首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well known that cultured aortic smooth muscle cells, the phenotype of which has modulated from contractile to synthetic, are able to release prostacyclin (PGI2). We have studied the release of PGI2 from cultured explants of bovine aortic media, which represent an homogeneous population of smooth muscle cells with a contractile phenotype. These explants released spontaneously huge amounts of PGI2, which was the major eicosanoid produced. PGI2 release was stimulated by serum and by serotonin. This experimental model seems useful to evaluate the contribution of smooth muscle to the biosynthesis of PGI2 by the arterial wall.  相似文献   

2.
A myosin phosphatase has been purified to homogeneity from bovine aortic smooth muscle. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme eluted from nondenaturing gels revealed two subunits (Mr = 67,000 and 38,000). Densitometric scans of the subunits indicated a molar ratio of 1:1. Several phosphoproteins were substrates for the phosphatase including histone II-A, isolated 20,000-dalton smooth muscle myosin light chains, phosphorylase a, and smooth muscle myosin. In the presence of 0.25 M NaCl and a substrate concentration of 2 microM, myosin was preferentially dephosphorylated. The specific activity of the phosphatase for myosin at a concentration of 10 microM was found to be 5 mumol/mg/min. The phosphatase required Mn2+ or Co2+ ions for activity. Mg2+, Ca2+, or Mg-ATP would not substitute for Mn2+ or Co2+ at equimolar concentrations. This phosphatase may play an important role in regulating actin-myosin interaction in smooth muscle by serving to dephosphorylate myosin.  相似文献   

3.
Monoiodotyrosine ([125I]ChTX) binds with high affinity to a single class of receptors present in bovine aortic smooth muscle sarcolemmal membranes that are functionally associated with the high-conductance Ca(2+)-activated K+ channel [maxi-K channel; Vázquez, J., et al. (1989) J. Biol. Chem. 265, 20902-20909]. Cross-linking experiments carried out with this preparation in the presence of [125I]ChTX and disuccinimidyl suberate indicate specific incorporation of radioactivity into a protein of Mr 35,000. The smooth muscle ChTX receptor can be solubilized in active form in the presence of selected detergents. Treatment of membranes with digitonin releases about 50% of the ChTX binding sites. The solubilized receptor retains the same biochemical and pharmacological properties that are characteristic of toxin interaction with membrane-bound receptors. The solubilized receptor binds specifically to wheat germ agglutinin-Sepharose resin, suggesting that it is a glycoprotein. Functional ChTX binding sites can also be solubilized in 3-[(3-cholamidopropyl)dimethylamino]-1-propanesulfonate (CHAPS). Sucrose density gradient centrifugation of either digitonin or CHAPS extracts indicates that the ChTX receptor has a high apparent sedimentation coefficient (s20,w = 23 and 18 S, respectively). Cross-linking experiments indicate that the appearance of the 35-kDa membrane protein correlates with ChTX binding activity after both wheat germ agglutinin-Sepharose and sucrose density gradient centrifugation steps. Given the high apparent sedimentation coefficient of the ChTX receptor, the 35-kDa membrane protein may be a subunit of a higher molecular weight complex which forms the maxi-K channel in smooth muscle sarcolemma.  相似文献   

4.
Modulation of smooth muscle cell behaviour in culture has been associated with changes in the extracellular matrix. In the present study cultures of bovine aortic smooth muscle cells were compared in the rapidly proliferating and confluent phases of growth. The extracellular matrix was similar in both phases of growth and consisted of glycoproteins ranging from molecular weight 20,000 to over 200,000. The glycopeptides derived from these components displayed several differences. N-linked heteropolysaccharides of the biantennary and complex (more than two branches) types were predominant in the matrix of the confluent phase. Larger amounts of high mannose glycopeptides were present in the preparations from proliferating cells. O-Glycosidic glycopeptides were minor components in both preparations, but a slight increase was noted in the confluent phase of growth. Some of the changes in glycopeptides were interpreted in terms of the levels of the major components of the matrix such as the interstitial procollagens and fibronectin. The results indicate that processing of oligosaccharides associated with secreted glycoproteins of the extracellular matrix correlates with the state of growth of smooth muscle cells in culture.  相似文献   

