首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We have derived oligosaccharides from the capsular polysaccharide of type III group B Streptococcus by enzymatic hydrolysis of a specific backbone glycosidic bond utilizing an endo-beta-galactosidase from Flavobacterium keratolyticus. Enzymatic digestion of the polysaccharide produced oligosaccharide fragments of one or more pentasaccharide repeating units. On the basis of 13C NMR, 1H NMR, and methylation analyses, it was established that the smallest digestion fragment was alpha-D-NeupNAc-(2----3)-beta-D-Galp-(1----4)-[beta-D-Glcp-(1----6 )]- beta-D-GlcpNAc-(1----3)-beta-D-Gal. The isolation of this oligosaccharide is consistent with the susceptibility of the beta-D-Galp-(1----4)-beta-D-Glcp linkage in the backbone of the type III group B streptococcal polysaccharide and confirms that the polysaccharide is composed of a pentasaccharide repeating unit. High resolution 13C NMR spectroscopic studies indicated that, as in the case of the pentasaccharide, the terminal sialic acid residues of the type III group B streptococcal polysaccharide were linked to O-3 and not to O-6 of its branch beta-D-galactopyranosyl residues as had been previously reported (Jennings, H. J., Rosell, K.-G., and Kasper, D. L. (1980) Can. J. Chem. 58, 112-120). This linkage was confirmed in an independent methylation analysis of the type III group B streptococcal polysaccharide. Thin layer chromatogram binding assay and radioactive antigen binding assays with radiolabeled oligosaccharides demonstrated the single repeating unit pentasaccharide oligosaccharide to be poorly antigenic. Increasing oligosaccharide size to a decasaccharide consisting of two repeating units resulted in an 8-fold increase in antigen binding in the direct radioactive antigen binding assay. The results suggest that a region of the immunodeterminant site critical for antibody binding is located in the backbone of the polysaccharide and involves the beta-D-galactopyranose-(1----4) beta-D-glucopyranose bond.  相似文献   

2.
D M Cohen  R J Linhardt 《Biopolymers》1990,30(7-8):733-741
Heparin is a mixture of linear polysaccharides of undetermined sequence. Both biosynthetic data and computer simulation studies have established that each heparin polymer chain is comprised of oligosaccharides of defined sequence, representing ordered domains. One such ordered domian is a pentasaccharide corresponding to heparin's antithrombin III binding site. Previous computer simulation studies, performed under the assumption that heparin lyase (heparinase, EC 4.2.2.7), has a random endolytic action pattern, suggested that certain of these ordered oligosaccharide domains may themselves be nonrandomly arranged in the heparin polymer. The present work presents computer simulations of alternative action patterns for heparin lyase while assuming a random distribution of these oligosaccharide units within the heparin polymer. We consider action patterns that are determined solely by the primary structure of the substrate molecules. Results of the simulations are compared to (1) the experimental measurements of product chains formed throughout the reaction and (2) the change in weight average molecular weight Mw as a function of reaction completion as determined by absorbance at 232 nm. From the simulation of 60 action patterns for heparin lyase, we infer that one of the following statements concerning heparin and heparin lyase is true: (1) Heparin is a random arrangement of a small number of structurally defined oligosaccharide units. Heparin lyase changes its action pattern during the depolymerization of heparin (perhaps influenced by the secondary structure of substrate). (2) Heparin contain clusters of oligosaccharide sequences that are present in low concentrations (overall) in the polymer. Heparin lyase has a specificity for cleaving glycosidic linkages either exolytically at the nonreducing terminus of a chain or (endolytically) at the reducing side of these rare oligosaccharide sequence.  相似文献   

