首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bisulfite reductase was purified from extracts of Desulfovibrio vulgaris. By colorimetric analyses trithionate was found to be the major product, being formed in quantities 5 to 10 times more than two other detectable products, thiosulfate and sulfide. When [35S]bisulfite was used as the substrate, all three products were radioactively labeled. Degradation of [35S]trithionate showed that all of its sulfur atoms were equally labeled. In contrast, [35S]thiosulfate contained virtually all of the radioactivity in the sulfonate atom while the sulfane atom was unlabeled. These results, in conjunction with the funding that the sulfide was radioactive, led to the conclusion that bisulfite reductase reduced bisulfite to trithionate as the major product and sulfide as the minor product; the reason for the unusual labeling pattern found in the thiosulfate molecule was not apparent at this time. When bisulfite reductase was incubated with [35S]bisulfite in the presence of another protein fraction, FII, the thiosulfate formed from this reaction contained both sulfur atoms having equal radioactivity. This discovery, plus the fact that trithionate was not reduced to thiosulfate under identical conditions, led to the speculation that bisulfite could be reduced to thiosulfate by another pathway not involving trithionate.  相似文献   

2.
The localization of APS reductase and bisulfite reductase in Desulfovibrio gigas, D. vulgaris Hildenborough and D. thermophilus was studied by immunoelectron microscopy. Polyclonal antibodies were raised against the purified enzymes from each strain. Cells fixed with formaldehyde/glutaraldehyde were embedded and ultrathin sections were incubated with antibodies and subsequently labeled with protein A-gold. The bisulfite reductase in all three strains and APS reductase in d. gigas and D. vulgaris were found in the cytoplasm. The labeling of d. thermophilus with APS reductase antibodies resulted in a distribution of gold particles over the cytoplasmic membrane region. The localization of the two enzymes is discussed with respect to the mechanism and energetics of dissimilatory sulfate reduction.  相似文献   

3.
4.
Thiosulfate reductase of the dissimilatory sulfate-reducing bacterium Desulfovibrio gigas has been purified 415-fold and its properties investigated. The enzyme was unstable during the different steps of purification as well as during storage at-15°C. The molecular weight of thiosulfate reductase estimated from the chromatographic behaviour of the enzyme on Sephadex G-200 was close to 220 000. The absorption spectrum of the purified enzyme exhibited a protein peak at 278 nm without characteristic features in the visible region. Thiosulfate reductase catalyzed the stoichiometric production of hydrogen sulfide and sulfite from thiosulfate, and exhibited tetrathionate reductase activity. It did not show sulfite reductase activity. The optimum pH of thiosulfate reduction occurred between pH 7.4 and 8.0 and its K m value for thiosulfate was calculated to be 5·10-4 M. The sensitivity of thiosulfate reductase to sulfhydryl reagent and the reversal of the inhibition by cysteine indicated that one or more sulfhydryl groups were involved in the catalytic activity. The study of electron transport between hydrogenase and thiosulfate reductase showed that the most efficient coupling was obtained with a system containing cytochromes c 3 (M r =13000) and c 3 (M r =26000).  相似文献   

5.
T Yagi  K Hon-nami  T Ohnishi 《Biochemistry》1988,27(6):2008-2013
Two types of the NADH-quinone reductase were isolated from Thermus thermophilus HB-8 membranes, by use of the nonionic detergent, dodecyl beta-maltoside, and NAD-agarose affinity, DEAE-cellulose, hydroxyapatite, and Superose 6 column chromatography. One of these (NADH dehydrogenase 1) is a complex composed of 10 unlike polypeptides, and the other (NADH dehydrogenase 2) exhibits a single band (Mr 53,000) upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The NADH-ubiquinone-1 reductase activity of the isolated NADH dehydrogenase 1 was about 14 times higher than that of the dodecyl beta-maltoside extract and partially rotenone sensitive. The NADH-ubiquinone-1 reductase activity of the isolated NADH dehydrogenase 2 was about 30-fold as high as that of the dodecyl beta-maltoside extract and rotenone insensitive. The purified NADH dehydrogenase 1 contained noncovalently bound FMN, non-heme iron, and acid-labile sulfide. The ratio of FMN to non-heme iron to acid-labile sulfide was 1:11-12:7-9. The high content of iron and labile sulfide is suggestive of the presence of several iron-sulfur clusters. The purified NADH dehydrogenase 2 contained noncovalently bound FAD and no non-heme iron or acid-labile sulfide. The activities of both NADH dehydrogenases were stable at temperatures of greater than or equal to 80 degrees C. The occurrence of two distinct types of NADH dehydrogenase as a common feature in the membranes of various aerobic bacteria is discussed.  相似文献   

