首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Toxin B — trichothecene deoxynivalenol (DON) is the most frequent Fusarium mycotoxin in Fusarium head blight (FHB) disease produced by Fusarium fungi. Thirty-one samples of naturally cultivated winter wheat were collected from different localities in Slovakia and evaluated for DON content, and after an artificial inoculation twelve of winter wheat cultivars were evaluated for FHB, fusarium damaged kernels (FDK) and DON content (resistance Type I and II) during two years. Plants were inoculated at anthesis with a conidial suspension of Fusarium culmorum (W. G. Smith) Sacc. The highest mean contents of DON 1.641 ppm were found in produced potato region (PPR) and 1.654 ppm in produced sugar beet region (PSBR). A positive correlation was found between DON content and rainfall, and a negative correlation was found between content of DON and temperature. Lower positive correlations were found between the contents of DON in 2003 and 2004 in the resistance Type I and Type II in twelve artificially infected cultivars. The significant positive correlations in content of DON were found between resistance Type I and Type II in the years 2003 and 2004. The lowest content of DON was found in the cultivars Alka, Malyska and the highest one in the cultivars Vanda and Boka. The positive correlation between the content of DON and FDK (in %) in head (average 2003 and 2004 years) from artificially infected and analysed cultivars was statistically significant in both resistances Type I and Type II.  相似文献   

3.
Hongxiang  Ma  Hejing  Ge  Xu  Zhang  Weizhong  Lu  Dazhao  Yu  He  Chen  Jianming  Chen 《Journal of Phytopathology》2009,157(3):166-171
Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe is a devastating barley disease world-wide, causing significant yield losses and contaminating cereal products with mycotoxins. Barley grain contaminated with deoxynivalenol (DON) is associated with gushing and may be rejected by the malting and brewing industry. Genetically inherited resistance is the most effective option for the control of the disease. A total of 266 barley cultivars and breeding lines originating from China were evaluated for FHB resistance and concentration of DON in grain. Plants were inoculated with isolates of F. graminearum under field conditions by injecting conidia into a single spikelet of each spike. FHB symptoms were evaluated by visual inspection, and DON content was analysed by HPLC. Significant differences in FHB ratings and DON levels were observed among cultivars. Visual symptoms of FHB varied from 4.88 to 71.75% of infected spikelets 21 days after inoculation and from 7.86 to 113.33 area under the disease progress curve units (AUDPC). Twenty-seven lines were more resistant to FHB than the control resistant cultivar Zhedar 2 and with fewer than 12% infected spikelets. Twenty-one of the above lines originated from the area in the mid to low valley of Yangtze River, where FHB epidemics are frequent. DON levels ranged from 0.05 to 24.39 mg/kg among the tested barley lines. Correlation coefficients were significant between FHB symptom ratings and DON levels. However, there was no significant correlation between symptom rating and plant height and no significant correlation between symptom rating and heading date.  相似文献   

4.
Fusarium head blight (FHB), mainly caused by Fusarium graminearum and F. culmorum, can significantly reduce the grain quality of wheat (Triticum aestivum L.) due to mycotoxin contamination. The objective of this study was to identify quantitative trait loci (QTLs) for FHB resistance in a winter wheat population developed by crossing the resistant German cultivar Dream with the susceptible British cultivar Lynx. A total of 145 recombinant inbred lines (RILs) were evaluated following spray inoculation with a F. culmorum suspension in field trials in 2002 in four environments across Germany. Based on amplified fragment length polymorphism and simple sequence repeat marker data, a 1,734 cM linkage map was established assuming that the majority of the polymorphic parts of the genome were covered. The area under disease progress curve (AUDPC) was calculated based on the visually scored FHB symptoms. The population segregated quantitatively for FHB severity. Composite interval mapping analysis for means across the environments identified four FHB resistance QTLs on chromosomes 6AL, 1B, 2BL and 7BS. Individually the QTLs explained 19%, 12%, 11% and 21% of the phenotypic variance, respectively, and together accounted for 41%. The QTL alleles conferring resistance on 6AL, 2BL and 7BS originated from cv. Dream. The resistance QTL on chromosome 6AL partly overlapped with a QTL for plant height. The FHB resistance QTL on 7BS coincided with a QTL for heading date, but the additive effect on heading date was of minor importance. The resistance QTL on chromosome 1B was associated with the T1BL.1RS wheat-rye translocation of Lynx.  相似文献   