5.
Prostacyclin (prostaglandin I2) is the major product of arachidonic acid metabolism in vascular cells. Its physiological role may be linked to the ability of the cells to respond continuously with prostaglandin I2 production to a variety of stimuli. We report that human endothelial cells or bovine smooth muscle cells in culture respond with prostaglandin I2 synthesis to a first but not to a second stimulation with arachidonic acid. The development of this refractoriness was independent of the arachidonic acid concentration used (6.6-25 microM) and lasted for about 6 h. The same time was required for the cells to recover completely after inhibition of cyclooxygenase activity by aspirin. Neither cis-polyunsaturated fatty acids (linoleic or oleic acids) nor stearic acid (a long-chain saturated fatty acid) prevented the generation of prostaglandin I2 by arachidonic acid. Similarly to arachidonic acid, thrombin and ionophore A23187 could elicit vascular prostaglandin I2 synthesis only once. Pretreatment of the cells with arachidonic acid rendered the cells unresponsive to any other stimulus. These results indicate that the mechanism of the refractoriness induced by arachidonic acid was different from that induced by the other stimuli. It is proposed that vascular cells cannot be stimulated continuously to produce prostaglandin I2, but this process is regulated by different feedback mechanisms.  相似文献   

6.
Pure cGMP-inhibited cAMP phosphodiesterase (cGI-PDE) in micrograms quantities was isolated from bovine aortic smooth muscle after more than 5000-fold purification using DEAE ion-exchange and affinity chromatography with a derivative of the specific cGI-PDE inhibitor cilostamide conjugated as a ligand to aminoethyl agarose (CIT-agarose). The cGI-PDE, which constituted about half of the high affinity cAMP-PDE activity of a tissue homogenate, was identified with a 105-kDa protein on SDS-PAGE through use of antibodies towards the human platelet, bovine cardiac and bovine adipose tissue cGI-PDE in Western blot and immunoprecipitation/immunoinactivation analysis. As observed during purification of the enzyme from other tissues the enzyme protein was exquisitely sensitive to proteolytic nicking during purification, resulting in several 30-77-kDa polypeptide fragments. Rapid immunoprecipitation from fresh tissue extracts was the only was found to partially prevent the proteolysis. The native enzyme had apparent molecular sizes of approx. 100,000 or, mainly approx. 220,000 by gel chromatography, presumably indicating the presence of monomeric and dimeric forms. The enzyme hydrolyzed cAMP and cGMP with normal Michaelis-Menten kinetics with Km of 0.16 and 0.09 microM, respectively, with Vmax for hydrolysis of cAMP of 0.3 compared to 3.1 mumol/min per mg protein for cAMP. The enzyme was potently and selectively inhibited by cGMP (IC50 approximately 0.25 microM) and the cardiotonic/vasodilatory drugs OPC-3911 (a cilostamide derivative), milrinone and CI-930 (IC50 approximately 0.05, 0.40 and 0.25 microM, respectively). The cGI-PDE was phosphorylated by cAMP-dependent protein kinase as has been reported for the analogous enzymes in heart, adipose tissue and platelets. The identification of a cGI-PDE in the aortic smooth muscle and its inhibitor specificity is consistent with the hypothesis that inhibition of this enzyme is important in the mechanism through which these drugs produce vasorelaxation.  相似文献   