3.
Einbu A  Vårum KM 《Biomacromolecules》2008,9(7):1870-1875
Proton NMR spectra of chitin dissolved in concentrated and deuterated hydrochloric acid (DCl) were found to be a simple and powerful method for identifying chitin from samples of biological origin. During the first hour after dissolving chitin in concentrated DCl (25 degrees C), insignificant de-N-acetylation occurred, meaning that the fraction of acetylated units (FA) of chitin could be determined. FA of demineralized shrimp shell samples treated with 1 M NaOH at 95 degrees C for 1-24 h were determined and were found to decrease linearly with time from 0.96 to 0.91 during the treatment with NaOH. Extrapolation to zero time suggested that chitin from shrimp shells has a FA of 0.96, that is, contains a small but significant fraction of de-N-acetylated units. Proton NMR spectra of chitin ( FA = 0.96) dissolved in concentrated DCl were obtained as a function of time until the samples were almost quantitatively hydrolyzed to the monomer glucosamine (GlcN). The initial phase of the reaction involves mainly depolymerization of the chitin chains, resulting in that almost 90% (molar fraction) of the chitin is converted to the monomer N-acetyl-glucosamine (GlcNAc).Thus, effective conversion of chitin to GlcNAc in concentrated acid is reported for the first time. GlcNAc is then further de-N-acetylated to GlcN. A new theoretical model was developed to simulate the experimental data of the kinetics of hydrolysis of chitin in concentrated acid. The model uses three different rate constants; two for the hydrolysis of the glycosidic linkages following an N-acetylated or a de-N-acetylated sugar unit and one for the de-N-acetylation reaction. The three rate constants were estimated by fitting model data to experimental results. The rate of hydrolysis of a glycosidic linkage following an N-acetylated unit was found to be 54 times higher as compared to the rate of de-N-acetylation and 115 times higher than the rate of hydrolysis of a glycosidic linkage following a de-N-acetylated unit. Two chitin samples with different F A values (0.96 and 0.70) were incubated in concentrated DCl until the samples were converted to the maximum yield of GlcNAc and the oligomer composition analyzed, showing that the maximum yield of GlcNAc was much higher when prepared from the chitin with the highest F A value.  相似文献   

4.
Heparan sulfate (HS) is a highly sulfated polysaccharide that serves many biological functions, including regulating cell growth and inflammatory responses as well as the blood coagulation process. Heparanase is an enzyme that cleaves HS and is known to display a variety of pathophysiological effects in cancer, diabetes, and Alzheimer disease. The link between heparanase and diseases is a result of its selective cleavage of HS, which releases smaller HS fragments to enhance cell proliferation, migration, and invasion. Despite its importance in pathological diseases, the structural cues in HS that direct heparanase cleavage and the steps of HS depolymerization remain unknown. Here, we sought to probe the substrate specificity of heparanase using a series of structurally defined oligosaccharide substrates. The sites of heparanase cleavage on the oligosaccharide substrates were determined by mass spectrometry and gel permeation chromatography. We discovered that heparanase cleaves the linkage of glucuronic acid linked to glucosamine carrying 6-O-sulfo groups. Furthermore, our findings suggest that heparanase displays different cleavage modes by recognizing the structures of the nonreducing ends of the substrates. Our results deepen the understanding of the action mode of heparanase.  相似文献   

5.
Functional properties of heparan sulfate (HS) are generally ascribed to the sulfation pattern of the polysaccharide. However, recently reported functional implications of rare N-unsubstituted glucosamine (GlcNH(2)) residues in native HS prompted our structural characterization of sequences around such residues. HS preparations were cleaved with nitrous acid at either N-sulfated or N-unsubstituted glucosamine units followed by reduction with NaB(3)H(4). The labeled products were characterized following complementary deamination steps. The proportion of GlcNH(2) units varied from 0.7-4% of total glucosamine in different HS preparations. The GlcNH(2) units occurred largely clustered at the polysaccharide-protein linkage region in intestinal HS, also more peripherally in aortic HS. They were preferentially located within N-acetylated domains, or in transition sequences between N-acetylated and N-sulfated domains, only 20-30% of the adjacent upstream and downstream disaccharide units being N-sulfated. The nearest downstream (toward the polysaccharide-protein linkage) hexuronic acid was invariably GlcUA, whereas the upstream neighbor could be either GlcUA or IdoUA. The highly sulfated but N-unsubstituted disaccharide unit, -IdoUA2S-GlcNH(2)6S-, was detected in human renal and porcine intestinal HS, but not in HS from human aorta. These results are interpreted in terms of a biosynthetic mechanism, whereby GlcNH(2) residues are formed through regulated, incomplete action of an N-deacetylase/N-sulfotransferase enzyme.  相似文献   

