首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The health effects of cosmic radiation on astronauts need to be precisely quantified and controlled. This task is important not only in perspective of the increasing human presence at the International Space Station (ISS), but also for the preparation of safe human missions beyond low earth orbit. From a radiation protection point of view, the baseline quantity for radiation risk assessment in space is the effective dose equivalent. The present work reports the first successful attempt of the experimental determination of the effective dose equivalent in space, both for extra-vehicular activity (EVA) and intra-vehicular activity (IVA). This was achieved using the anthropomorphic torso phantom RANDO® equipped with more than 6,000 passive thermoluminescent detectors and plastic nuclear track detectors, which have been exposed to cosmic radiation inside the European Space Agency MATROSHKA facility both outside and inside the ISS. In order to calculate the effective dose equivalent, a numerical model of the RANDO® phantom, based on computer tomography scans of the actual phantom, was developed. It was found that the effective dose equivalent rate during an EVA approaches 700 μSv/d, while during an IVA about 20 % lower values were observed. It is shown that the individual dose based on a personal dosimeter reading for an astronaut during IVA results in an overestimate of the effective dose equivalent of about 15 %, whereas under an EVA conditions the overestimate is more than 200 %. A personal dosemeter can therefore deliver quite good exposure records during IVA, but may overestimate the effective dose equivalent received during an EVA considerably.  相似文献   

2.
In this study, we analyzed the biological and physical organ dose equivalents for International Space Station (ISS) astronauts. Individual physical dosimetry is difficult in space due to the complexity of the space radiation environment, which consists of protons, heavy ions and secondary neutrons, and the modification of these radiation types in tissue as well as limitations in dosimeter devices that can be worn for several months in outer space. Astronauts returning from missions to the ISS undergo biodosimetry assessment of chromosomal damage in lymphocyte cells using the multicolor fluorescence in situ hybridization (FISH) technique. Individual-based pre-flight dose responses for lymphocyte exposure in vitro to gamma rays were compared to those exposed to space radiation in vivo to determine an equivalent biological dose. We compared the ISS biodosimetry results, NASA's space radiation transport models of organ dose equivalents, and results from ISS and space shuttle phantom torso experiments. Physical and biological doses for 19 ISS astronauts yielded average effective doses and individual or population-based biological doses for the approximately 6-month missions of 72 mSv and 85 or 81 mGy-Eq, respectively. Analyses showed that 80% or more of organ dose equivalents on the ISS are from galactic cosmic rays and only a small contribution is from trapped protons and that GCR doses were decreased by the high level of solar activity in recent years. Comparisons of models to data showed that space radiation effective doses can be predicted to within about a +/-10% accuracy by space radiation transport models. Finally, effective dose estimates for all previous NASA missions are summarized.  相似文献   

3.
Lin ZW  Adams JH 《Radiation research》2007,167(3):330-337
The radiation hazard for astronauts from galactic cosmic rays (GCR) is a major obstacle to long-duration human space exploration. Space radiation transport codes have been developed to calculate the radiation environment on missions to the Moon, Mars, and beyond. We have studied how uncertainties in fragmentation cross sections at different energies affect the accuracy of predictions from such radiation transport calculations. We find that, in deep space, cross sections at energies between 0.3 and 0.85 GeV/nucleon have the largest effect in solar maximum GCR environments. At the International Space Station, cross sections at higher energies have the largest effect due to the geomagnetic cutoff.  相似文献   

4.
Exposure to space radiation has long been acknowledged as a potential showstopper for long-duration manned interplanetary missions. In an effort to gain more information on space radiation risk and to develop countermeasures, NASA initiated several years ago a Space Radiation Health Program, which is currently supporting biological experiments performed at the Brookhaven National Laboratory. Accelerator-based radiobiology research in the field of space radiation research is also under way in Russia and Japan. The European Space Agency (ESA) supports research in the field in three main directions: spaceflight experiments on the International Space Station; modeling and simulations of the space radiation environment and transport; and, recently, ground-based radiobiology experiments exploiting the high-energy SIS18 synchrotron at GSI in Germany (IBER program). Several experiments are currently under way within IBER, and so far, beams of C and Fe-ions at energies between 11 and 1,000 MeV/n have been used in cell and tissue targets.  相似文献   