7.
rhoA p21, a ras p21-like small GTP-binding protein, has the same C-terminal consensus motif of Cys-A-A-X (A is an aliphatic amino acid and X is any amino acid) as ras p21s, which is posttranslationally processed. We here determine the posttranslationally processed C-terminal structure of the rhoA p21 purified from bovine aortic smooth muscle. Incubation of rhoA p21-expressing insect cells with exogenous [3H]mevalonolactone caused the labeling of rhoA p21, suggesting that rhoA p21 is prenylated. Consistently, Raney nickel treatment of rhoA p21 released a geranylgeranyl moiety as estimated by gas chromatography/mass spectrometry. No lipid moiety was released by KOH or NH2OH treatment. Extensive digestion of rhoA p21 with Achromobacter protease I yielded a C-terminal peptide, Ser-Gly-Cys190, that lacked the three C-terminal amino acids predicted from the cDNA but was geranylgeranylated and carboxyl methylated at the cysteine residue. Bovine brain cytosol geranylgeranylated the bacterial rhoA p21 having the three C-terminal amino acids predicted from the cDNA but not the protein lacking the three C-terminal amino acids. Bovine brain membranes methylated the synthetic C-terminal peptide with 10 amino acids of rhoA p21 which was geranylgeranylated at its C-terminal cysteine residue but not the peptide which was not geranylgeranylated. These results suggest that rhoA p21 is first geranylgeranylated followed by removal of the three C-terminal amino acids and the subsequent carboxyl methylation of the exposed cysteine residue.  相似文献   

8.
Cultured bovine aortic smooth muscle cells display an increase in production of type I and type III collagen as a function of the number of days in second passage (Beldekas, J. C., Gerstenfeld, L. C., Sonenshein, G. E., and Franzblau, C. (1982) J. Biol. Chem. 257, 12552-12556). In this study, we report that the regulation of these events is highly complex and relates to the growth state of the cells. Cultures, seeded at 1.5 X 10(6) cells/75-cm2 flask, produced very little collagenous protein early when the cells were proliferating rapidly. As they approached confluence at day 6, collagen synthesis began to increase. Maximal collagen synthesis was observed at day 14. In contrast, the levels of the mRNAs for type I and type III collagen increased only up to the 10th day and thereafter decreased. Cell-free translation analyses indicated that the translational activity of the collagen mRNAs was increasing over the time course. These results suggest that both translational and pretranslational sites are involved in the control of collagen production by aortic smooth muscle cells, and that collagen synthesis is inversely related to the proliferative state of the cells in culture.  相似文献   

9.
Our laboratory has previously reported that the exposure of smooth muscle cells (SMC) to the cyclic strain results in significant stimulation of protein kinase C (PKC) activity by translocating the enzyme from the cytosol to the particulate fraction. We now sought to examine the strain-induced translocation of individual PKC isoforms in SMC. Confluent bovine aortic SMC grown on collagen type I-coated plates were exposed to cyclic strain for up to 100 s at average 10% strain with 60 cycles/min. Immunoblotting analysis demonstrates that SMC express PKC-alpha, -beta and -zeta in both cytosolic and particulate fractions. Especially, PKC-alpha and -zeta were predominantly expressed in the cytosolic fraction. However, cyclic strain significantly (P < 0.05) increased PKC-alpha and -zeta in the particulate fraction and decreased in the cytosolic fraction. Thus, the cyclic strain-mediated stimulation of PKC activity in SMC may be due to the translocation of PKC-alpha and -zeta from the cytosolic to the particulate fraction. These results demonstrate that mechanical deformation causes rapid translocation of PKC isoforms, which may initiate a cascade of proliferation responses of SMC since NF-kappaB, which is involved in the cellular proliferation has been known to be activated by these PKC isoforms.  相似文献   