6.
Within cells, dermatan sulfate (DS) and heparan sulfate (HS) are degraded in two steps. The initial endohydrolysis of these polysaccharides is followed by the sequential action of lysosomal exoenzymes to reduce the resulting oligosaccharides to monosaccharides and inorganic sulfate. Mucopolysaccharidosis (MPS) type II is a lysosomal storage disorder caused by a deficiency of the exoenzyme iduronate-2-sulfatase (I2S). Consequently, partially degraded fragments of DS and HS have been shown to accumulate in the lysosomes of affected cells and are excreted in the urine. Di- to hexadecasaccharides, isolated from the urine of a MPS II patient using anion exchange and gel filtration chromatography, were identified using electrospray ionization-tandem mass spectrometry (ESI-MS/MS). These oligosaccharides were shown to have non-reducing terminal iduronate-2-sulfate residues by digestion with recombinant I2S. A pattern of growing oligosaccharide chains composed of alternating uronic acid and N-acetylhexosamine residues was identified and suggested to originate from DS. A series of oligosaccharides consisting of hexosamine/N-acetylhexosamine alternating with uronic acid residues was also identified and on the basis of the presence of unacetylated hexosamine; these oligosaccharides are proposed to derive from HS. The presence of both odd and even-length oligosaccharides suggests both endo-beta-glucuronidase and endo-N-acetylhexosaminidase activities toward both glycosaminoglycans. Furthermore, the putative HS oligosaccharide structures identified indicate that heparanase activities are directed toward regions of both low and high sulfation, while the N-acetylhexosaminidase activity acted only in regions of low sulfation in this polysaccharide.  相似文献   

7.
A polysaccharide was found to be covalently linked to the peptidoglycan of the unicellular cyanobacterium Synechocystis sp. strain PCC6714 via phosphodiester bonds. It could be cleaved from the peptidoglycan-polysaccharide (PG-PS) complex by hydrofluoric acid (HF) treatment in the cold (48% HF, 0 degrees C, 48 h) yielding a pure, HF-insoluble peptidoglycan fraction and an HF-soluble polysaccharide fraction. The PG-PS complex was isolated from the Triton X-100-insoluble cell wall fraction by hot sodium dodecyl sulfate treatment and digestion with proteases. Digestion of the complex with N-acetylmuramidase released the glycopeptide-linked polysaccharide, which was further purified by dialysis and gel filtration on Sephadex G-50 and G-200. The polysaccharide consisted of glucosamine, mannosamine, galactosamine, mannose, and glucose and had a molecular weight of 25,000 to 30,000. Muramic acid-6-phosphate was identified as the binding site of the covalently linked, nonphosphorylated polysaccharide as revealed by chemical analysis of linkage fragments of the PG-PS complex.  相似文献   

8.
Heparan sulfate (HS) is present on the surface of endothelial and surrounding tissues in large quantities. It plays important roles in regulating numerous functions of the blood vessel wall, including blood coagulation, inflammation response, and cell differentiation. HS is a highly sulfated polysaccharide containing glucosamine and glucuronic/iduronic acid repeating disaccharide units. The unique sulfated saccharide sequences of HS determine its specific functions. Heparin, an analog of HS, is the most commonly used anticoagulant drug. Because of its wide range of biological functions, HS has become an interesting molecule to biochemists, medicinal chemists, and developmental biologists. In this review, we summarize recent progress toward understanding the interaction between HS and blood-coagulating factors, the biosynthesis of anticoagulant HS and the mechanism of action of HS biosynthetic enzymes. Furthermore, knowledge of the biosynthesis of HS facilitates the development of novel enzymatic approaches to synthesize HS from bacterial capsular polysaccharides and to produce polysaccharide end products with high specificity for the biological target. These advancements provide the foundation for the development of polysaccharide-based therapeutic agents.  相似文献   

9.
Thrombin-inhibitory activity of whale heparin oligosaccharides   总被引:1,自引:0,他引:1  
Whale heparin was partially digested with a purified heparinase and the oligosaccharide fractions with 8-20 monosaccharide units were isolated from the digest by gel filtration on Sephadex G-50, followed by affinity chromatography on a column of antithrombin III immobilized on Sepharose 4B. A marked difference in the inhibitory activity for thrombin in the presence of antithrombin III was observed between the high-affinity fractions for antithrombin III of octasaccharide approximately hexadecasaccharide and those of octadecasaccharide approximately eicosasaccharide. The disaccharide compositions of these hexadeca-, octadeca-, and eicosasaccharides were analyzed by high-performance liquid chromatography after digestion with a mixture of purified heparitinases 1 and 2 and heparinase. The analytical data indicated that the proportions of trisulfated disaccharide (IdUA(2S)alpha 1----4GlcNS(6S)) and disulfated disaccharide (UA1----4GlcNS(6S)) increased with the manifestation of high thrombin-inhibitory activity, while that of monosulfated disaccharide (UA1----4GlcNS) decreased. The present observations, together with those so far reported, suggest that the presence of the former structural elements, specifically IdUA(2S)alpha 1----4GlcNS(6S), as well as the antithrombin III-binding pentasaccharide at the proper positions in the molecules of whale heparin oligosaccharides is essential for the manifestation of high inhibitory activity for thrombin in the presence of antithrombin III. The structural bases for the manifestation of the anticoagulant activity of whale and porcine heparins and their oligosaccharides are also discussed.  相似文献   