5.
6.
Wheat cultivars (Stoa, MN87150, SuMai-3, YMI-6, Wheaton) and barley cultivars (Robust, Excel, Chevron, M69) were inoculated in the field with isolates ofFusarium graminearum andF. culmorum. The diseased (Fusarium head blight) kernels were analyzed for deoxynivalenol (DON), 15-acetyldeoxynivalenol (15-ADON) and nivalenol (NIV).F. culmorum produced all three trichothecenes on all cultivars tested whereasF. graminearum only produced DON and 15-ADON. There was no well defined correlation between DON production in the host and resistance although the data tended to favor SuMai-3 as having definitive resistance to bothF. graminearum andF. culmorum.Minnesota Agricultural Experiment Station, Paper No. 20 279.  相似文献   

7.
Forty-eight spring barley genotypes were evaluated for deoxynivalenol (DON) concentration under natural infection across 5 years at Harrington, Prince Edward Island. These genotypes were also evaluated for Fusarium head blight (FHB) severity and DON concentration under field nurseries with artificial inoculation of Fusarium graminearum by the grain spawn method across 2 years at Ottawa, Ontario, and one year at Hangzhou, China. Additionally, these genotypes were also evaluated for FHB severity under greenhouse conditions with artificial inoculation of F. graminearum by conidial suspension spray method across 3 years at Ottawa, Ontario. The objective of the study was to investigate if reactions of barley genotypes to artificial FHB inoculation correlate with reactions to natural FHB infection. DON concentration under natural infection was positively correlated with DON concentration (r = 0.47, P < 0.01) and FHB incidence (r = 0.56, P < 0.01) in the artificially inoculated nursery with grain spawn method. Therefore, the grain spawn method can be used to effectively screen for low DON. FHB severity, generated from greenhouse spray, however, was not correlated with DON concentration (r = 0.12, P > 0.05) under natural infection and it was not correlated with DON concentration (r = −0.23, P > 0.05) and FHB incidence (r = 0.19, P > 0.05) in the artificially inoculated nursery with grain spawn method. FHB severity, DON concentration, and yield were affected by year, genotype, and the genotype × year interaction. The effectiveness of greenhouse spray inoculation for indirect selection for low DON concentration requires further studies. Nine of the 48 genotypes were found to contain low DON under natural infection. Island barley had low DON and also had high yield.  相似文献   

8.
Fusarium head blight (FHB), an important disease of barley in many areas of the world, causes losses in grain yield and quality. Deoxynivalenol (DON) mycotoxin residues, produced by the primary pathogen Fusarium graminearum, pose potential health risks. Barley producers may not be able to profitably market FHB-infected barley, even though it has a low DON level. Three types of FHB resistance have been described in wheat: Type I (penetration), Type II (spread), and Type III (mycotoxin degradation). We describe putative measures of these three types of resistance in barley. In wheat, the three resistance mechanisms show quantitative inheritance. Accordingly, to study FHB resistance in barley, we used quantitative trait locus (QTL) mapping to determine the number, genome location, and effects of QTLs associated with Type-I and -II resistance and the concentration of DON in the grain. We also mapped QTLs for plant height, heading date, and morphological attributes of the inflorescence (seeds per inflorescence, inflorescence density, and lateral floret size). QTL analyses were based on a mapping population of F1-derived doubled-haploid (DH) lines from the cross of the two-rowed genotypes Gobernadora and CMB643, a linkage map constructed with RFLP marker loci, and field evaluations of the three types of FHB resistance performed in China, Mexico, and two environments in North Dakota, USA. Resistance QTLs were detected in six of the seven linkage groups. Alternate favorable alleles were found at the same loci when different inoculation techniques were used to measure Type-I resistance. The largest-effect resistance QTL (for Type-II resistance) was mapped in the centromeric region of chromosome 2. All but two of the resistance QTLs coincided with QTLs determining morphological attributes of the inflorescence and/or plant height. Additional experiments are needed to determine if these coincident QTLs are due to linkage or pleiotropy and to more clearly define the biological basis of the FHB resistance QTLs. Plant architecture should be considered in FHB resistance breeding efforts, particularly those directed at resistance QTL introgression and/or pyramiding. Received: 22 November 1998 / Accepted: 2 June 1999  相似文献   

