首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We propose a muscle contraction model that is essentially a model of the motion of myosin motors as described by a Langevin equation. This model involves one-dimensional numerical calculations wherein the total force is the sum of a viscous force proportional to the myosin head velocity, a white Gaussian noise produced by random forces and other potential forces originating from the actomyosin structure and intra-molecular charges. We calculate the velocity of a single myosin on an actin filament to be 4.9–49 μm/s, depending on the viscosity between the actomyosin molecules. A myosin filament with a hundred myosin heads is used to simulate the contractions of a half-sarcomere within the skeletal muscle. The force response due to a quick release in the isometric contraction is simulated using a process wherein crossbridges are changed forcibly from one state to another. In contrast, the force response to a quick stretch is simulated using purely mechanical characteristics. We simulate the force–velocity relation and energy efficiency in the isotonic contraction and adenosine triphosphate consumption. The simulation results are in good agreement with the experimental results. We show that the Langevin equation for the actomyosin potentials can be modified statistically to become an existing muscle model that uses Maxwell elements.  相似文献   

2.
Common bottlenose dolphins (Tursiops truncatus) use complex acoustic behaviours for communication, group cohesion and foraging. Ambient noise from natural and anthropogenic sources has implications for the acoustic behaviour of dolphins, and research shows that average ambient noise levels alter dolphin acoustic behaviour. However, when background noise levels are highly variable, the relationships between noise and acoustic behaviour over short time periods are likely important. This study investigates whether bottlenose dolphins altered the temporal and spectral qualities of their whistles in relation to the ambient noise present at the time the whistles were produced. Dolphin groups were recorded in Tampa Bay (western Florida) between 2008 and 2015. Six whistle parameters were analysed in spectrogram software (minimum frequency, maximum frequency, bandwidth, peak frequency, duration and number of inflection points) and ambient noise levels were calculated immediately prior to each whistle. Linear regression analysis indicated that the minimum, maximum and peak frequencies of whistles had significant positive relationships with the ambient noise levels present at the time of the whistles. These models suggested that for each 1 dB increase in ambient noise, minimum frequency increased by 121 Hz, maximum frequency increased by 108 Hz and peak frequency increased by between 122 and 144 Hz. As ambient noise is typically low frequency, this suggests that bottlenose dolphins increased whistle frequency in response to real-time noise levels to avoid masking. Future research to determine the fitness consequences of noise-induced changes in the communication behaviour of dolphins would be an important contribution to conservation efforts.  相似文献   

3.
Offshore anthropogenic activities often produce high levels of noise below 1000 Hz, which can be serious threats to aquatic crustaceans based on the knowledge about their acoustic sensitive bandwidth. This study simulated noise with main frequency band similar to common underwater engineering noises, and examined its effects on movement behavior and physiological response, indicated by heat shock protein 70 (HSP70) gene expression, of the mud crab Scylla paramamosain. Experiments were conducted in the tanks, equipped with hydrophone, transducer, and video recording system, using juvenile S. paramamosain. Three acoustic stimulations with ascending levels were separately imposed on the animals. Results showed that the linear sweep with the sound power spectral density greater than 110 dB re 1μPa2/Hz in total bandwidth (100–1000 Hz), and 155 dB re 1μPa2/Hz within 600–800 Hz, could increase locomotor activities and HSP70 gene expression significantly.  相似文献   

4.
Mechanical assistance on joint movement is generally beneficial; however, its effects on cooperative performance and muscle activity needs to be further explored. This study examined how motor performance and muscle activity are altered when mechanical assistance is provided during isometric force control of ramp-down and hold phases. Thirteen right-handed participants (age: 24.7 ± 1.8 years) performed trajectory tracking tasks. Participants were asked to maintain the reference magnitude of 47 N (REF) during isometric elbow flexion. The force was released to a step-down magnitude of either 75% REF or 50% REF and maintained, with and without mechanical assistance. The ramp-down durations of force release were set to 0.5, 2.5, or 5.0 s. Throughout the experiment, we measured the following: (1) the force output using load cells to compute force variability and overshoot ratio; (2) peak perturbation on the elbow movement using an accelerometer; (3) the surface electromyography (sEMG) from biceps brachii and triceps brachii muscles; and (4) EMG oscillation from the biceps brachii muscle in the bandwidth of 15–45 Hz. Our results indicated that mechanical assistance, which involved greater peak perturbation, demonstrated lower force variability than non-assistance (p < 0.01), while EMG oscillation in the biceps brachii muscle from 15 to 45 Hz was increased (p < 0.05). These findings imply that if assistive force is provided during isometric force control, the central nervous system actively tries to stabilize motor performance by controlling specific motor unit activity in the agonist muscle.  相似文献   