10.
The capsular polysaccharide of group B Streptococcus is a key virulence factor and an important target for protective immune responses. Until now, the nature of the attachment between the capsular polysaccharide and the bacterial cell has been poorly defined. We isolated insoluble cell wall fragments from lysates of type III group B Streptococcus and showed that the complexes contained both capsular polysaccharide and group B carbohydrate covalently bound to peptidoglycan. Treatment with the endo-N-acetylmuramidase mutanolysin released soluble complexes of capsular polysaccharide linked to group B carbohydrate by peptidoglycan fragments. Capsular polysaccharide could be enzymatically cleaved from group B carbohydrate by treatment of the soluble complexes with beta-N-acetylglucosaminidase, which catalyzes hydrolysis of the beta-D-GlcNAc(1-->4)beta-D-MurNAc subunit produced by mutanolysin digestion of peptidoglycan. Evidence from gas chromatography/mass spectrometry and (31)P NMR analysis of the separated polysaccharides supports a model of the group B Streptococcus cell surface in which the group B carbohydrate and the capsular polysaccharide are independently linked to the glycan backbone of cell wall peptidoglycan; group B carbohydrate is linked to N-acetylmuramic acid, and capsular polysaccharide is linked via a phosphodiester bond and an oligosaccharide linker to N-acetylglucosamine.  相似文献   

11.
Heparosan is a non-sulfated polysaccharide and potential applications include, chemoenzymatic synthesis of heparin and heparan sulfates. Heparosan is produced using microbial cells (natural producers or engineered cells). The characterization of heparosan isolated from both natural producers and engineered-cells are critical steps towards the potential applications of heparosan. Heparosan is characterized using 1) analysis of intact chain size and polydispersity, and 2) disaccharide composition. The current paper describes a novel method for heparosan chain characterization, using heparin lyase III (Hep-3, an eliminase from Flavobacterium heparinum) and heparanase Bp (Hep-Bp, a hydrolase from Burkholderia pseudomallei). The partial digestion of E. coli K5 heparosan with purified His-tagged Hep-3 results in oligomers of defined sizes. The oligomers (degree of polymerization from 2 to 8, DP2-DP8) are completely digested with purified GST-tagged Hep-Bp and analyzed using gel permeation chromatography. Hep-Bp specifically cleaves the linkage between d -glucuronic acid (GlcA) and N-acetyl-d -glucosamine (GlcNAc) but not the linkage between 4-deoxy-α-L-threo-hex-4-enopyranosyluronic acid (deltaUA) and GlcNAc, and results in the presence of a minor resistant trisaccharide (GlcNAc-GlcA-GlcNAc). This method successfully demonstrated the substrate selectivity of Hep-BP on heparosan oligomers. This analytical tool could be applied towards heparosan chain mapping and analysis of unnatural sugar moieties in the heparosan chain.  相似文献   

12.
We have analyzed the content of N-unsubstituted glucosamine in heparan sulfate from glypican-1 synthesized by endothelial cells during inhibition of (a) intracellular progression by brefeldin A, (b) heparan sulfate degradation by suramin, and/or (c) endogenous nitrite formation. Glypican-1 from brefeldin A-treated cells carried heparan sulfate chains that were extensively degraded by nitrous acid at pH 3.9, indicating the presence of glucosamines with free amino groups. Chains with such residues were rare in glypican-1 isolated from unperturbed cells and from cells treated with suramin and, surprisingly, when nitrite-deprived. However, when nitrite-deprived cells were simultaneously treated with suramin, such glucosamine residues were more prevalent. To locate these residues, chains were first cleaved at linkages to sulfated l-iduronic acid by heparin lyase and released fragments were separated from core protein carrying heparan sulfate stubs. These stubs were then cleaved off at sites linking N-substituted glucosamines to d-glucuronic acid. These fragments were extensively degraded by nitrous acid at pH 3.9. When purified proteoglycan isolated from brefeldin A-treated cells was incubated with intact cells, endoheparanase-catalyzed degradation generated a core protein with heparan sulfate stubs that were similarly sensitive to nitrous acid. We conclude that there is a concentration of N-unsubstituted glucosamines to the reducing side of the endoheparanase cleavage site in the transition region between unmodified and modified chain segments near the linkage region to the protein. Both sites as well as the heparin lyase-sensitive sites seem to be in close proximity to one another.  相似文献   