5.
Thomson I 《Mutation research》1999,430(2):563-209
Extra Vehicular Activity (EVA) will become a large part of the astronaut's work on board the International Space Station (ISS). It is already well known that long duration space missions inside a spacecraft lead to radiation doses which are high enough to be a significant health risk to the crew. The doses received during EVA, however, have not been quantified to the same degree. This paper reviews the space radiation environment and the current dose limits to critical organs. Results of preliminary radiation dosimetry experiments on the external surface of the BION series of satellites indicate that EVA doses will vary considerably due to a number of factors such as EVA suit shielding, temporal fluctuations and spacecraft orbit and shielding. It is concluded that measurement of doses to crew members who engage in EVA should be done on board the spacecraft. An experiment is described which will lead the way to implementing this plan on the ISS. It is expected that results of this experiment will help future crew mitigate the risks of ionising radiation in space.  相似文献   

6.
The effects of cosmic radiation in single cells, organic tissues and electronics are a major concern for space exploration and manned missions. Standard heavy ions radiation tests employ ion cocktails with energy of the order of 10 MeV per nucleon and with a linear energy transfer ranging from a few MeV cm(2) mg(-1) to hundreds of MeV cm(2) mg(-1). In space, cosmic rays show significant fluxes at energies up to the order of GeV per nucleon. The present work aims at investigating single event damage due to low-, high- and very-high-energy ions. The European Space Agency reference single event upset monitor data are used to support the discussion. Finally, the effect of ionization induced directly by primary particles and ionization induced by recoils produced in an electronic device is investigated for different types of devices.  相似文献   

7.
Shielding of relativistic protons   总被引:2,自引:0,他引:2  
Protons are the most abundant element in the galactic cosmic radiation, and the energy spectrum peaks around 1 GeV. Shielding of relativistic protons is therefore a key problem in the radiation protection strategy of crewmembers involved in long-term missions in deep space. Hydrogen ions were accelerated up to 1 GeV at the NASA Space Radiation Laboratory, Brookhaven National Laboratory, New York. The proton beam was also shielded with thick (about 20 g/cm2) blocks of lucite (PMMA) or aluminium (Al). We found that the dose rate was increased 40–60% by the shielding and decreased as a function of the distance along the axis. Simulations using the General–Purpose Particle and Heavy-Ion Transport code System (PHITS) show that the dose increase is mostly caused by secondary protons emitted by the target. The modified radiation field after the shield has been characterized for its biological effectiveness by measuring chromosomal aberrations in human peripheral blood lymphocytes exposed just behind the shield block, or to the direct beam, in the dose range 0.5–3 Gy. Notwithstanding the increased dose per incident proton, the fraction of aberrant cells at the same dose in the sample position was not significantly modified by the shield. The PHITS code simulations show that, albeit secondary protons are slower than incident nuclei, the LET spectrum is still contained in the low-LET range (<10 keV/μm), which explains the approximately unitary value measured for the relative biological effectiveness.  相似文献   

8.
Following a strategy similar to that used in baker’s yeast (Herrgård et al. Nat Biotechnol 26:1155–1160, 2008). A consensus yeast metabolic network obtained from a community approach to systems biology (Herrgård et al. 2008; Dobson et al. BMC Syst Biol 4:145, 2010). Further developments towards a genome-scale metabolic model of yeast (Dobson et al. 2010; Heavner et al. BMC Syst Biol 6:55, 2012). Yeast 5—an expanded reconstruction of the Saccharomyces cerevisiae metabolic network (Heavner et al. 2012) and in Salmonella typhimurium (Thiele et al. BMC Syst Biol 5:8, 2011). A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella typhimurium LT2 (Thiele et al. 2011), a recent paper (Thiele et al. Nat Biotechnol 31:419–425, 2013). A community-driven global reconstruction of human metabolism (Thiele et al. 2013) described a much improved ‘community consensus’ reconstruction of the human metabolic network, called Recon 2, and the authors (that include the present ones) have made it freely available via a database at http://humanmetabolism.org/ and in SBML format at Biomodels (http://identifiers.org/biomodels.db/MODEL1109130000). This short analysis summarises the main findings, and suggests some approaches that will be able to exploit the availability of this model to advantage.  相似文献   