5.
The goals of the present study were (1) to measure the previously unstudied isometric forces of activated human Gracilis (G) muscle as a function of knee joint angle and (2) to test whether length history effects are important also for human muscle. Experiments were conducted intraoperatively during anterior cruciate ligament (ACL) reconstruction surgery (n=8). Mean peak G muscle force, mean peak G tendon stress and mean optimal knee angle equals 178.5±270.3 N, 24.4±20.6 MPa and 67.5±41.7°, respectively. The substantial inter-subject variability found (e.g., peak G force ranges between 17.2 and 490.5 N) indicate that the contribution of the G muscle to knee flexion moment may vary considerably among subjects. Moreover, typical subject anthropometrics did not appear to provide a sound estimate of the peak G force: only a limited insignificant correlation was found between peak G force and subject mass as well as mid-thigh perimeter and no correlation was found between peak G force and thigh length. The functional joint range of motion for human G muscle was determined to be at least as wide as full knee extension to 120° of knee flexion. However; the portion of the knee angle–muscle force relationship operationalized is not unique but individual specific: our data suggest for most subjects that G muscle operates in both ascending and descending limbs of its length–force characteristics whereas, for the remainder of the subjects, its function is limited to the descending limb, exclusively. Previous activity of G muscle at high muscle length attained during collection of a complete set of knee angle–force data showed for the first time that such length history effects are important also for human muscles: a significant correlation was found between optimal knee angle and absolute value of % force change. Except for two of the subjects, G muscle force measured at low length was lower than that measured during collection of knee joint–force data (maximally by 42.3%).  相似文献   

6.
The relation among several parameters of the ramp-and-hold isometric force contraction (peak force and dF/dtmax during the initial phase of force recruitment, and the proportion of hold-phase at target) was quantified for the right and left thumb-index finger pinch, and lower lip midline compression in 40 neurotypical right-handed young adults (20 female/20 males) using wireless force sensors and data acquisition technology developed in our laboratory. In this visuomotor control task, participants produced ramp-and-hold isometric forces as ‘rapidly and accurately’ as possible to end-point target levels at 0.25, 0.5, 1 and 2 Newtons presented to a computer monitor in a randomized block design. Significant relations were found between the parameters of the ramp-and-hold lip force task and target force level, including the peak rate of force change (dF/dtmax), peak force, and the criterion percentage of force within ±5% of target during the contraction hold phase. A significant performance advantage was found among these force variables for the thumb-index finger over the lower lip. The maximum voluntary compression force (MVCF) task revealed highly significant differences in force output between the thumb-index fingers and lower lip (∼4.47–4.70 times greater for the digits versus lower lip), a significant advantage of the right thumb-index finger over the non-dominant left thumb-index finger (12% and 25% right hand advantage for males and females, respectively), and a significant sex difference (∼1.65–1.73 times greater among males).  相似文献   

7.
With increased polar anthropogenic activity, such as from the oil and gas industry, there are growing concerns about how Arctic species will be affected. Knowledge of species’ sensory abilities, such as auditory sensitivities, can be used to mitigate the effects of such activities. Herein, behavioral audiograms of two captive adult Arctic foxes (Vulpes lagopus) were measured using a yes/no paradigm and descending staircase method of signal presentation. Both foxes displayed a typical mammalian U-shaped audiometric curve, with a functional hearing range of 125 Hz–16 kHz (sensitivity ≤ 60 dB re: 20 μPa) and average peak sensitivity of 24 dB re: 20 μPa at 4 kHz. The foxes had a lower frequency range and sensitivity than would be expected when compared to previous audiograms of domestic dogs (Canis familiaris) and other carnivores. These differences indicate Arctic foxes (V. lagopus) may have a lower frequency range than previously expected, which was similar to the only other fox species tested to date, kit foxes (Vulpes macrotis). Alternatively, differences may be due to testing constraints, such as masking of test signals by ambient noise and/or an unintentionally trained conservative response bias, which most likely resulted in underestimated hearing curves. While results of this study should be interpreted with caution due to its limitations, findings indicate that foxes have a narrower frequency range than formerly presumed. Anthropogenic activities near fox habitats can mitigate their impacts by reducing noise at frequencies within the functional hearing range and peak sensitivities of this species.  相似文献   