10.
The interaction of iberiotoxin (IbTX) with the large-conductance calcium-activated potassium (maxi-K) channel was examined by measuring single-channel currents from maxi-K channels incorporated into planar lipid bilayers. Addition of nanomolar concentrations of IbTX to the external side of the channel produced long nonconducting silent periods, which were interrupted by periods of normal channel activity. The distributions of durations of blocked and unblocked periods were both described by single exponentials. The mean duration of the unblocked periods decreased in proportion with the external concentration of IbTX, while the mean duration of the blocked periods was not affected. These results suggest that IbTX blocks the maxi-K channel through a simple bimolecular binding reaction where the silent periods represent times when a single toxin molecule is bound to the channel. In symmetric solutions of 150 mM KCl, with a membrane potential of 40 mV, the mean duration of the blocked periods produced by IbTX was 840 s, and the association rate was 1.3 x 10(6) M-1 s-1, yielding an equilibrium dissociation constant of about 1 nM. Raising the internal potassium concentration increased the dissociation rate constant of IbTX in a manner which was well described by a saturable binding function for potassium. External tetraethylammonium ion increased the average duration of the unblocked periods without affecting the blocked periods, suggesting that tetraethylammonium and IbTX compete for the same site near the conductance pathway of the channel. Increasing the external concentration of monovalent cations from 25 to 300 mM with either potassium or sodium decreased the rate of binding of IbTX to the channel by approximately 24-fold, with little effect on the rate of toxin dissociation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A calmodulin inhibitor, trifluoperazine, suppresses ATP-dependent Ca2+ uptake into microsomes prepared from bovine aortic smooth muscle. From this microsomal preparation which we expected to contain calmodulin-dependent Ca2+-transport ATPase [EC 3.6.1.3], we purified (Ca2+-Mg2+)ATPase by calmodulin affinity chromatography. The protein peak eluted by EDTA had calmodulin-dependent (Ca2+-Mg2+)ATPase activity. The major band (135,000 daltons) obtained after sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) accounted for about 80% of the total protein eluted. This major band was phosphorylated by [gamma-32P]ATP in a Ca2+-dependent manner. All the 32P incorporated into the major band was released by hydroxylaminolysis. The ATPase reconstituted in soybean phospholipid liposomes showed ATP, calmodulin-dependent Ca2+ uptake. The affinity of the ATPase for Ca2+, Km, was 7 microM and the maximum ATPase activity was 1.4 mumol/mg/min. These values were changed to 0.17 microM and 3.5 mumol/mg/min, respectively by the addition of calmodulin. The activity of the purified (Ca2+-Mg2+)ATPase was inhibited by orthovanadate, and the concentration required for half-maximal inhibition was about 1.8 microM which is close to that of plasma membrane ATPases. Judging from the effect of orthovanadate and the molecular weight, the purified (Ca2+-Mg2+)ATPase was considered to have originated from the plasma membrane not from the sarcoplasmic reticulum.  相似文献   

12.
Ultrastructural and biochemical studies were carried out on bovine aortic smooth muscle cells cultured in the presence or absence of ascorbate. In its absence, electron microscopic examination of cultures revealed that the extracellular components consisted primarily of microfibrils. Morphologically identifiable collagen fibrils were only observed in the matrix upon ascorbate supplementation. Smooth muscle cells grown in ascorbate-free media synthesized large amounts of type VI collagen. The identity of the latter was confirmed by ion exchange chromatography, slab gel electrophoresis, and amino acid analysis. Addition of ascorbate resulted in a stimulation of type I collagen production, levels of the type III remained constant, and types V and VI were decreased. Since, in the absence of ascorbate, smooth muscle cells are known to synthesize predominantly elastin, the present data support the contention that the type VI collagen and the microfibrillar component of elastic tissue are either identical or similar.  相似文献   

13.
Angiotensin-I generating activity has been detected in homogenates of arterial tissue but it remains unclear whether this enzymatic activity results from the presence of renin itself or from the action of other proteases such as cathepsin D. In an assay system employing anephric dog plasma as substrate and buffered to pH 7.4, we detected angiotensin-I generating activity in homogenates of canine aortic smooth muscle cells. This enzymatic activity was in large part inhibitable by renin-specific antisera raised to pure canine renal renin. Immunofluorescent study of cultured arterial smooth muscle cells was also performed using renin specific antiserum. Granular cytoplasmic immunofluorescence was detected when specific antirenin serum was used but not when preimmune serum was employed. The addition of pure canine renin to the renin antiserum during staining suppressed the granular immunofluorescence confirming the specificity of staining. Finally, biosynthetic radiolabelling studies were performed. Immunoprecipitation of newly synthesized proteins with antirenin serum and staphylococcal protein A followed by gel electrophoresis and autoradiography demonstrated the synthesis of an immunoreactive protein with the molecular weight of renin. Pretreatment of the antirenin serum with pure canine renin resulted in the disappearance of this immunoreactive protein band. Thus these studies provide multiple lines of evidence to indicate the insitu synthesis of renin by vascular smooth muscle cells.  相似文献   

