.
Desulfitobacterium chlororespirans has been shown to grow by coupling the oxidation of lactate to the metabolic reductive dehalogenation of ortho chlorines on polysubstituted phenols. Here, we examine the ability of D. chlororespirans to debrominate and deiodinate the polysubstituted herbicides bromoxynil (3,5-dibromo-4-hydroxybenzonitrile), ioxynil (3,5-diiodo-4-hydroxybenzonitrile), and the bromoxynil metabolite 3,5-dibromo-4-hydroxybenzoate (DBHB). Stoichiometric debromination of bromoxynil to 4-cyanophenol and DBHB to 4-hydroxybenzoate occurred. Further, bromoxynil (35 to 75 μM) and DBHB (250 to 260 μM) were used as electron acceptors for growth. Doubling times for growth (means ± standard deviations for triplicate cultures) on bromoxynil (18.4 ± 5.2 h) and DBHB (11.9 ± 1.4 h), determined by rate of [14C]lactate uptake into biomass, were similar to those previously reported for this microorganism during growth on pyruvate (15.4 h). In contrast, ioxynil was not deiodinated when added alone or when added with bromoxynil; however, ioxynil dehalogenation, with stoichiometric conversion to 4-cyanophenol, was observed when the culture was amended with 3-chloro-4-hydroxybenzoate (a previously reported electron acceptor). To our knowledge, this is the first direct report of deiodination by a bacterium in the Desulfitobacterium genus and the first report of an anaerobic pure culture with the ability to transform bromoxynil or ioxynil. This research provides valuable insights into the substrate range of D. chlororespirans.  相似文献   

16.
N-Acetylneuraminic acid cytidylyltransferase (EC 2.7.7.43) (CMP-NeuAc synthetase) catalyzes the formation of cytidine monophosphate N-acetylneuraminic acid. We have purified CMP-NeuAc synthetase from an Escherichia coli O18:K1 cytoplasmic fraction to apparent homogeneity by ion exchange chromatography and affinity chromatography on CDP-ethanolamine linked to agarose. The enzyme has a specific activity of 2.1 mumol/mg/min and migrates as a single protein and activity band on nondenaturing polyacrylamide gel electrophoresis. The enzyme has a requirement for Mg2+ or Mn2+ and exhibits optimal activity between pH 9.0 and 10. The apparent Michaelis constants for the CTP and NeuAc are 0.31 and 4 mM, respectively. The CTP analogues 5-mercuri-CTP and CTP-2',3'-dialdehyde are inhibitors. The purified CMP-N-acetylneuraminic acid synthetase has a molecular weight of approximately 50,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The gene encoding CMP-N-acetylneuraminic acid synthetase is located on a 3.3-kilobase HindIII fragment. The purified enzyme appears to be identical to the 50,000 Mr polypeptide encoded by this gene based on insertion mutations that result in the loss of detectable enzymatic activity. The amino-terminal sequence of the purified protein was used to locate the start codon for the CMP-NeuAc synthetase gene. Both the enzyme and the 50,000 Mr polypeptide have the same NH2-terminal amino acid sequence. Antibodies prepared to a peptide derived from the NH2-terminal amino acid sequence bind to purified CMP-NeuAc synthetase.  相似文献   

17.
The gene encoding 4-pyridoxic acid dehydrogenase was identified as mlr6792 in a chromosome of a nitrogen-fixing symbiotic bacterium Mesorhizobium loti MAFF303099. The enzyme is the fourth enzyme in the vitamin B(6) (pyridoxine)-degradation pathway I. The recombinant enzyme with a his-tag over-expressed in Escherichia coli cells was a membrane-bound protein, and purified to homogeneity. The enzyme was a monomeric protein with a molecular weight of 59,000, and a flavoprotein containing one mole of FAD per mole of subunit. The optimum pH and temperature, and K(m) for 4-pyridoxic acid were pH 8.5 and 30 degrees C, and 29 muM, respectively. The enzyme was a glucose-methanol-choline (GMC) family protein with two signature patterns, FAD-binding residues, a putative active site histidine residue and a probable transmembrane segment.  相似文献   

18.
19.
The nucleotide sequence of a 3180-base-pair segment of DNA, containing the sucA gene encoding the 2-oxoglutarate dehydrogenase component (E1o) of the 2-oxoglutarate dehydrogenase complex of Escherichia coli, has been determined by the dideoxy chain-termination method. The sucA structural gene contains 2796 base pairs (932 codons, excluding the initiation codon AUG) and encodes a polypeptide having a glutamine residue at the amino terminus, a glutamate residue at the carboxy-terminus and a calculated Mr = 104905. The predicted amino acid composition is in good agreement with published information obtained by hydrolysis of the purified enzyme. There is a striking lack of sequence homology between the 2-oxoglutarate dehydrogenase (E1o) and the corresponding pyruvate dehydrogenase (E1p), which suggests that the two components are not closely related in evolutionary terms. The location and polarity of the sucA gene, relative to the restriction map of the corresponding segment of DNA, are consistent with it being the proximal gene of the suc operon, as defined in previous genetic and post-infection labelling studies, but it could also form part of a more complex regulatory unit. The sucA gene is preceded by a segment of DNA that contains many substantial regions of hyphenated dyad symmetry including an IS-like sequence of the type that is thought to function as an intercistronic regulatory element. This segment also contains three putative RNA polymerase binding sites and a good ribosome binding site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号