6.
Thiosulfate reductase of the dissimilatory sulfate-reducing bacterium Desulfovibrio gigas has been purified 415-fold and its properties investigated. The enzyme was unstable during the different steps of purification as well as during storage at - 15 degrees C. The molecular weight of thiosulfate reductase estimated from the chromatographic behaviour of the enzyme on Sephadex G-200 was close to 220000. The absorption spectrum of the purified enzyme exhibited a protein peak at 278 nm without characteristic features in the visible region. Thiosulfate reductase catalyzed the stoichiometric production of hydrogen sulfide and sulfite from thiosulfate, and exhibited tetrathionate reductase activity. It did not show sulfite reductase activity. The optimum pH of thiosulfate reduction occurred between pH 7.4 and 8.0 and its Km value for thiosulfate was calculated to be 5 - 10(-4)M. The sensitivity of thiosulfate reductase to sulfhydryl reagent and the reversal of the inhibition by cysteine indicated that one or more sulfhydryl groups were involved in the catalytic activity. The study of electron transport between hydrogenase and thiosulfate reductase showed that the most efficient coupling was obtained with a system containing cytochromes c3 (Mr = 13000) and c3 (Mr = 26000).  相似文献   

7.
Two ferredoxins, Fd I and Fd II, were isolated and purified from Desulfovibrio vulgaris Miyazaki. The major component, Fd I, is an iron-sulfur protein of Mr 12,000, composed of two identical subunits. The absorption spectra of Fd I and Fd II have a broad absorption shoulder near 400 nm characteristic of iron-sulfur proteins. The purity index, A400/A280, of Fd I is 0.69, and its millimolar absorption coefficient at 400 nm is 3.73 per Fe. It contains two redox centers with discrete redox behaviors. The amino acid composition and the N-terminal sequence of Fd I are similar to those of Fd III of Desulfovibrio africanus Benghazi and Fd II of Desulfovibrio desulfuricans Norway. Fd I does not serve as an electron carrier for the hydrogenase of D. vulgaris Miyazaki, but it serves as a carrier for pyruvate dehydrogenase of this bacterium. The evolution of H2 from pyruvate was observed by a reconstructed system containing purified hydrogenase, cytochrome C3, Fd I, partially purified pyruvate dehydrogenase, and CoA. The H2-sulfite reducing system can be reconstructed from the purified hydrogenase, cytochrome C3, Fd I and desulfoviridin (sulfite reductase), but the reaction rate is very slow compared to that of the crude extract at the same molar ratio of the components.  相似文献   

8.
Euglena aquacobalamin reductase (NADPH: EC 1.6.99.-) was purified, and its subcellular distribution was studied to elucidate the mechanism of the conversion of hydroxocobalamin to 5'-deoxyadenosylcobalamin. The enzyme was found in the mitochondria. It was purified about 150-fold over the Euglena mitochondrial extract in a yield of 38%. The purified enzyme was homogeneous in polyacrylamide gel electrophoresis. Spectra of the purified enzyme showed that it was a flavoprotein. The molecular weight of the enzyme was calculated to be 66,000 by Sephadex G-100 gel filtration and 65,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was specific to NADPH with an apparent Km of 43 microM and to hydroxocobalamin with an apparent Km of 55 microM. The enzyme did not require FAD or FMN as a cofactor. The optimum pH and temperature were 7.0 and 40 degrees C, respectively.  相似文献   