8.
Enhanced physiological tremor is a disabling condition that arises because of unstable interactions between central tremor generators and the biomechanics of the spinal stretch reflex. Previous work has shown that peripheral input may push the tremor-related spinal and cortical systems closer to anti-phase firing, potentially leading to a reduction in tremor through phase cancellation. The aim of the present study was to investigate whether peripherally applied mechanical stochastic noise can attenuate enhanced physiological tremor and improve motor performance. Eight subjects with enhanced physiological tremor performed a visuomotor task requiring the right index finger to compensate a static force generated by a manipulandum to which Gaussian noise (3–35 Hz) was applied. The finger position was displayed on-line on a monitor as a small white dot which the subjects had to maintain in the center of a larger green circle. Electromyogram (EMG) from the active hand muscles and finger position were recorded. Performance was measured by the mean absolute deviation of the white dot from the zero position. Tremor was identified by the acceleration in the frequency range 7–12 Hz. Two different conditions were compared: with and without superimposed noise at optimal amplitude (determined at the beginning of the experiment). The application of optimum noise reduced tremor (accelerometric amplitude and EMG activity) and improved the motor performance (reduced mean absolute deviation from zero). These data provide the first evidence of a significant reduction of enhanced physiological tremor in the human sensorimotor system due to application of external stochastic noise.  相似文献   

9.
Gold–silver core–shell triangular nanoprisms (Au/AgTNPs) were grown onto transparent indium tin oxide (ITO) thin film-coated glass substrate through a seed-mediated growth method without using peculiar binder molecules. The resulting Au/AgTNPs were characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction, UV–vis spectroscopy, and cyclic voltammograms. The peak of dipolar plasmonic resonance was located at near infrared region of ~700 nm, which showed the refractive index (RI) sensitivity of 248 nm/RIU. Moreover, thin gold shells were electrodeposited onto the surface of Au/AgTNPs in order to stabilize nanoparticles. Compared with the Au/AgTNPs, this peak of localized surface plasmon resonance (LSPR) was a little red-shift and decreased slightly in intensity. The refractive index sensitivity was estimated to be 287 nm/RIU, which showed high sensitivity as a LSPR sensing platform. Those triangular nanoprisms deposited on the ITO substrate could be further functionalized to fabricate LSPR biosensors. Results of this research show a possibility of improving LSPR sensor by using core–shell nanostructures.  相似文献   

10.
The current from a white noise generator was applied as a stimulus to a space-clamped squid axon in double sucrose gap. The membrane current and the voltage response of the membrane were then amplified, recorded on magnetic tape, and the stimulus was cross-correlated with the response. With subthreshold stimuli, a cross-correlation function resembling that obtained from a resonant parallel circuit is obtained. As the intensity of the input noise is increased, the cross-correlation function resembles that obtained from a less damped oscillatory circuit. When the noise intensity is further increased so that an appreciable frequency of action potentials is observed, an additional component appears in the experimental cross-correlogram. The subthreshold cross-correlogram is analyzed theoretically in terms of the linearized Hodgkin-Huxley equations. The subthreshold axon approximates a parallel resonant circuit. The circuit parameters are temperature dependent, with resonant frequency varying from approximately 100 Hz at 10°C to approximately 250 Hz at 20°C. The Q10 of the resonant frequency is equal to 1.9. These values are in agreement with values found previously for subthreshold oscillations following a single action potential.  相似文献   

11.
Increasingly, inertial sensors are being used for running analyses. The aim of this study was to systematically investigate the influence of inertial sensor sampling frequencies (SF) on the accuracy of kinematic, spatio-temporal, and kinetic parameters. We hypothesized that running analyses at lower SF result in less signal information and therefore the inability to sufficiently interpret measurement data. Twenty-one subjects participated in this study. Rearfoot strikers ran on an indoor running track at a velocity of 3.5 ± 0.1 ms?1. A uniaxial accelerometer was attached at the tibia and an inertial measurement unit was mounted at the heel of the right shoe. All sensors were synchronized at the start and data was measured with 1000 Hz (reference SF). Datasets were reduced to 500, 333, 250, 200, and 100 Hz in post-processing. The results of this study showed that a minimum SF of 500 Hz should be used to accurately measure kinetic parameters (e.g. peak heel acceleration). In contrast, stride length showed accurate results even at 333 Hz. 200 Hz were required to calculate parameters accurately for peak tibial acceleration, stride duration, and all kinematic measurements. The information from this study is necessary to correctly interpret measurement data of existing investigations and to plan future studies.  相似文献   