14.
Cultured bovine aortic smooth muscle and endothelial cells each display distinct specific binding sites for radiolabeled atrial natriuretic peptide (ANF). 125I-pro-rANF (103-126)I binding to both cell types is rapid, reversible and competitive. Scatchard plots of the binding data show Bmax values of 5.5 and 0.1 - 2.1 X 10(5) sites/cell and Kd values of 2.1 and 0.3 nM for smooth muscle and endothelial cells, respectively. In addition, ANF elevates levels of cGMP substantially in both cell types at concentrations of ANF close to its Kd and Ki for binding. Sodium nitroprusside, however, has essentially no effect on cGMP levels in either cell type. These results show that distinct functionally active receptor sites for ANF exist on both vascular smooth muscle and endothelial cells.  相似文献   

15.
16.
In bovine aortic smooth muscle, about 50% of total GTP-binding activity was present in the cytosol fraction. A major GTP-binding protein (G protein) with a Mr value of about 21,000 (21K G) in this fraction was purified to near homogeneity and characterized. 21K G bound maximally about 0.8 mol of [35S]guanosine 5'-(3-O-thio)triphosphate/mol of protein with a Kd value of about 20 nM. 21K G showed GTPase activity with a turnover number of about 0.007 min-1. 21K G was ADP-ribosylated by botulinum ADP-ribosyltransferase and about 0.4 mol of ADP-ribose was maximally incorporated into 1 mol of 21K G. 21K G and the bovine brain rhoA gene product (rhoA p21) were eluted at the same retention time on C4 reversed-phase high performance liquid chromatography and migrated at the same positions on two-dimensional gel electrophoresis. These results indicate that the major G protein in bovine aortic smooth muscle cytosol is rhoA p21.  相似文献   

17.
Corpora lutea (CL) were collected from Holstein heifers on Days 5, 10, 15 and 18 (5/day) of the estrous cycle. Dispersed luteal cell preparations were made and 10(6) viable luteal cells were incubated with bovine luteinizing hormone (LH) and different amounts of arachidonic acid in the presence and absence of the prostaglandin (PG) synthetase inhibitor indomethacin. The concentrations of progesterone, PGF2 alpha and 6-keto-PGF1 alpha, the stable inactive metabolite of prostacyclin (PGI2), were measured. Day 5 CL had the greatest initial content of 6-keto-PGF1 alpha (1.01 +/- 0.16 ng/10(6) cells), and synthesized more 6-keto-PGF1 alpha (2.55 +/- 0.43) than CL collected on Days 10 (0.57 +/- 0.11), 15 (0.08 +/- 0.05) and 18 (0.19 +/- 0.03) during a 2-h incubation period. Arachidonic acid stimulated the production of 6-keto-PGF1 alpha by Days 10, 15 and 18 luteal tissue. PGF2 alpha was produced at a greater rate on Day 5 (0.69 +/- 0.17 ng/10(6) cells) than on Days 10 (0.06 +/- 0.01), 15 (0.04 +/- 0.02) and 18 (0.08 +/- 0.01). Arachidonic acid stimulated and indomethacin inhibited the production of PGF2 alpha, in most cases. The initial content of 6-keto-PGF1 alpha was higher than that of PGF2 alpha on all days of the cycle and more 6-keto-PGF1 alpha was synthesized in response to arachidonic acid addition. The ratio of 6-keto-PGF1 alpha content to PGF2 alpha content was 4.39, 2.30, 1.25 and 1.13 on Days 5, 10, 15 and 18, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We examined the effect of protein kinase C (PKC)-dependent phosphorylation on Ca2+ uptake and ATP hydrolysis by microsomal as well as purified sarcolemmal Ca2(+)-ATPase preparations isolated from bovine aortic smooth muscle. The phosphorylation was performed by treating these preparations with PKC and saturating concentrations of ATP (or ATP-gamma S), Ca2+, and 12-O-tetradecanoyl phorbol-13-acetate (TPA) at 37 degrees C for 10 min. In microsomes, treatment with PKC enhanced a portion of the Ca2+ uptake activity inhibitable by 10 microM vanadate, by up to about 30%. On the other hand, Ca2(+)-dependent ATPase activity in the purified Ca2(+)-ATPase preparation was stimulated by up to twofold. Up to twofold stimulation by PKC was also observed for the Ca2+ uptake by proteoliposomes reconstituted from purified sarcolemmal Ca2(+)-ATPase and phospholipids. Since these effects were evident only at Ca2+ concentrations between 0.1 to 1.0 microM, we concluded that it was the affinity of the Ca2(+)-ATPase for Ca2+ that was increased by the PKC treatment. Under conditions in which PKC increased Ca2+ pump activity, the sarcolemmal Ca2(+)-ATPase was phosphorylated to a level of about 1 mol per mol of the enzyme. There was good parallelism between the ATPase phosphorylation and the extent of enzyme activation. These results strongly suggest that the activity of the sarcolemmal Ca2+ pump in vascular smooth muscle is regulated through its direct phosphorylation by PKC.  相似文献   