9.
Thiosulfate reductase was purified to an almost homogeneous state from Desulfovibrio vulgaris, strain Miyazaki F, by ammonium sulfate precipitation, chromatography on DEAE-Toyopearl, Ultrogel AcA 34, and hydroxylapatite, and disc electrophoresis. The specific activity was increased 580-fold over the crude extract. The molecular weight was determined by gel filtration to be 85,000-89,000, differing from those reported for thiosulfate reductases from other Desulfovibrio strains. The enzyme had no subunit structure. When coupled with hydrogenase and methyl viologen, it stoichiometrically reduced thiosulfate to sulfite and sulfide with consumption of hydrogen. It did not reduce sulfite or trithionate. Cytochrome c3 was active as an electron donor. More than 0.75 mM thiosulfate inhibited the enzyme activity. o-Phenanthroline and 2,2'-bipyridine inhibited the enzyme and ferrous ion stimulated the reaction.  相似文献   

10.
A series of gold(III) metalacycle of five-, six- and seven-membered ring was prepared by reacting Auric acid (HAuCl4 · 3H2O) with 1 equiv. unsubstituted ethylenediamine (en), propylene diamine (pn) and butylenediamine (bn) ligands and with some N-mono-substituted as well as N,N′-disubstituted ethylenediamine ligands. The general formula of these complexes is [Au(alkyldiamine)Cl2]Cl. These complexes are characterized by melting point and elemental analysis, while structural analysis was done by spectroscopic techniques such as UV-Vis, Far-IR, IR spectroscopy, 1H and 13C solution as well as 13C and 15 N solid-state NMR. The solid-state 15 N NMR shows that the chemical shift difference between free and bound ligand decreases as bn > pn > en, indicating stronger Au-N bond for bn complex compared to pn and en. UV-Vis shows relative stability of the Au(III) complexes of unsubstituted ethylenediamine with respect to N,N′-di-substituted ethylenediamine. Far-IR data show the six-membered metalacycle gold(III) alkanediamine complexes to be more stable. Spectroscopic data are evaluated by comparisons with calculated data of the built and optimized structure by gaussian03 at the RB3LYP level with LanL2DZ bases set.  相似文献   

11.
Abstract Formate dehydrogenase from Desulfovibrio vulgaris Hildenborough, a sulfate-reducing bacterium, has been isolated and characterized. The enzyme is composed of three subunits. A high molecular mass subunit (83 500 Da) is proposed to contain a molybdenum cofactor, a 27 000 Da subunit is found to be similar to the Fe-S subunit of the formate dehydrogenase from Escherichia coli and a low molecular mass subunit (14000 Da) holds a c -type heme. The presence of heme c in formate dehydrogenase is reported for the first time and is correlated to the peculiar low oxidoreduction potential of the metabolism of these strictly anaerobic bacteria. In vitro measurements have shown that a monoheme cytochrome probably acts as a physiological partner of the enzyme in the periplasm.  相似文献   

12.
Hydrogenase from Desulfovibrio vulgaris (Hildenborough) is a heterologous dimer of molecular mass 46 + 13.5 kDa. Its two structural genes have been cloned on a 4664-base-pair fragment of known sequence in the vector pUC9. Expression of hydrogenase polypeptides in Escherichia coli transformed with this plasmid is poor (approximately 0.1% w/w of total protein). Deletion of up to 1.9 kb of insert DNA brings the gene encoding for the large subunit in close proximity to the lac promotor of pUC9 and results in a 50-fold increased expression of hydrogenase polypeptides in E. coli. The protein formed is inactive and was purified in order to delineate its defect. Complete purification was achieved with a procedure similar to that used for the isolation of active hydrogenase from D. vulgaris H. The derived protein is also an alpha beta dimer and electron-paramagnetic resonance studies indicate the presence of the electron-transferring ferredoxin-type iron-sulfur clusters. In contrast to the native protein from D. vulgaris H, these can only be reduced with dithionite, not with hydrogen, indicating that the hydrogen-binding active centre which also contains an iron-sulfur cluster is missing.  相似文献   