9.
Displaced starburst amacrine cells (SACs) are retinal interneurons that exhibit GABA A receptor-mediated and Cl ? cotransporter-mediated, directionally selective (DS) light responses in the rabbit retina. They depolarize to stimuli that move centrifugally through the receptive field surround and hyperpolarize to stimuli that move centripetally through the surround (Gavrikov et al, PNAS 100(26):16047–16052, 2003, PNAS 103(49):18793–18798, 2006). They also play a key role in the activity of DS ganglion cells (DS GC; Amthor et al, Vis Neurosci 19:495–509 2002; Euler et al, Nature 418:845–852, 2002; Fried et al, Nature 420:411– 414, 2002; Gavrikov et al, PNAS 100(26):16047–16052, 2003, PNAS 103(49):18793–18798, 2006; Lee and Zhou, Neuron 51:787–799 2006; Yoshida et al, Neuron 30:771–780, 2001). In this paper we present a model of strong DS behavior of SACs which relies on the GABA-mediated communication within a tightly interconnected network of these cells and on the glutamate signal that the SACs receive from bipolar cells (a presynaptic cell that receives input from cones). We describe how a moving light stimulus can produce a large, sustained depolarization of the SAC dendritic tips that point in the direction that the stimulus moves (i.e., centrifugal motion), but produce a minimal depolarization of the dendritic tips that point in the opposite direction (i.e., centripetal motion). This DS behavior, which is quantified based on the relative size and duration of the depolarizations evoked by stimulus motion at dendritic tips pointing in opposite directions, is robust to changes of many different parameter values and consistent with experimental data. In addition, the DS behavior is strengthened under the assumptions that the Cl? cotransporters Na?+?-K?+?-Cl?? and K?+?-Cl?? are located in different regions of the SAC dendritic tree (Gavrikov et al, PNAS 103(49):18793–18798, 2006) and that GABA evokes a long-lasting response (Gavrikov et al, PNAS 100(26):16047–16052, 2003, PNAS 103(49):18793–18798, 2006; Lee and Zhou, Neuron 51:787–799, 2006). A possible mechanism is discussed based on the generation of waves of local glutamate and GABA secretion, and their postsynaptic interplay as the waves travel between cell compartments.  相似文献   

10.
Respiratory rates on the U. S. southeastern continental shelf have been estimated several times by different investigators, most recently by Jiang et al. (Biogeochemistry 98:101–113, 2010) who report lower mean rates than were found in earlier work and attribute the differences to analytical error in all methods used in earlier studies. The differences are, instead, attributable to the differences in the geographical scope of the studies. The lower estimates of regional organic carbon flux of Jiang et al. (Biogeochemistry 98:101–113, 2010) are a consequence of their extrapolation of data from a small portion of the shelf to the entire South Atlantic Bight. This comment examines the methodologies used as well as the variability of respiratory rates in this region over space and time.  相似文献   

11.
Production of doubled haploids (DHs) is a convenient tool to obtain pure lines for breeding purposes. Until now, the easiest and most useful approach to obtain pepper DHs is via anther culture. However, this method has an associated possibility of producing calli from anther wall tissues that would be coexisting in the anther locule with embryos derived from microspores. Using two established protocols for anther culture, Dumas de Vaulx et al. (Agronomie 2:983–988, 1981) and Supena et al. (Sci Hort 107:226–232, 2006a; Plant Cell Rep 25:1–10, 2006b) callus and embryo development was assessed in four sweet pepper cultivars. For all genotypes tested, the protocol of Dumas de Vaulx et al. (Agronomie 2:983–988, 1981) promoted both embryo development and callus growth, whereas the protocol of Supena et al. (Sci Hort 107:226–232, 2006a; Plant Cell Rep 25:1–10, 2006b) produced no callus but only embryos. However, differences in embryo production were observed among these genotypes. In parallel, anthers were exposed to a 35 °C inductive heat shock for 4, 8, 12 and 16 days, prior to culture at 25 °C. The duration of the heat shock had significant effects in embryo production, but also in callus generation. Callus generation increased with prolonged exposures to 35 °C. Embryo and callus origin was analyzed by flow cytometry, light microscopy and molecular markers. Tests conducted demonstrated a gametophytic origin for all of the embryos tested, and a sporophytic origin for all of the calli. Together, our results reveal that culture conditions have a significant influence on the presence of calli derived from anther walls, which could be minimized by reducing heat shock exposure and/or using a shed-microspore approach.  相似文献   