9.
The fungal cereal pathogen Fusarium graminearum produces deoxynivalenol (DON) during infection. The mycotoxin DON is associated with Fusarium head blight (FHB), a disease that can cause vast grain losses. Whilst investigating the suitability of Brachypodium distachyon as a model for spreading resistance to F. graminearum, we unexpectedly discovered that DON pretreatment of spikelets could reduce susceptibility to FHB in this model grass. We started to analyse the cell wall changes in spikelets after infection with F. graminearum wild‐type and defined mutants: the DON‐deficient Δtri5 mutant and the DON‐producing lipase disruption mutant Δfgl1, both infecting only directly inoculated florets, and the mitogen‐activated protein (MAP) kinase disruption mutant Δgpmk1, with strongly decreased virulence but intact DON production. At 14 days post‐inoculation, the glucose amounts in the non‐cellulosic cell wall fraction were only increased in spikelets infected with the DON‐producing strains wild‐type, Δfgl1 and Δgpmk1. Hence, we tested for DON‐induced cell wall changes in B. distachyon, which were most prominent at DON concentrations ranging from 1 to 100 ppb. To test the involvement of DON in defence priming, we pretreated spikelets with DON at a concentration of 1 ppm prior to F. graminearum wild‐type infection, which significantly reduced FHB disease symptoms. The analysis of cell wall composition and plant defence‐related gene expression after DON pretreatment and fungal infection suggested that DON‐induced priming of the spikelet tissue contributed to the reduced susceptibility to FHB.  相似文献   

10.
Fusarium culmorum can cause Fusarium head blight (FHB) disease of cereals, resulting in yield loss and contamination of grain with the trichothecene mycotoxin, deoxynivalenol (DON). In this study, we compared the efficacy of a biological control agent (Pseudomonas fluorescens strain MKB 158) with the biochemical chitosan (the deacetylated derivative of chitin) in controlling FHB disease of wheat and barley. Both agents were equally effective in reducing DON contamination of grain caused by F. culmorum. Under both glasshouse and field conditions, treatment with commercially available crabshell-derived chitosan reduced the severity of FHB symptom development on wheat and barley by ?74% (P ? 0.050). While treatment with P. fluorescens reduced the severity of FHB symptom development on these cereals by ?48% (P ? 0.050). Chitosan and P. fluorescens respectively prevented ?58 and ?35% of the FHB-associated reductions in 1000-grain weight in wheat and barley (P ? 0.050). Both agents significantly reduced the DON content of wheat and barley under both glasshouse and field conditions (P ? 0.050) and were equally efficacious in doing so (?74 and ?79% reductions due to chitosan and P. fluorescens, respectively). Crude chitin extracts from crabshells and crude chitosan-based formulations prepared from crabshells and eggshells were also tested under field conditions, but were not as effective as the commercial crabshell-derived preparation in controlling FHB disease. This is the first report on the use of chitosan for the control of Fusarium head blight disease and DON contamination of grain.  相似文献   

11.
Aegilops tauschii is the diploid progenitor of the wheat D subgenome and a valuable resource for wheat breeding, yet, genetic analysis of resistance against Fusarium head blight (FHB) and the major Fusarium mycotoxin deoxynivalenol (DON) is lacking. We treated a panel of 147 Ae. tauschii accessions with either Fusarium graminearum spores or DON solution and recorded the associated disease spread or toxin-induced bleaching. A k-mer-based association mapping pipeline dissected the genetic basis of resistance and identified candidate genes. After DON infiltration nine accessions revealed severe bleaching symptoms concomitant with lower conversion rates of DON into the non-toxic DON-3-O-glucoside. We identified the gene AET5Gv20385300 on chromosome 5D encoding a uridine diphosphate (UDP)-glucosyltransferase (UGT) as the causal variant and the mutant allele resulting in a truncated protein was only found in the nine susceptible accessions. This UGT is also polymorphic in hexaploid wheat and when expressed in Saccharomyces cerevisiae only the full-length gene conferred resistance against DON. Analysing the D subgenome helped to elucidate the genetic control of FHB resistance and identified a UGT involved in DON detoxification in Ae. tauschii and hexaploid wheat. This resistance mechanism is highly conserved since the UGT is orthologous to the barley UGT HvUGT13248 indicating descent from a common ancestor of wheat and barley.  相似文献   