13.
A58, the conserved adenosine residue in the T psi C loop of tRNAs, is methylated to m1A 58 in an extreme thermophile, Thermus thermophilus HB27. The enzyme catalyzing this methyltransfer reaction was purified from the thermophle. The substrate specificity of the enzyme was investigated by using tRNA fragments. The enzyme can transfer the methyl group to the 3'-half fragment of E. coli initiator tRNA, indicating that the main recognition site of the enzyme exists in the 3' half of tRNA including the T-loop and the T-stem.  相似文献   

14.
Purification and characterization of Thermus thermophilus UvrD   总被引:1,自引:0,他引:1  
The DNA helicase UvrD (helicase II) protein plays an important role in nucleotide excision repair, mismatch repair, rolling circular plasmid replication, and in DNA replication. A homologue of the Escherichia coli uvrD gene was previously identified in Thermus thermophilus; however, to date, a UvrD helicase has not been purified and characterized from a thermophile. Here we report the purification and characterization of a UvrD protein from Thermus thermophilus HB8. The purified UvrD has a temperature range from 10 degrees to >65 degrees C, with an optimum of 50 degrees C, within the temperature limits of the assay. The enzyme had a requirement for divalent metal ions and nucleoside triphosphates which related to enzyme activity in the order ATP > dATP > dGTP > GTP > CTP > dCTP > UTP. A simple real-time helicase assay was developed that should facilitate detailed kinetic studies of the enzyme. Evaluation of helicase substrates using this assay showed that the enzyme was highly active on a double-stranded DNA with 5' recessed ends in comparison with substrates with 3' recessed or blunt ends, and supports enzyme translocation in a 3'-5' direction relative to the strand bound by the enzyme.  相似文献   

15.
Abstract Enterotoxigenic Escherichia coli (STa+) strains were isolated from adult bovine with diarrhea. These strains did not express any known ETEC-specific adhesins. Although hemagglutination with rat and sheep erythrocytes was observed in the presence of D-mannose (MRHA), these strains also showed mannose-sensitive hemagglutination (MSHA) with guinea-pig erythrocytes. Electron microscopic studies revealed the presence of fimbria-like structures (provisionally called "F43ms") on bacterial cells grown at 37°C but not on cells grown at 18°C. However, it was observed by SDS-PAGE that the J-1 strain (F43ms+) produces a protein similar to F1 fimbriae, and this strain hybridized with a DNA probe for F1 fimbriae. Immunogold-labelling techniques indicated that a rabbit anti-serum is specific for F43ms fimbrial structures, but not for Type 1 fimbriae. The immunofluorescence test carried out with semipurified F43ms on bovine brush borders suggests that the fimbria-like structures are responsible for the adhesion to bovine epithelial cells.  相似文献   

16.
An air-stable formate dehydrogenase (FDH), an enzyme that catalyzes the oxidation of formate to carbon dioxide, was purified from the sulfate reducing organism Desulfovibrio gigas (D. gigas) NCIB 9332. D. gigas FDH is a heterodimeric protein [alpha (92 kDa) and beta (29 kDa) subunits] and contains 7 +/- 1 Fe/protein and 0.9 +/- 0.1 W/protein. Selenium was not detected. The UV/visible absorption spectrum of D. gigas FDH is typical of an iron-sulfur protein. Analysis of pterin nucleotides yielded a content of 1.3 +/- 0.1 guanine monophosphate/mol of enzyme, which suggests a tungsten coordination with two molybdopterin guanine dinucleotide cofactors. Both M?ssbauer spectroscopy performed on D. gigas FDH grown in a medium enriched with (57)Fe and EPR studies performed in the native and fully reduced state of the protein confirmed the presence of two [4Fe-4S] clusters. Variable-temperature EPR studies showed the presence of two signals compatible with an atom in a d(1) configuration albeit with an unusual relaxation behavior as compared to the one generally observed for W(V) ions.  相似文献   