12.
Block (Trends Cogn Sci 7:285–286, 2003) and Prinz (PSYCHE 12:1–19, 2006) have defended the idea that SSD perception remains in the substituting modality (auditory or tactile). Hurley and Noë (Biol Philos 18:131–168, 2003) instead argued that after substantial training with the device, the perceptual experience that the SSD user enjoys undergoes a change, switching from tactile/auditory to visual. This debate has unfolded in something like a stalemate where, I will argue, it has become difficult to determine whether the perception acquired through the coupling with an SSD remains in the substituting or the substituted modality. Within this puzzling deadlock two new approaches have been recently suggested. Ward and Meijer (Conscious Cogn 19:492–500, 2010) describe SSD perception as visual-like but characterize it as a kind of artificially induced synaesthesia. Auvray et al. (Perception 36:416–430, 2007) and Auvray and Myin (Cogn Sci 33:1036–1058, 2009) suggest that SSDs let their users experience a new kind of perception. Deroy and Auvray (forthcoming) refine this position, and argue that this new kind of perception depends on pre-existing senses without entirely aligning with any of them. So, they have talked about perceptual experience in SSDs as going "beyond vision". In a similar vein, MacPherson (Oxford University Press, New York, 2011a) claims that “if the subjects (SSD users) have experiences with both vision-like and touch-like representational characteristics then perhaps they have a sense that ordinary humans do not” (MacPherson in Oxford University Press, New York, 2011a, p. 139).  相似文献   

13.
The taxonomy of the Atlantic and Eastern Pacific species of Kyphosus is reviewed with K. bosquii (Lacepède 1802), K. incisor (Cuvier 1831), K. analogus (Gill 1862) and K. elegans (Peters 1869) considered valid, and K. atlanticus sp. nov. newly described. Kyphosus bosquii and K. atlanticus are both characterized by 12 dorsal- and 11 anal-fin soft rays, but differ in the number of longitudinal scale rows along the midbody (61–66, mode 63 vs. 50–56, mode 54). Kyphosus incisor and K. analogus, characterized by 14 dorsal- and 13 anal-fin soft rays, similarly differ from each other in midbody longitudinal scale row counts (57–64, mode 60 vs. 68–74, mode 70 or 72). Kyphosus elegans is characterized by 13 dorsal- and 12 anal-fin soft rays, and 51–57 midbody longitudinal scale rows. Kyphosus bosquii, K. atlanticus and K. incisor are distributed in the Atlantic Ocean, K. analogus and K. elegans occurring in the Eastern Pacific. The holotype of Pimelepterus flavolineatus Poey 1866, here regarded as a junior synonym of K. incisor, was located within a collection of Cuban fishes donated to the Smithsonian Institution by Poey in 1873. A neotype is designated here for K. analogus. Pimelepterus gallveii Cunningham 1910, Kyphosus palpebrosus Miranda-Ribeiro 1919 and K. metzelaari Jordan and Evermann 1927 are recognized as junior synonyms of K. bosquii. Pimelepterus sandwicensis Sauvage 1880 is a junior synonym of K. elegans. Perca saltatrix Linnaeus 1758, together with the replacement name Perca sectatrix Linnaeus 1766, is regarded as nomina dubia.  相似文献   

14.
Eukaryotic cells respond to stress caused by the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum by activating the intracellular signaling pathways referred to as the unfolded protein response (UPR). In metazoans, UPR consists of three parallel branches, each characterized by its stress sensor protein, IRE1, ATF6, and PERK, respectively. In Drosophila, IRE1/XBP1 pathway is considered to function as a major branch of UPR; however, its physiological roles during the normal development and homeostasis remain poorly understood. To visualize IRE1/XBP1 activity in fly tissues under normal physiological conditions, we modified previously reported XBP1 stress sensing systems (Souid et al., Dev Genes Evol 217: 159–167, 2007; Ryoo et al., EMBO J 26: 242-252, 2007), based on the recent reports regarding the unconventional splicing of XBP1/HAC1 mRNA (Aragon et al., Nature 457: 736–740, 2009; Yanagitani et al., Mol Cell 34: 191–200, 2009; Science 331: 586–589, 2011). The improved XBP1 stress sensing system allowed us to detect new IRE1/XBP1 activities in the brain, gut, Malpighian tubules, and trachea of third instar larvae and in the adult male reproductive organ. Specifically, in the larval brain, IRE1/XBP1 activity was detected exclusively in glia, although previous reports have largely focused on IRE1/XBP1 activity in neurons. Unexpected glial IRE1/XBP1 activity may provide us with novel insights into the brain homeostasis regulated by the UPR.  相似文献   

