首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of C-protein on actin-activated myosin ATPase depending on Ca(2+)-level and LC2-phosphorylation were studied. Column-purified myosin and non-regulated actin were used. At ionic strength of 0.06 C-protein inhibits actomyosin ATPase activity both in the presence and in the absence of calcium, more effective in the case of dephosphorylated myosin. For this myosin, at mu = 0.12 C-protein activates actomyosin ATPase at pCa4, but slightly inhibits at pCa8. No such effects have been observed in the case of phosphorylated myosin. The possibility of coordinative action of LC2-chains and C-protein in regulatory mechanism of skeletal muscle contraction is discussed.  相似文献   

2.
S100A11 is a member of the S100 family of EF-hand Ca2+-binding proteins, which is expressed in smooth muscle and other tissues. Ca2+ binding to S100A11 induces a conformational change that exposes a hydrophobic surface for interaction with target proteins. Affinity chromatography with immobilized S100A11 was used to isolate a 70-kDa protein from smooth muscle that bound to S100A11 in a Ca2+-dependent manner and was identified by mass spectrometry as annexin A6. Direct Ca2+-dependent interaction between S100A11 and annexin A6 was confirmed by affinity chromatography of the purified bacterially expressed proteins, by gel overlay of annexin A6 with purified S100A11, by chemical cross-linking, and by coprecipitation of S100A11 with annexin A6 bound to liposomes. The expression of S100A11 and annexin A6 in the same cell type was verified by RT-PCR and immunocytochemistry of isolated vascular smooth muscle cells. The site of binding of S100A11 on annexin A6 was investigated by partial tryptic digestion and deletion mutagenesis. The unique NH2 terminal head region of annexin A6 was not required for S100A11 binding, but binding sites were identified in both NH2- and COOH-terminal halves of the molecule. We hypothesize that an agonist-induced increase in cytosolic free [Ca2+] leads to formation of a complex of S100A11 and annexin A6, which forms a physical connection between the plasma membrane and the cytoskeleton, or plays a role in the formation of signaling complexes at the level of the sarcolemma. smooth muscle; protein-protein interaction  相似文献   

3.
4.
Ca(2+)-dependent regulation of the motor activity of myosin V   总被引:2,自引:0,他引:2  
Mouse myosin V constructs were produced that consisted of the myosin motor domain plus either one IQ motif (M5IQ1), two IQ motifs (M5IQ2), a complete set of six IQ motifs (SHM5), or the complete IQ motifs plus the coiled-coil domain (thus permitting formation of a double-headed structure, DHM5) and expressed in Sf9 cells. The actin-activated ATPase activity of all constructs except M5IQ1 was inhibited above pCa 5, but this inhibition was completely reversed by addition of exogenous calmodulin. At the same Ca(2+) concentration, 2 mol of calmodulin from SHM5 and DHM5 or 1 mol of calmodulin from M5IQ2 were dissociated, suggesting that the inhibition of the ATPase activity is due to dissociation of calmodulin from the heavy chain. However, the motility activity of DHM5 and M5IQ2 was completely inhibited at pCa 6, where no dissociation of calmodulin was detected. Inhibition of the motility activity was not reversed by the addition of exogenous calmodulin. These results indicate that inhibition of the motility is due to conformational changes of calmodulin upon the Ca(2+) binding to the high affinity site but is not due to dissociation of calmodulin from the heavy chain.  相似文献   