19.
The effects of atrial natriuretic factor (ANF) on phosphoinositide hydrolysis were examined in preparations of cultured bovine aortic smooth muscle cells. In homogenates or particulate fractions from cultured bovine aortic smooth muscle cells, ANF and atriopeptin I increased the formation of inositol phosphates and GTPase activity. The effects on inositol phosphates were markedly enhanced with guanosine 5'[gamma-thio]triphosphate. Both atrial peptides also stimulated the formation of diacylglycerol in intact cultured cells. In these experiments, atriopeptin I was about 10-fold more potent than ANF. These studies indicate that atrial peptides have stimulatory effects on phosphoinositide hydrolysis which are mediated through a guanine nucleotide regulatory protein. The greater potency of atriopeptin I on GTPase activity and the accumulation of inositol phosphates suggests that the nonguanylate cyclase-coupled receptor for ANF (ANF-R2) mediates the stimulatory effects of ANF on phosphoinositide hydrolysis through a guanine nucleotide regulatory protein.  相似文献   

20.
Studies were conducted to determine if in vivo exposure to dinitrotoluenes (DNT), which is associated with circulatory disorders of atherosclerotic etiology in humans, is associated with alterations of vascular smooth muscle cells (SMC) consistent with the atherogenic process. Sprague-Dawley rats (150-180 g) were injected IP for 5 days/week for 8 weeks with 2,4- or 2,6-DNT (0.5, 5, or 10 mg/kg) or medium chain triglyceride (MCT) oil. Histopathologic evaluation of aortae from animals exposed to either isomer showed dysplasia and rearrangement of SMC at all doses tested. Reduced 3H-thymidine incorporation was observed in primary cultures of aortic SMC from DNT-exposed animals relative to vehicle controls. This inhibitory response was maintained for up to two passages in culture after which a significant increase in thymidine incorporation was observed. Exposure of SMC from naive animals to DNT in vitro (1–100 µM) did not alter the extent of thymidine incorporation in cycling or growth-arrested cultures. In contrast, exposure to 2,4- or 2,6-diaminotoluene (DAT) (1–100 µM), carcinogens which share toxic metabolic intermediates in common with DNT, inhibited replicative DNA synthesis and stimulated unscheduled DNA synthesis in cycling and growth-arrested cultures of SMC, respectively. Our results suggest that modulation of DNA synthesis in aortic SMC by DNT metabolites generated in vivo contribute to the development of vascular lesions.Abbreviation DAT diaminotuluene - tDNT technical grade dinitrotoluene - DNT dinitrotoluenes - HU hydroxyurea - IP intraperitoneal - LDH lactate dehydrogenase - MCT oil medium chain triglyceride - NPTC non-protein thiol content - RDS replicative DNA synthesis - SEM standard error of the mean - SMC smooth muscle cells - UDS unscheduled DNA synthesis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号