15.
It has been claimed that connectionist (artificial neural network) models of language processing, which do not appear to employ “rules”, are doing something different in kind from classical symbol processing models, which treat “rules” as atoms (e.g., McClelland and Patterson in Trends Cogn Sci 6(11):465–472, 2002). This claim is hard to assess in the absence of careful, formal comparisons between the two approaches. This paper formally investigates the symbol-processing properties of simple dynamical systems called affine dynamical automata, which are close relatives of several recurrent connectionist models of language processing (e.g., Elman in Cogn Sci 14:179–211, 1990). In line with related work (Moore in Theor Comput Sci 201:99–136, 1998; Siegelmann in Neural networks and analog computation: beyond the Turing limit. Birkhäuser, Boston, 1999), the analysis shows that affine dynamical automata exhibit a range of symbol processing behaviors, some of which can be mirrored by various Turing machine devices, and others of which cannot be. On the assumption that the Turing machine framework is a good way to formalize the “computation” part of our understanding of classical symbol processing, this finding supports the view that there is a fundamental “incompatibility” between connectionist and classical models (see Fodor and Pylyshyn 1988; Smolensky in Behav Brain Sci 11(1):1–74, 1988; beim Graben in Mind Matter 2(2):29--51,2004b). Given the empirical successes of connectionist models, the more general, super-Turing framework is a preferable vantage point from which to consider cognitive phenomena. This vantage may give us insight into ill-formed as well as well-formed language behavior and shed light on important structural properties of learning processes.  相似文献   

16.
The development of new anti-neoplastic drugs is a key issue for cancer chemotherapy due to the reality that, most likely, certain cancer cells are resistant to current chemotherapy. The past two decades have witnessed tremendous advances in our understanding of the pathogenesis of cancer. These advances have allowed identification new targets as oncogenes, tumor supressor genes and the possible implication of the mitochondria (Fulda et al. Nat Rev Drug Discov 9:447–464, 2010). Annonaceous Acetogenins (ACGs) have been described as the most potent inhibitors of the respiratory chain because of their interaction with mitochondrial Complex I (Degli Esposti and Ghelli Biochim Biophys Acta 1187:116–120, 1994; Zafra-Polo et al. Phytochemistry 42:253–271, 1996; Miyoshi et al. Biochim Biophys Acta 1365:443–452, 1998; Tormo et al. Arch Biochem Biophys 369:119–126, 1999; Motoyama et al. Bioorg Med Chem Lett 12:2089–2092, 2002). To explore a possible application of natural products from Annonaceous plants to cancer treatment, we have selected four bis-tetrahydrofuranic ACGs, three from Annona cherimolia (cherimolin-1, motrilin and laherradurin) and one from Rollinia mucosa (rollinianstatin-1) in order to fully describe their mechanisms responsible within the cell (Fig. 1). In this study, using a hepato-carcinoma cell line (HepG2) as a model, we showed that the bis-THF ACGs caused cell death through the induction of the apoptotic mitochondrial pathway. Their potency and behavior were compared with the classical mitochondrial respiratory chain Complex I inhibitor rotenone in every apoptotic pathway step.
Fig. 1
ACGs structures  相似文献   

17.
A slightly crushed but otherwise nearly complete specimen of the recently described rhombiferan echinoderm genus Vizcainoia Zamora and Smith, 2012 is documented from the “Middle” Cambrian Jince Formation of the P?íbram–Jince Basin of the Czech Republic. Isolated thecal plates, earlier determined as calyx plates of the eocrinoid Acanthocystites briareus Barrande, 1887 and/or as eocrinoid sp., occurring in diverse levels of the Jince Formation are reassigned to Dibrachicystidae gen. et sp. indet. Similarly, isolated thecal plates collected from the Buchava Formation of the Skryje–Tý?ovice Basin could be classified as Dibrachicystidae gen. et sp. indet. Specimens from the Barrandian area are the first records of the family Dibrachicystidae outside of southwestern Europe, of the family otherwise known only from the Languedocian of Montagne Noire of France and from the Caesaraugustian and Languedocian of Iberian Chains of northern Spain.  相似文献   

18.