5.
6.
Background: S100C (S100A11) is a member of the S100 calcium-binding protein family, the function of which is not yet entirely clear, but may include cytoskeleton assembly and dynamics. S100 proteins consist of two EF-hand calcium-binding motifs, connected by a flexible loop. Like several other members of the family, S100C forms a homodimer. A number of S100 proteins form complexes with annexins, another family of calcium-binding proteins that also bind to phospholipids. Structural studies have been undertaken to understand the basis of these interactions. Results: We have solved the crystal structure of a complex of calcium-loaded S100C with a synthetic peptide that corresponds to the first 14 residues of the annexin I N terminus at 2.3 A resolution. We find a stoichiometry of one peptide per S100C monomer, the entire complex structure consisting of two peptides per S100C dimer. Each peptide, however, interacts with both monomers of the S100C dimer. The two S100C molecules of the dimer are linked by a disulphide bridge. The structure is surprisingly close to that of the p11-annexin II N-terminal peptide complex solved previously. We have performed competition experiments to try to understand the specificity of the S100-annexin interaction. Conclusions: By solving the structure of a second annexin N terminus-S100 protein complex, we confirmed a novel mode of interaction of S100 proteins with their target peptides; there is a one-to-one stoichiometry, where the dimeric structure of the S100 protein is, nevertheless, essential for complex formation. Our structure can provide a model for a Ca(2+)-regulated annexin I-S100C heterotetramer, possibly involved in crosslinking membrane surfaces or organising membranes during certain fusion events.  相似文献   

7.
A monoclonal antibody (2B3) directed against the calmodulin-binding (Ca2+ + Mg2+)-dependent ATPase from pig stomach smooth muscle was prepared. This antibody reacts with a 130,000-Mr protein that co-migrates on SDS/polyacrylamide-gel electrophoresis with the calmodulin-binding (Ca2+ + Mg2+)-ATPase purified from smooth muscle by calmodulin affinity chromatography. The antibody causes partial inhibition of the (Ca2+ + Mg2+)-ATPase activity in plasma membranes from pig stomach smooth muscle, in pig erythrocytes and human erythrocytes. It appears to be directed against a specific functionally important site of the plasmalemmal Ca2+-transport ATPase and acts as a competitive inhibitor of ATP binding. Binding of the antibody does not change the Km of the ATPase for Ca2+ and its inhibitory effect is not altered by the presence of calmodulin. No inhibition of (Ca2+ + Mg2+)-ATPase activity or of the oxalate-stimulated Ca2+ uptake was observed in a pig smooth-muscle vesicle preparation enriched in endoplasmic reticulum. These results confirm the existence in smooth muscle of two different types of Ca2+-transport ATPase: a calmodulin-binding (Ca2+ + Mg2+)-ATPase located in the plasma membrane and a second one confined to the endoplasmic reticulum.  相似文献   

8.
Tricyclic antidepressants are moderately potent inhibitors of the plasma membrane Ca(2+)-ATPase activity measured in erythrocyte ghosts. For the calmodulin-activated activity, half-maximal inhibition was observed in the presence of 0.25 mM clomipramine. Desipramine, imipramine, and trimipramine show half-maximal inhibition in the range of 0.8 to 1 mM. The inhibition dependence on clomipramine concentration is the same whether the enzyme is activated by exogenous calmodulin or by tryptic digestion. A similar behavior was observed for desipramine. The inhibition mechanisms utilized by clomipramine and desipramine are different. The clomipramine effect is associated with the Ca(2+)-bound enzyme conformation and can be attributed to a decrease in the rate of phosphorylation by ATP. The desipramine effect appears more related to the Ca(2+)-free conformation, since the partial reaction involved in the release of inorganic phosphate is perturbed by this drug. There is also little or no effect of tricyclics on the enzyme's affinity for ligand (Ca(2+) or ATP) binding.  相似文献   