12.
Fusarium head blight (FHB) is a destructive disease of wheat and barley. In wheat it is mainly caused by the fungal pathogens Fusarium graminearum and Fusarium culmorum. We report the identification and evaluation of candidate genes for quantitative FHB resistance. These genes showed altered expression levels in the moderately resistant winter wheat genotypes Capo and SVP72017 after inoculation with F. graminearum. Amongst others, a NPR1-like gene was identified. Sequence analysis of this gene fragment revealed a high level of variation between the parents of a doubled haploid population. Single nucleotide polymorphism and polymerase chain reaction markers were developed and two homoeologous genes were mapped on the long arms of chromosomes 2A and 2D, respectively. Markers for both genes had significant effects on FHB resistance in a diverse collection of 178 European winter wheat cultivars evaluated in multi-environmental field trials after spray inoculation with F. culmorum. These results revealed that allelic variation in two homoeologous NPR1-like genes is associated with FHB resistance in European winter wheat. Markers for these genes might therefore be used for marker-assisted breeding programs.  相似文献   

13.

Background  

The fungal pathogen Fusarium graminearum causes Fusarium Head Blight (FHB) disease on wheat which can lead to trichothecene mycotoxin (e.g. deoxynivalenol, DON) contamination of grain, harmful to mammalian health. DON is produced at low levels under standard culture conditions when compared to plant infection but specific polyamines (e.g. putrescine and agmatine) and amino acids (e.g. arginine and ornithine) are potent inducers of DON by F. graminearum in axenic culture. Currently, host factors that promote mycotoxin synthesis during FHB are unknown, but plant derived polyamines could contribute to DON induction in infected heads. However, the temporal and spatial accumulation of polyamines and amino acids in relation to that of DON has not been studied.  相似文献   

14.
Fusarium graminearum is a major pathogen that causes fusarium head blight (FHB) in wheat and produces deoxynivalenol (DON) in infected grain. In previous studies, the trichodiene synthase gene (Tri5) in the fungal strain GZ3639 was disrupted to produce the DON-nonproducing strain GZT40.In this report, the virulence of strains GZ3639 and GZT40 was tested on wheat cultivars with various resistance levels by using methods of spray inoculation and injection inoculation with fungal conidia. Under field and greenhouse conditions, strain GZ3639 produced significantly more disease symptoms and reduced more yield than strain GZT40 in all wheat cultivars tested. Conidia of strain GZT40 germinated and infected inoculated spikelets, but disease symptoms were limited to inoculated spikelets without spread to uninoculated spikelets. When strain GZT40 was inoculated using the spray method, multiple initial infection sites in a spike resulted in higher levels of disease symptoms than in spikes inoculated by a single injection. Greenhouse tests confirmed that strain GZT40 did not produce DON in the infected kernels following either inoculation method. The results confirm that DON production plays a significant role in the spread of FHB within a spike, and are the first report that DON production is not necessary for initial infection by the fungus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
16.
Fusarium head blight (FHB; scab), primarily caused by Fusarium graminearum, is a devastating disease of wheat worldwide. FHB causes yield reductions and contamination of grains with trichothecene mycotoxins such as deoxynivalenol (DON). The genetic variation in existing wheat germplasm pools for FHB resistance is low and may not provide sufficient resistance to develop cultivars through traditional breeding approaches. Thus, genetic engineering provides an additional approach to enhance FHB resistance. The objectives of this study were to develop transgenic wheat expressing a barley class II chitinase and to test the transgenic lines against F. graminearum infection under greenhouse and field conditions. A barley class II chitinase gene was introduced into the spring wheat cultivar, Bobwhite, by biolistic bombardment. Seven transgenic lines were identified that expressed the chitinase transgene and exhibited enhanced Type II resistance in the greenhouse evaluations. These seven transgenic lines were tested under field conditions for percentage FHB severity, percentage visually scabby kernels (VSK), and DON accumulation. Two lines (C8 and C17) that exhibited high chitinase protein levels also showed reduced FHB severity and VSK compared to Bobwhite. One of the lines (C8) also exhibited reduced DON concentration compared with Bobwhite. These results showed that transgenic wheat expressing a barley class II chitinase exhibited enhanced resistance against F. graminearum in greenhouse and field conditions.  相似文献   

