首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Blobaum AL  Lu Y  Kent UM  Wang S  Hollenberg PF 《Biochemistry》2004,43(38):11942-11952
tert-Butyl acetylene (tBA) is a mechanism-based inactivator of cytochromes P450 2E1 and 2E1 T303A; however, the inactivation of the T303A mutant could be reversed by overnight dialysis. The inactivation of P450 2E1 T303A, but not the wild-type 2E1 enzyme, by tBA resulted in the formation of a novel reversible acetylene-iron spectral intermediate with an absorption maximum at 485 nm. The formation of this intermediate required oxygen and could be monitored spectrally with time. Although the alternate oxidants tert-butyl hydroperoxide (tBHP) and cumene hydroperoxide (CHP) supported the inactivation of wild-type P450 2E1 by tBA in a reductase- and NADPH-free system, only tBHP supported the inactivation of the 2E1 T303A mutant. The losses in enzymatic activity occurred concomitantly with losses in the native P450 heme, which were accompanied by the formation of tBA-adducted heme products. The inactivations supported by tBHP and CHP were completely irreversible with overnight dialysis. Spectral binding constants (K(s)) for the binding of tBA to the 2E1 P450s together with models of the enzymes with the acetylenic inactivator bound in the active site suggest that the T303A mutation results in increased hydrophobic interactions between tBA and nearby P450 residues, leading to a higher binding affinity for the acetylene compound in the mutant enzyme. Together, these data support a role for the highly conserved T303 residue in proton delivery to the active site of P450 2E1 and in the inactivation of the 2E1 P450s by small acetylenic compounds.  相似文献   

2.
tert-Butyl 1-methyl-2-propynyl ether (tBMP) was analyzed for its ability to act as a mechanism-based inactivator of p450 2B4. tBMP inactivated p450 2B4 in a time-, concentration-, and NADPH-dependent manner. Losses in activity occurred with concurrent losses in the reduced CO spectrum and native p450 heme; however, there was a greater loss in activity than could be accounted for by reduced CO spectra or native heme loss. LC/MS analysis demonstrated that the losses in native heme were accompanied by the appearance of two modified hemes with m/z values of 705Da, consistent with tBMP adducted hemes. Both adducts had identical fragmentation patterns when analyzed by LC/MS/MS. The spectra were consistent with a tBMP molecule and an oxygen atom attached to iron-depleted heme. Proton NMR studies suggest that the two modified hemes in p450 2B1 are N-alkylated on pyrrole rings A and D.  相似文献   

3.
Inactivation of cytochrome P450 2E1 by tert-butyl isothiocyanate (tBITC) resulted in a loss in the spectrally detectable P450-reduced CO complex. The heme prosthetic group does not appear to become modified, since little loss of the heme was observed in the absolute spectra or the pyridine hemochrome spectra, or in the amount of heme recovered from HPLC analysis of the tBITC-inactivated samples. Prolonged incubations of the inactivated P450 2E1 with dithionite and CO resulted in a recovery of both the CO complex and the enzymatic activity. Inactivated samples that were first reduced with dithionite for 1 h prior to CO exposure recovered their CO spectrum to the same extent as samples not pretreated with dithionite, suggesting that the major defect was an inability of the inactivated sample to bind CO. Spectral binding studies with 4-methylpyrazole indicated that the inactivated P450 2E1 had an impaired ability to bind the substrate. Enzymatic activity could not be restored with iodosobenzene as the alternate oxidant. EPR analysis indicated that approximately 24% of the tBITC-inactivated P450 2E1 was EPR-silent. Of the remaining tBITC-inactivated P450 2E1, approximately 45% exhibited an unusual low-spin EPR signal that was attributed to the displacement of a water molecule at the sixth position of the heme by a tBITC modification to the apoprotein. ESI-LC-MS analysis of the inactivated P450 2E1 showed an increase in the mass of the apoprotein of 115 Da. In combination, the data suggest that tBITC inactivated P450 2E1 by binding to a critical active site amino acid residue(s). This modified amino acid(s) presumably acts as the sixth ligand to the heme, thereby interfering with oxygen binding and substrate binding.  相似文献   