9.
10.
Replacement of residues 228-230 or 228-232 of subdomain 4 in Dictyostelium actin with the corresponding Tetrahymena sequence (QTA to KAY replacement: half chimera-1; QTAAS to KAYKE replacement: full chimera) leads to a higher Ca(2+)-activation of the regulated acto-myosin subfragment-1 ATPase activity. The ratio of ATPase activation in the presence of tropomyosin-troponin and Ca(2+) to that without tropomyosin-troponin becomes about four times as large as the ratio for the wild-type actin. To understand the structural basis of this higher Ca(2+)-activation, we have determined the crystal structures of the 1:1 complex of Dictyostelium mutant actins (half chimera-1 and full chimera) with gelsolin segment-1 to 2.0 A and 2.4 A resolution, respectively, together with the structure of wild-type actin as a control. Although there were local changes on the surface of the subdomain 4 and the phenolic side-chain of Tyr230 displaced the side-chain of Leu236 from a non-polar pocket to a more solvent-accessible position, the structures of the actin chimeras showed that the mutations in the 228-232 region did not introduce large changes in the overall actin structure. This suggests that residues near position 230 formed part of the tropomyosin binding site on actin in actively contracting muscle. The higher Ca(2+)-activation observed with A230Y-containing mutants can be understood in terms of a three-state model for thin filament regulation in which, in the presence of both Ca(2+) and myosin heads, the local changes of actin generated by the mutation (especially its phenolic side-chain) facilitate the transition of thin filaments from a "closed" state to an "open" state. Between 394 and 469 water molecules were identified in the different structures and it was found that actin recognizes hydrated forms of the adenine base and the Ca ion in the nucleotide binding site.  相似文献   

11.
The mechanism involved in [Ca(2+)](i)-dependent feedback inhibition of store-operated Ca(2+) entry (SOCE) is not yet known. Expression of Ca(2+)-insensitive calmodulin (Mut-CaM) but not wild-type CaM increased SOCE and decreased its Ca(2+)-dependent inactivation. Expression of TrpC1 lacking C terminus aa 664-793 (TrpC1DeltaC) also attenuated Ca(2+)-dependent inactivation of SOCE. CaM interacted with endogenous and expressed TrpC1 and with GST-TrpC1 C terminus but not with TrpC1DeltaC. Two CaM binding domains, aa 715-749 and aa 758-793, were identified. Expression of TrpC1Delta758-793 but not TrpC1Delta715-749 mimicked the effects of TrpC1DeltaC and Mut-CaM on SOCE. These data demonstrate that CaM mediates Ca(2+)-dependent feedback inhibition of SOCE via binding to a domain in the C terminus of TrpC1. These findings reveal an integral role for TrpC1 in the regulation of SOCE.  相似文献   

12.
S100A4 takes part in control of tumour cell migration and contributes to metastatic spread in in vivo models. In the active dimeric Ca(2+)-bound state it interacts with multiple intracellular targets. Conversely, oligomeric forms of S100A4 are linked with the extracellular function of this protein. We report the 1.5A X-ray crystal structure of Ca(2+)-bound S100A4 and use it to identify the residues involved in target recognition and to derive a model of the oligomeric state. We applied stopped-flow analysis of tyrosine fluorescence to derive kinetics of S100A4 activation by Ca(2+) (k(on)=3.5 microM(-1)s(-1), k(off)=20s(-1)).  相似文献   

13.
In order to gain some information regarding Ca2+-dependent ATPase, the enzyme was purified from cardiac sarcolemma and its properties were compared with Ca2+-ATPase activity of myosin purified from rat heart. Both Ca2+-dependent ATPase and myosin ATPase were stimulated by Ca2+ but the maximal activation of Ca2+-dependent ATPase required 4 mM Ca2+ whereas that of myosin ATPase required 10 mM Ca2+. These ATPases were also activated by other divalent cations in the order of Ca2+ > Mn2+ > Sr2+ > Br2+ > Mg2+; however, there was a marked difference in the pattern of their activation by these cations. Unlike the myosin ATPase, the ATP hydrolysis by Ca2+-dependent ATPase was not activated by actin. The pH optima of Ca2+-dependent ATPase and myosin ATPase were 9.5 and 6.5 respectively. Na+ markedly inhibited Ca2+-dependent ATPase but had no effect on the myosin ATPase activity. N-ethylmaleimide inhibited Ca2+-dependent ATPase more than myosin ATPase whereas the inhibitory effect of vanadate was more on myosin ATPase than Ca2+-dependent ATPase. Both Ca2+-dependent ATPase and myosin ATPase were stimulated by K-EDTA and NH4-EDTA. When myofibrils were treated with trypsin and passed through columns similar to those used for purifying Ca2+-ATPase from sarcolemma, an enzyme with ATPase activity was obtained. This myofibrillar ATPase was maximally activated at 3–4 mM Ca2+ and 3 to 4 mM ATP like sarcolemmal Ca2+-dependent ATPase. K+ stimulated both ATPase activities in the absence of Ca2+ and inhibited in the presence of Ca2+. Both enzymes were inhibited by Na+, Mg2+, La3+, and azide similarly. However, Ca2+ ATPase from myofibrils showed three peptide bands in SDS polyacrylamide gel electrophoresis whereas Ca2+ ATPase from sarcolemma contained only two bands. Sarcolemmal Ca2+-ATPase had two affinity sites for ATP (0.012 mM and 0.23 mM) while myofibrillar Ca2+-ATPase had only one affinity site (0.34 mM). Myofibrillar Ca2+-ATPase was more sensitive to maleic anhydride and iodoacetamide than sarcolemmal Ca2+-ATPase. These observations suggest that Ca2+-dependent ATPase may be a myosin like protein in the heart sarcolemma and is unlikely to be a tryptic fragment of myosin present in the myofibrils.  相似文献   