12.
Repetitive activation of a skeletal muscle results in potentiation of the twitch contractile response. Incompletely fused tetanic contractions similar to those evoked by voluntary activation may also be potentiated by prior activity. We aimed to investigate the role of stimulation frequency on the enhancement of unfused isometric contractions in rat medial gastrocnemius muscles in situ. Muscles set at optimal length were stimulated via the sciatic nerve with 50-micros duration supramaximal pulses. Trials consisted of 8 s of repetitive trains [5 pulses (quintuplets) 2 times per second or 2 pulses (doublets) 5 times per second] at 20, 40, 50, 60, 70, and 80 Hz. These stimulation frequencies represent a range over which voluntary activation would be expected to occur. When the frequency of stimulation was 20, 50, or 70 Hz, the peak active force (highest tension during a contraction - rest tension) of doublet contractions increased from 2.2 +/- 0.2, 4.1 +/- 0.4, and 4.3 +/- 0.5 to 3.1 +/- 0.3, 5.6 +/- 0.4, and 6.1 +/- 0.7 N, respectively. Corresponding measurements for quintuplet contractions increased from 2.2 +/- 0.2, 6.1 +/- 0.5, and 8.7 +/- 0.7 to 3.2 +/- 0.3, 7.3 +/- 0.6, and 9.0 +/- 0.7 N, respectively. Initial peak active force values were 27 +/- 1 and 61.5 +/- 5% of the maximal (tetanic) force for doublet and quintuplet contractions, respectively, at 80 Hz. With doublets, peak active force increased at all stimulation frequencies. With quintuplets, peak active force increased significantly for frequencies up to 60 Hz. Twitch enhancement at the end of the 8 s of repetitive stimulation was the same regardless of the pattern of stimulation during the 8 s, and twitch peak active force returned to prestimulation values by 5 min. These experiments confirm that activity-dependent potentiation is evident during repeated, incompletely fused tetanic contractions over a broad range of frequencies. This observation suggests that, during voluntary motor unit recruitment, derecruitment or decreased firing frequency would be necessary to achieve a fixed (submaximal) target force during repeated isometric contractions over this time period.  相似文献   

13.
Passive acoustic monitoring can provide valuable information on coral reefs, and examining the acoustic attributes of these ecosystems has the potential to provide an insight into their status and condition. From 2014 to 2016, a series of underwater recordings were taken at field sites around Lizard Island in the Great Barrier Reef, Australia. Six individual fish choruses were identified where each chorus displayed distinct acoustic characteristics. Choruses exhibited diurnal activity and some field sites displayed consistently higher diversity of choruses and levels than others, suggesting that particular locations are important aggregation areas for soniferous fish species. During peak activity, choruses were a prominent component of reef soundscapes, where received levels of a chorus reached upwards of 120 dB re 1μPa rms over the 450–650 Hz band, equating to a 40 dB increase above ambient noise levels of ≈80 dB re 1μPa rms. Three out of the six detected choruses exhibited spectral and temporal characteristics similar to choruses previously documented at these sites and elsewhere, produced by planktivorous fish species. Three of these choruses appear to be undocumented and could hold information on the presence, abundance and dispersal patterns of important fish species, which may have potential long-term management applications. Future research should focus on extricating the temporal patterns associated with bioacoustic activity and determining the potential environmental drivers of biological choruses. Additionally, developing appropriate techniques for direct identification of vocalizing species would strongly increase the management applicability of passive acoustic monitoring.  相似文献   

14.
Bearded seals (Erignathus barbatus) are pan-Arctic pinnipeds that are often seen in association with pack ice, and are known for their long, loud trills, produced underwater primarily in the spring. Acoustic recordings were collected from August 2008 to August 2010 at two locations and a single year (2008–2009) at a third location, in the western Beaufort Sea. Three recorders in 2008–2009 had a 30 % duty cycle and a bandwidth of 10–4,096 Hz. One recorder in 2009–2010 had a 45 % duty cycle and a bandwidth of 10–4,096 Hz and the second had a 20 % duty cycle and bandwidth of 10–8,192 Hz. Spectrograms of acoustic data were examined for characteristic patterns of bearded seal vocalizations. For each recorder, the number of hours per day with vocalizations was compared with in situ water temperature and satellite-derived daily sea ice concentrations. At all sites, bearded seals were vocally active year-round. Call activity escalated with the formation of pack ice in the winter and the peak occurred in the spring, coinciding with mating season and preceding breakup of the sea ice. There was a change in the timing of seasonal sea ice formation and retreat between the two consecutive years that was reflected in the timing of peak bearded seal call activity. This study provides new information on fall and winter bearded seal vocal behavior and the relationship between year-round vocal activity and changes in annual sea ice coverage and in situ water temperature.  相似文献   