13.
Heparan sulfate (HS), a prominent component of vascular endothelial basal lamina, is cleaved into large Mr fragments and solubilized from subendothelial basal lamina-like matrix by metastatic murine B16 melanoma cells. We have examined the degradation products of HS and other purified glycosaminoglycans produced by B16 cells. Glycosaminoglycans 3H-labeled at their reducing termini or metabolically labeled with [35S]sulfate were incubated with B16 cell extracts in the absence or presence of D-saccharic acid 1,4-lactone, a potent exo-beta-glucuronidase inhibitor, and glycosaminoglycan fragments were analyzed by high speed gel permeation chromatography. HS isolated from bovine lung, Engelbreth-Holm-Swarm sarcoma, and subendothelial matrix were degraded into fragments of characteristic Mr, in contrast to hyaluronic acid, chondroitin 6-sulfate, chondroitin 4-sulfate, dermatan sulfate, keratan sulfate, and heparin which were essentially undegraded. Heparin, but not other glycosaminoglycans, inhibited HS degradation. The time dependence of HS degradation into particular Mr fragments indicated that HS was cleaved at specific intrachain sites. In order to determine specific HS cleavage points, HS prereduced with NaBH4 was incubated with a B16 cell extract and HS fragments were separated. The newly formed reducing termini of HS fragments were then reduced with NaB[3H]4, and the fragments hydrolyzed to monosaccharides by trifluoroacetic acid treatment and nitrous acid deamination. Since 3H-reduced terminal monosaccharides from HS fragments were overwhelmingly (greater than 90%) L-gulonic acid, the HS-degrading enzyme responsible is an endoglucuronidase (heparanase).  相似文献   

14.
Heparosan is Escherichia coli K5 capsule polysaccharide, which is the key precursor for preparing bioengineered heparin. A rapid and effective quantitative method for detecting heparosan is important in the large-scale production of heparosan. Heparin lyase III (Hep III) effectively catalyzes the heparosan depolymerization, forming unsaturated disaccharides that are measurable using a spectrophotometer at 232 nm. We report a new method for the quantitative detection of heparosan with heparin lyase III and spectrophotometry that is safer and more specific than the traditional carbazole assay. In an optimized detection system, heparosan at a minimum concentration of 0.60 g/L in fermentation broth can be detected.  相似文献   

15.
Four novel oligosaccharide units were isolated from the acetolysis products of the acidic polysaccharide chain derived from the glycoproteins of Fusarium sp. M7-1. Their chemical structures were resolved mainly by 1H-NMR spectrometry in combination with methylation analysis and mass spectrometry. The results indicate that these oligosaccharide units originated from the side chains, GlcNAc alpha 1-->4GlcA alpha 1-->2(GlcNac alpha 1-->4)GlcA alpha 1-->2Gal, GlcNAc alpha 1-->4GlcA alpha 1-->2(GlcNAc alpha 1-->4)GlcA alpha 1-->2(GlcNac alpha 1-->4)GlcA alpha 1-->2Gal, ChN<--P--> 6Man beta 1-->4GlcA alpha 1-->2Gal, and Man beta 1-->2(ChN<--P-->6)Man beta 1-->4GlcA alpha 1-->2Gal linked together with the other units reported previously [Jikibara et al. (1992) J. Biochem. 111, 236-243] through beta 1-->6galactofuranoside linkages in the acidic polysaccharide chain.  相似文献   

16.
Klebsiella K14 capsular polysaccharide was degraded by a bacteriophage-borne enzyme to afford oligosaccharides A-C which were studied by one- and two-dimensional n.m.r. spectroscopy. A and B were the repeating-unit hexasaccharide and pyruvylated hexasaccharide, respectively, while C was a dodecasaccharide. Each oligomer was terminated by a reducing mannose and a non-reducing 4-deoxy-alpha-L-threo-hex-4-enopyranosyluronic acid residue, indicating that the phage enzyme had cleaved the beta-D-Manp-(1----4)-beta-D-GlcpA linkages in the polysaccharide by a lyase, rather than the more common glycosidase, activity found with other Klebsiella bacteriophages. In this respect, the depolymerisation resembles those reported for the capsular polysaccharides of Klebsiella K5 and K64  相似文献   