17.
Enzymes serving as respiratory complex II belong to the succinate:quinone oxidoreductases superfamily that comprises succinate:quinone reductases (SQRs) and quinol:fumarate reductases. The SQR from the extreme thermophile Thermus thermophilus has been isolated, identified and purified to homogeneity. It consists of four polypeptides with apparent molecular masses of 64, 27, 14 and 15kDa, corresponding to SdhA (flavoprotein), SdhB (iron-sulfur protein), SdhC and SdhD (membrane anchor proteins), respectively. The existence of [2Fe-2S], [4Fe-4S] and [3Fe-4S] iron-sulfur clusters within the purified protein was confirmed by electron paramagnetic resonance spectroscopy which also revealed a previously unnoticed influence of the substrate on the signal corresponding to the [2Fe-2S] cluster. The enzyme contains two heme b cofactors of reduction midpoint potentials of -20mV and -160mV for b(H) and b(L), respectively. Circular dichroism and blue-native polyacrylamide gel electrophoresis revealed that the enzyme forms a trimer with a predominantly helical fold. The optimum temperature for succinate dehydrogenase activity is 70°C, which is in agreement with the optimum growth temperature of T. thermophilus. Inhibition studies confirmed sensitivity of the enzyme to the classical inhibitors of the active site, as there are sodium malonate, sodium diethyl oxaloacetate and 3-nitropropionic acid. Activity measurements in the presence of the semiquinone analog, nonyl-4-hydroxyquinoline-N-oxide (NQNO) showed that the membrane part of the enzyme is functionally connected to the active site. Steady-state kinetic measurements showed that the enzyme displays standard Michaelis-Menten kinetics at a low temperature (30°C) with a K(M) for succinate of 0.21mM but exhibits deviation from it at a higher temperature (70°C). This is the first example of complex II with such a kinetic behavior suggesting positive cooperativity with k' of 0.39mM and Hill coefficient of 2.105. While the crystal structures of several SQORs are already available, no crystal structure of type A SQOR has been elucidated to date. Here we present for the first time a detailed biophysical and biochemical study of type A SQOR-a significant step towards understanding its structure-function relationship.  相似文献   

18.
19.
A soluble Cr(VI) reductase was purified from the cytoplasm of Escherichia coli ATCC 33456. The molecular mass was estimated to be 84 and 42 kDa by gel filtration and SDS-polyacrylamide gel electrophoresis, respectively, indicating a dimeric structure. The pI was 4.66, and optimal enzyme activity was obtained at pH 6.5 and 37 degrees C. The most stable condition existed at pH 7.0. The purified enzyme used both NADPH and NADH as electron donors for Cr(VI) reduction, while NADPH was the better, conferring 61%; higher activity than NADH. The Km values for NADPH and NADH were determined to be 47.5 and 17.2 micromol, and the Vmax values 322.2 and 130.7 micromol Cr(VI) min(-1)mg(-1) protein, respectively. The activity was strongly inhibited by N-ethylmalemide, Ag2+, Cd2+, Hg2+, and Zn2+. The antibody against the enzyme showed no immunological cross reaction with those of other Cr(VI) reducing strains.  相似文献   

20.
A new method, faster, milder and more efficient than the one previously described [Bryn, K., Hetland, O. & Stormer, F. C. (1971) Eur. J. Biochem, 18, 116-119], for purification of diacetyl(acetoin) reductase from Enterobacter aerogenes is proposed. The experiments carried out with the electrophoretically pure preparations obtained by this procedure show that the enzyme (a) produces L-glycols from the corresponding L-alpha-hydroxycarbonyls by reversible reduction of their oxo groups and also reduces the oxo group of uncharged alpha-dicarbonyls converting them into L-alpha-hydroxycarbonyls, and (b) is specific for NAD. This is a new enzyme for which we suggest the systematic name of L-glycol: NAD+ oxidoreductase and the recommended name of L-glycol dehydrogenase(NAD). The molecular mass, pI, affinity for substrates and pH profiles of this enzyme are also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号