17.
Fusarium head blight (FHB) is a devastating disease of small grain cereal crops caused by the necrotrophic pathogen Fusarium graminearum and Fusarium culmorum. These fungi produce the trichothecene mycotoxin deoxynivalenol (DON) and its derivatives, which enhance the disease development during their interactions with host plants. For the self-protection, the trichothecene producer Fusarium species have Tri101 encoding trichothecene 3-O-acetyltransferase. Although transgenic expression of Tri101 significantly reduced inhibitory action of DON on tobacco plants, there are several conflicting observations regarding the phytotoxicity of 3-acetyldeoxynivalenol (3-ADON) to cereal plants; 3-ADON was reported to be highly phytotoxic to wheat at low concentrations. To examine whether cereal plants show sufficient resistance to 3-ADON, we generated transgenic rice plants with stable expression and inheritance of Tri101. While root growth of wild-type rice plants was severely inhibited by DON in the medium, this fungal toxin was not phytotoxic to the transgenic lines that showed trichothecene 3-O-acetylation activity. This is the first report demonstrating the DON acetylase activity and DON-resistant phenotype of cereal plants expressing the fungal gene. S. Ohsato and T. Ochiai-Fukuda should be considered as joint first authors.  相似文献   

18.
Resistance to Fusarium head blight (FHB), deoxynivalenol (DON) accumulation, and kernel discoloration (KD) in barley are difficult traits to introgress into elite varieties because current screening methods are laborious and disease levels are strongly influenced by environment. To improve breeding strategies directed toward enhancing these traits, we identified genomic regions containing quantitative trait loci (QTLs) associated with resistance to FHB, DON accumulation, and KD in a breeding population of F4:7 lines using restriction fragment length polymorphic (RFLP) markers. We evaluated 101 F4:7 lines, derived from a cross between the cultivar Chevron and an elite breeding line, M69, for each of the traits in three or four environments. We used 94 previously mapped RFLP markers to create a linkage map. Using composite interval mapping, we identified 10, 11, and 4 QTLs associated with resistance to FHB, DON accumulation, and KD, respectively. Markers flanking these QTLs should be useful for introgressing resistance to FHB, DON accumulation, and KD into elite barley cultivars. Received: 8 November 1998 / Accepted: 8 January 1999  相似文献   

19.
Fusarium Head Blight (FHB) is a destructive disease that affects the grain yield and quality of cereals. The relationship between the natural defense chemicals benzoxazinoids and the FHB resistance of field grown winter wheat varieties was investigated. FHB resistance was assessed by the inoculation of wheat ears with mixtures of Fusarium avenaceum, Fusarium culmorum, Fusarium graminearum, and Microdochium nivale.  相似文献   

20.
The phenotypic variation in an array of pathogen isolates in natural environments can be partitioned into genotypic variation and environmental plasticity. The present study uses a mixed-model approach to partition the relative contribution of both factors among isolates of Fusarium culmorum from natural field populations in various environments. Twenty-eight and 38 isolates from an international collection were phenotyped for aggressiveness and deoxynivalenol (DON) accumulation across two locations during the years 2015 and 2016, respectively, on four winter type cereals as hosts: bread wheat, durum wheat, triticale and rye, thus providing 16 environments. Aggressiveness, measured as Fusarium head blight (FHB) severity, was assessed by visually rating the symptoms of all isolates on infected hosts, and for 10 isolates, additionally the mycotoxin deoxynivalenol (DON) was measured in the grain after harvest. Despite significant genotypic variation among the isolates, the interactions with years and locations explained the largest proportion of variance which disentangled the overwhelming role of plasticity. Host-by-isolate interaction was not significant and no significant (p < .001) change in the ranking of isolates from one host to another was detected. As the main factor of plasticity was isolate-by-year interaction, this implies that seasonal changes might be an important evolutionary driver in F. culmorum populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号