15.
The effects of sustained and rhythmically performed isometric contractions on electrically evoked twitch and tetanic force generation of the triceps surae have been investigated in 4 healthy male subjects. The isometric contractions were performed separately and on different occasions at 30%, 60% and 100% of the force of maximal voluntary contraction (MVC). The area under the maximal voluntary contraction (MVC) force/time curve during the rhythmic and sustained contractions was the same for each experiment. The results showed that following rhythmic isometric exercise there was a small decrease in low (10 and 20 Hz) and high (40 Hz) frequency tetanic tension which was associated with % MVC. However, there was no change in the 20/40 ratio of tetanic forces, MVC or the contraction times and force of the maximal twitch. In contrast, following sustained isometric exercise tetanic forces were markedly reduced, particularly at low frequencies of stimulation. The 20/40 ratio decreased and the induced muscle weakness was greater at 30% than 60% or 100% MVC. The performance of sustained isometric contractions also effected a decrease in contraction time of the twitch and MVC. The results are in accord with previous findings for dynamic work (Davies and White 1982), and show that if isometric exercise is performed rhythmically the effect on tetanic tensions is small and there is no evidence of a preferential loss of electrically evoked force at either high or low frequencies of stimulation following the contractions. For sustained contractions, however, the opposite is true, the ratio of 20/40 Hz forces is markedly reduced and following 30% sustained MVC there is a significant (p less than 0.05) change in the time to peak tension (TPT) of the maximal twitch.  相似文献   

16.
Force characteristics of skeletal muscle of knockout mice lacking creatine (Cr) due to a deletion of guanidinoacetate methyltransferase (GAMT) were studied in situ. Medial gastrocnemius muscles of anesthetized GAMT-deficient (GAMT–/–) and control (Con) littermates were stimulated at optimum length via the sciatic nerve at different stimulation frequencies (60–250 Hz). GAMT–/– mice showed reduced maximal tetanic and twitch force, reduced relative force at 60 Hz, and increased relaxation times. High-intensity fatigue protocols consisting of 30 successive isometric or dynamic contractions showed a strong reduction in force at the beginning of the series in GAMT–/– mice, followed by a smaller reduction compared with Con littermates toward the end of the series. Cr supplementation for 2 days in GAMT–/– animals (GAMT) resulted in normalization to Con values for relaxation times, relative force at lower stimulation frequencies, and relative force during 30 isometric contractions. Force per muscle mass, however, remained decreased. Furthermore,GAMT mice showed differences compared with both Con and unsupplemented animals in maximal rates of force rise and relaxation times during the isometric protocol as well as in force during the dynamic protocol. Our results show that the absence of Cr plays a direct role in relaxation times, maximal rate of force rise, and force production during high-intensity fatigue protocols. The lower force per muscle mass, however, is probably caused by other factors; i.e., high intracellular guanidinoacetate concentrations. energy metabolism; creatine; fatigue; force characteristics  相似文献   

17.
This study examined the effects of extended sessions of heavy intermittent exercise on quadriceps muscle fatigue and weakness. Twelve untrained volunteers (10 men and 2 women), with a peak oxygen consumption of 44.3 +/- 2.3 ml.kg(-1).min(-1), exercised at approximately 91% peak oxygen consumption for 6 min once per hour for 16 h. Muscle isometric properties assessed before and after selected repetitions (R1, R2, R4, R7, R12, and R15) were used to quantitate fatigue (before vs. after repetitions) and weakness (before vs. before repetitions). Muscle fatigue at R1 was indicated by reductions (P < 0.05) in peak twitch force (135 +/- 13 vs. 106 +/- 11 N) and by a reduction (P < 0.05) in the force-frequency response, which ranged between approximately 53% at 10 Hz (113 +/- 12 vs. 52.6 +/- 7.4 N) and approximately 17% at 50 Hz (324 +/- 27 vs. 270 +/- 30 N). No recovery of force, regardless of stimulation frequency, was observed during the 54 min between R1 and R2. At R2 and for all subsequent repetitions, no reduction in force, regardless of stimulation frequency, was generally found after the exercise. The only exception was for R2, where, at 20 Hz, force was reduced (P < 0.05) by 18%. At R15, force before repetitions for high frequencies (i.e., 100 Hz) returned to R1 (333 +/- 29 vs. 324 +/- 27 N), whereas force at low frequency (i.e., 10 Hz) was only partially (P < 0.05) recovered (113 +/- 12 vs. 70 +/- 6.6 N). It is concluded that multiple sessions of heavy exercise can reverse the fatigue noted early and reduce or eliminate weakness depending on the frequency of stimulation.  相似文献   