17.
K5 lyase of coliphage K5A degrades the K5 polysaccharide of encapsulated E. coli strains expressing the K5 antigen thereby contributing to virus binding and infection. We have investigated the affinities of the recombinant enzyme for different GAG ligands by isothermal fluorescence titrations and correlated them with substrate processing and protein structural changes. Chondroitin sulfate (CS) and heparan sulfate (HS) bound to K5 lyase with a Kd of 0.5 microM whereas heparin exhibited a Kd=1.1 microM. The natural substrate K5 polysaccharide displayed a similar apparent affinity as CS and HS but was the only ligand of the enzyme which induced a large structural rearrangement of the protein as detected by far-UV CD spectroscopy. Since significant enzymatic degradation was only found for the K5 polysaccharide peaking at 44 degrees C, but binding was also detected for heparin, we propose that the K5 lyase is able to discriminate between specific (acetylated/non-sulfated) and unspecific (acetylated/sulfated) ligands by its heparin binding motif in the C-terminus. This is proposed to be the origin for the enzyme's residual HS degrading activity.  相似文献   

18.
Hibbert CS  Rein A 《Journal of virology》2005,79(13):8142-8148
Retrovirus particles contain two copies of their genomic RNA, held together in a dimer by linkages which presumably consist of a limited number of base pairs. In an effort to localize these linkages, we digested deproteinized RNA from Moloney murine leukemia virus (MLV) particles with RNase H in the presence of oligodeoxynucleotides complementary to specific sites in viral RNA. The cleaved RNAs were then characterized by nondenaturing gel electrophoresis. We found that fragments composed of nucleotides 1 to 754 were dimeric, with a linkage as thermostable as that between dimers of intact genomic RNA. In contrast, there was no stable linkage between fragments consisting of nucleotides 755 to 8332. Thus, the most stable linkage between monomers is on the 5' side of nucleotide 754. This conclusion is in agreement with earlier electron microscopic analyses of partially denatured viral RNAs and with our study (C. S. Hibbert, J. Mirro, and A. Rein, J. Virol. 78:10927-10938, 2004) of encapsidated nonviral mRNAs containing inserts of viral sequence. We obtained similar results with RNAs from immature MLV particles, in which the dimeric linkage is different from that in mature particles and has not previously been localized. The 5' and 3' fragments of cleaved RNA are all held together by thermolabile linkages, indicating the presence of tethering interactions between bases 5' and bases 3' of the cleavage site. When RNAs from mature particles were cleaved at nucleotide 1201, we detected tethering interactions spanning the cleavage site which are intramonomeric and are as strong as the most stable linkage between the monomers.  相似文献   

19.
The selective oxidation of beta-D-glycosidic linkages of polysaccharides by ozone has great utility as a general method for depolymerization of polysaccharides. Here we describe a 'one-step' method whereby polysaccharides dissolved in water or basic solutions are depolymerized by ozonolysis. The oxidation of glycosidic linkages of unprotected carbohydrates by ozone is complicated by several side reactions. We describe here optimized conditions for carrying out ozonolysis degradation. We also characterize the major pathways for unwanted degradation by various side reactions. In the preferred oxidation pathway, the aldosidic linkage is oxidized to an aldonic ester function that hydrolyzes under the basic conditions employed to give a free aldonate, with cleavage of the polysaccharide chain. Nonselective degradation pathways include oxidative degradation by radical species that oxidize glycosyl residues to formic, acetic, and oxalic acids. The nonselective degradation caused by acids is minimized by basic buffers. The products of polysaccharide depolymerization form a size distribution around a nominal molecular weight, and the average molecular weight of the products can be controlled by the rate or amount of ozone passed through the reaction mixture. The ozonolysis method described herein provides a convenient, inexpensive, and controllable means for generating small polysaccharides or large oligosaccharide fragments.  相似文献   

20.
Vesicular stomatitis virus contains a single structural glycoprotein whose carbohydrate sequences are probably specified by the host cell. The glycopeptides derived by Pronase digestion of the glycoprotein of vesicular stomatitis virus grown in HeLa cells have an average molecular weight of 1,800. There are multiple oligosaccharide chains on the vesicular stomatitis virus glycoprotein with protein-carbohydrate linkages that are cleaved only by strong alkali under reducing conditions, suggesting that they contain asparagine and N-acetylglucosamine. The oligosaccharide moieties, in addition, appear to be heterogeneous in sequence on the basis of their mobilities during electrophoresis and their sensitivities to cleavage by an endoglycosidase. The carbohydrate-peptide linkage region of the major class of oligosaccharides of the vesicular stomatitis virus glycoprotein has the proposed sequence: (see article).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号