Purpose

This article discusses the choice of stakeholder categories and the integration of stakeholders into participatory processes to define impact categories and select indicators.

Methods

We undertook a literature review concerning the roles and the importance of stakeholders in participatory processes, and the use of such processes in environmental and social LCAs (Biswas et al. Int J Life Cycle Assess 3(4):184-190, 1998; Sonnemann et al. Int J Life Cycle Assess 6(6):325-333, 2001; Baldo Int J Life Cycle Assess 7(5):269-275, 2002; James et al. Int J Life Cycle Assess 7(3):151-157, 2002; Bras-Kapwijk Int J Life Cycle Assess 8(5):266-272, 2003; Mettier et al. Int J Life Cycle Assess 11(6):468-476, 2006). As part of the French National Research Agency Piscenlit project, we adapted the Principle, Criteria, Indicator (PCI) method (Rey-Valette et al. 2008), which is an assessment method of sustainable development, as a way to integrate the participatory approach into Social Life Cycle Assessment (SLCA) methodology, mainly at the impact definition stage.

Results and discussion

Different views of participation were found in the literature; there is no consensual normative approach for the implication of stakeholders in LCA development. Some attempts have been made to integrate stakeholders into environmental LCAs but these attempts have not been generalized. However, they strongly emphasize the interrelationship between research on the growing integration of stakeholders and on the choice of stakeholders. We then propose criteria from stakeholder theory (Freeman 1984; Mitchell et al. Acad Manage Rev 22(4):853-886, 1997; Geibler et al. Bus Strat Environ 15:334-346, 2006) in order to identify relevant stakeholders for SLCA participatory approach. The adaptation of the PCI method to Principles, Impacts, and Indicators (PII) enables stakeholders to express themselves and hence leads to definitions of relevant social indicators that they can appropriate. The paper presents results regarding the selection of stakeholders but no specific results regarding the choice of impact categories and indicators.

Conclusions and recommendations

Integrating a participatory approach into SLCAs is of interest at several levels. It enables various factors to be taken into account: plurality of stakeholder interests, local knowledge, and impact categories that make sense for stakeholders in different contexts. It also promotes dialogue and simplifies the search for indicators. However, it requires a multidisciplinary approach and the integration of new knowledge and skills for the SLCA practitioners.  相似文献   

19.
Numerous studies have shown that food proteins may be a source of bioactive peptides. Those peptides are encrypted in the protein sequence. They stay inactive within the parental protein until release by proteolytic enzymes (Mine and Kovacs-Nolan in Worlds Poult Sci J 62(1):87–95, 2006; Hartman and Miesel in Curr Opin Biotechnol 18:163–169, 2007). Once released the bioactive peptides exhibit several biofunctionalities and may serve therapeutic roles in body systems. Opioid peptides, peptides lowering high blood pressure, inhibiting platelet aggregation as well as being carriers of metal ions and peptides with immunostimulatory, antimicrobial and antioxidant activities have been described (Hartman and Miesel in Curr Opin Biotechnol 18:163–169, 2007). The biofunctional abilities of the peptides have therefore aroused a lot of scientific, technological and consumer interest with respect to the role of dietary proteins in controlling and influencing health (Möller et al. in Eur J Nutr 47(4):171–182, 2008). Biopeptides may find wide application in food production, the cosmetics industry as well as in the prevention and treatment of various medical conditions. They are manufactured by chemical and biotechnological methods (Marx in Chem Eng News 83(11):17–24. 2005; Hancock and Sahl in Nat Biotechnol 24(12):1551–1557, 2006). Depending on specific needs (food or pharmaceutical industry) different degrees of peptide purifications are required. This paper discusses the practicability of manufacturing bioactive peptides, especially from food proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号