18.
Force development in smooth muscle, as in skeletal muscle, is believed to reflect recruitment of force-generating myosin cross-bridges. However, little is known about the events underlying cross-bridge recruitment as the muscle cell approaches peak isometric force and then enters a period of tension maintenance. In the present studies on single smooth muscle cells isolated from the toad (Bufo marinus) stomach muscularis, active muscle stiffness, calculated from the force response to small sinusoidal length changes (0.5% cell length, 250 Hz), was utilized to estimate the relative number of attached cross-bridges. By comparing stiffness during initial force development to stiffness during force redevelopment immediately after a quick release imposed at peak force, we propose that the instantaneous active stiffness of the cell reflects both a linearly elastic cross-bridge element having 1.5 times the compliance of the cross-bridge in frog skeletal muscle and a series elastic component having an exponential length-force relationship. At the onset of force development, the ratio of stiffness to force was 2.5 times greater than at peak isometric force. These data suggest that, upon activation, cross-bridges attach in at least two states (i.e., low-force-producing and high-force-producing) and redistribute to a steady state distribution at peak isometric force. The possibility that the cross-bridge cycling rate was modulated with time was also investigated by analyzing the time course of tension recovery to small, rapid step length changes (0.5% cell length in 2.5 ms) imposed during initial force development, at peak force, and after 15 s of tension maintenance. The rate of tension recovery slowed continuously throughout force development following activation and slowed further as force was maintained. Our results suggest that the kinetics of force production in smooth muscle may involve a redistribution of cross-bridge populations between two attached states and that the average cycling rate of these cross-bridges becomes slower with time during contraction.  相似文献   

19.
Many populations of migratory fish species, including white sturgeon (Acipenser transmontanus Richardson), are threatened due to modification of riverine systems and may experience downstream displacement or mortality at water intake structures. Efforts to reduce the impacts of these structures are beginning to incorporate behavioural guidance, where the sensory capabilities of fishes are exploited to repel them from high-risk areas or attract them towards desirable paths. Artificial lighting has been tested before, but consisted of single-spectrum lights. Using a new programmable LED-based light guidance device (LGD), we exposed age-0 white sturgeon to light strobing at 1 Hz, 20 Hz, or constant illumination with colours (green, red, blue) matching the absorbance maxima of their retinal photopigments. The behavioural responses of the sturgeon were assessed using y-maze dichotomous choice tests under both day (light) and night (dark) conditions. Sturgeon demonstrated positive phototaxis under both day and night conditions, and approached the LGD more often when light was continuous or strobing at 20 Hz compared to strobing at 1 Hz. Green light elicited the greatest rates of attraction overall. The combination of strobing and colour may help to protect imperiled fish from waterway development and serve as an effective form of mitigation at hydropower facilities and other human infrastructure where fish may be entrained or impinged.  相似文献   

20.
Voluntary motor performance is the result of cortical commands driving muscle actions. Corticomuscular coherence can be used to examine the functional coupling or communication between human brain and muscles. To investigate the effects of grip force level on corticomuscular coherence in an accessory muscle, this study proposed an expanded support vector regression (ESVR) algorithm to quantify the coherence between electroencephalogram (EEG) from sensorimotor cortex and surface electromyogram (EMG) from brachioradialis in upper limb. A measure called coherence proportion was introduced to compare the corticomuscular coherence in the alpha (7–15Hz), beta (15–30Hz) and gamma (30–45Hz) band at 25 % maximum grip force (MGF) and 75 % MGF. Results show that ESVR could reduce the influence of deflected signals and summarize the overall behavior of multiple coherence curves. Coherence proportion is more sensitive to grip force level than coherence area. The significantly higher corticomuscular coherence occurred in the alpha (p?p?p?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号