14.
Mechanisms of Ca2+ sensitization of both myosin light chain (MLC) phosphorylation and force development by protein kinase C (PKC) were studied in permeabilized tonic smooth muscle obtained from the rabbit femoral artery. For comparison, the Ca2+ sensitizing effect of guanosine 5'-O-(gamma-thiotriphosphate) (GTP gamma S) was examined, which had been previously shown to inhibit MLC phosphatase in phasic vascular smooth muscle. We now report that PKC activators (phorbol esters, short chain synthetic diacylglycerols and a diacylglycerol kinase inhibitor) and GTP gamma S significantly increase both MLC phosphorylation and force development at constant [Ca2+]. Major phosphorylation site occurring in the presence of phorbol-12,13- dibutyrate (PDBu) or GTP gamma S at constant [Ca2+] is the same serine residue (Ser-19) as that phosphorylated by MLC kinase in response to increased Ca2+ concentrations. In an ATP- and Ca(2+)-free solution containing 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4- diazepine (ML-9), to avoid the kinase activity, both PDBu and GTP gamma S significantly decreased the rate of MLC dephosphorylation to half its control value. However, PDBu inhibited the relaxation rate more than did GTP gamma S. In the presence of microcystin-LR to inhibit the phosphatase activity, neither PDBu nor GTP gamma S affected MLC phosphorylation and force development. These results indicate that PKC, like activation of GTP binding protein, increases Ca2+ sensitivity of both MLC phosphorylation and force production through inhibition of MLC phosphatase.  相似文献   

15.
The S100A4 protein belongs to the S100 family of vertebrate-specific proteins possessing both intra- and extracellular functions. In the nervous system, high levels of S100A4 expression are observed at sites of neurogenesis and lesions, suggesting a role of the protein in neuronal plasticity. Extracellular oligomeric S100A4 is a potent promoter of neurite outgrowth and survival from cultured primary neurons; however, the molecular mechanism of this effect has not been established. Here we demonstrate that oligomeric S100A4 increases the intracellular calcium concentration in primary neurons. We present evidence that both S100A4-induced Ca(2+) signaling and neurite extension require activation of a cascade including a heterotrimeric G protein(s), phosphoinositide-specific phospholipase C, and diacylglycerol-lipase, resulting in Ca(2+) entry via nonselective cation channels and via T- and L-type voltage-gated Ca(2+) channels. We demonstrate that S100A4-induced neurite outgrowth is not mediated by the receptor for advanced glycation end products, a known target for other extracellular S100 proteins. However, S100A4-induced signaling depends on interactions with heparan sulfate proteoglycans at the cell surface. Thus, glycosaminoglycans may act as coreceptors of S100 proteins in neurons. This may provide a mechanism by which S100 proteins could locally regulate neuronal plasticity in connection with brain lesions and neurological disorders.  相似文献   

16.
The actin-activated Mg2+-ATPase activity of phosphorylated Acanthamoeba myosin I was previously shown to be cooperatively dependent on the myosin concentration (Albanesi, J. P., Fujisaki, H., and Korn, E. D. (1985) J. Biol. Chem. 260, 11174-11179). This observation was rationalized by assuming that myosin I contains a high-affinity and a low-affinity F-actin-binding site and that binding at the low-affinity site is responsible for the actin-activated ATPase activity. Therefore, enzymatic activity would correlate with the cross-linking of actin filaments by myosin I, and the cooperative increase in specific activity at high myosin:actin ratios would result from the fact that cross-linking by one myosin molecule would increase the effective F-actin concentration for neighboring myosin molecules. This model predicts that high specific activity should occur at myosin:actin ratios below that required for cooperative interactions if the actin filaments are cross-linked by catalytically inert cross-linking proteins. This prediction has been confirmed by cross-linking actin filaments with either of three gelation factors isolated from Acanthamoeba, one of which has not been previously described, or by enzymatically inactive unphosphorylated Acanthamoeba myosin I.  相似文献   

17.
18.
Wilson JR  Ludowyke RI  Biden TJ 《FEBS letters》2001,492(1-2):101-106
The study addressed the functional link between remodelling of the actomyosin cytoskeleton in pancreatic beta-cells and the regulation of insulin secretion. Confocal microscopy revealed that myosin heavy chain (MHC) IIA co-localized very well with filamentous (F)-actin in RINm5F cells but MHCIIB did not. Subcellular localization of MHCIIB was not altered by stimulation with 30 mM KCl (which evokes Ca(2+)-dependent insulin secretion). In contrast MHCIIA redistributed in a manner similar to F-actin, especially towards the apical surface, but also away from peripheral regions towards cell contact points on the basal surface. Finally, Ca(2+)-dependent insulin secretion was inhibited by stabilization of actin filaments with jasplakinolide. The results support a role for the MHCIIA/actin cytoskeleton in regulating insulin secretion.  相似文献   

19.
The effects of purealin isolated from the sea sponge, Psammaplysilla purea, on the enzymatic properties of myosin and natural actomyosin (a complex of myosin, actin, tropomyosin and troponin) from canine cardiac ventricle were studied. Purealin increased the ATPase activity of natural actomyosin and the actin-activated ATPase activity of myosin, and accelerated the superprecipitation of natural actomyosin. The Ca2+- and Mg2+-ATPase activities of myosin were inhibited by purealin, whereas the K+-EDTA-ATPase activity was increased. These results suggest that purealin binds to the myosin portion involved in actin-myosin interaction and increases the actin-activated ATPase activity of myosin.  相似文献   

20.
Goebeler V  Ruhe D  Gerke V  Rescher U 《FEBS letters》2003,546(2-3):359-364
Annexin A9 is a novel member of the annexin family of Ca(2+) and phospholipid binding proteins which has so far only been identified in EST data bases and whose deduced protein sequence shows mutations in residues considered crucial for Ca(2+) coordination in other annexins. To elucidate whether the annexin A9 protein is expressed as such and to characterize its biochemical properties we probed cell extracts with specific anti-annexin A9 antibodies and developed a recombinant expression system. We show that the protein is found in HepG2 hepatoma cell lysates and that a green fluorescent protein-tagged form is abundantly expressed in the cytosol of HeLa cells. Recombinant expression in bacteria yields a soluble protein that can be enriched by conventional chromatographic procedures. The protein is capable of binding phosphatidylserine containing liposomes albeit only at Ca(2+) concentrations exceeding 2 mM. Moreover and in contrast to other annexins this binding appears to be irreversible as the liposome-bound annexin A9 cannot be released by Ca(2+) chelation. These results indicate that annexin A9 is a unique member of the annexin family whose intracellular activity is not subject to Ca(2+) regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号