4.
The EPR spectra of NH(2)-terminal-truncated P450 cytochrome 2B4 and of several active site mutants that were previously shown to be profoundly altered in catalytic properties were determined. From these spectra it was seen that the truncated P450 2B4, like the full length cytochrome, exists as the low spin ferric form, but upon mutation of threonine 302 to alanine approximately 40% of the cytochrome is present as the high spin ferric form (g approximately 8, 4, 2). A similar situation was observed in the double mutant E310L T302A, but not in the single mutant E301L. A rhombic high spin signal (g approximately 8, 4, 2) was observed when a substrate such as styrene, benzphetamine, or cyclohexane was added to the truncated cytochrome. Accompanying this change was the appearance of a signal at g = 1.98. Conversely, an axial high spin signal was observed (g approximately 6, 6, 2) when cyclohexanecarboxaldehyde or 3-phenylpropionaldehyde was added to the truncated P450 2B4.  相似文献   

5.
It was shown that noncovalent complexes of riboflavins and cytochrome P450 2B4 (flavocytochrome P450 2B4) can be used for photoinduced intramolecular electron transfer between the isoalloxazine cycle of flavins and the cytochrome P450 2B4 heme. The measurement of the photocurrent generated by photoreduction of noncovalent flavocytochrome P450 2B4 was carried out. It was found that, in the presence of typical substrates for cytochromes P450, the cathode photocurrent generated by both riboflavin and a mixture of riboflavin with cytochrome P450 decreases. A comparison of photocurrents in the presence and absence of substrates enabled one to register xenobiotics in solutions and use the photosensitivity of artificial flavocytochrome P450 for the determination of xenobiotic concentration. It was demonstrated that artificial flavocytochromes may serve as molecular amplifiers of the photocurrent generated upon the reduction of flavins. The introduction of flavin residues into the cytochrome P450 molecule transformed this hemoprotein into a photoreceptor and a photodiod and, in addition, into a photoactivated enzyme.  相似文献   

6.
The interactions between the hemoprotein cytochrome P450 2B4 (CYP 2B4) and riboflavin - a low molecular weight component of the flavoprotein NADPH-dependent cytochrome P450 reductase - were investigated by fluorescence spectroscopy. Riboflavin fluorescence quenching by cytochrome P450 2B4 was used to probe the ligand-enzyme binding (lambda(ex)=385 nm, lambda(em)=520 nm). Fluorescence titration experiments showed formation of a complex between cytochrome P450 2B4 and riboflavin with an apparent dissociation constant value, K(d)=8.8+/-1 microM. The fluorescence intensity of riboflavin was decreased with increasing the cytochrome P450 2B4 concentration, indicating the transfer of resonance excitation energy from riboflavin (energy donor) to the cytochrome P450 2B4 heme (energy acceptor). The data obtained are suggestive of the existence of riboflavin binding site(s) on the hemeprotein molecule.  相似文献   

7.
The present study demonstrates the possible use of a non-covalent complex of riboflavins with cytochrome P450 2B4 (artificial flavocytochrome P450 2B4) for photo-induced intermolecular electron transfer between the isoalloxazine cycle of flavins and the ferric heme group of cytochrome P450 2B4. Riboflavin was used as a light-induced electron donor for the transfer of electrons to cytochrome P450. The quantitative measurement of the photocurrent, generated by photoreduction of non-covalent flavocytochrome P450 2B4, was carried out. In the presence of typical substrates for cytochrome P450 2B4 the decrease of cathodic photocurrent occurred, generated not only by riboflavin itself but also by a riboflavin/cytochrome P450 complex. It was demonstrated that flavocytochromes might serve as molecular amplifiers of a photocurrent, generated upon flavins' reduction. Introduction of flavin residues into the cytochrome P450 molecule transformed this haemoprotein into a photoreceptor and a photodiode and, in addition, into a photosensitive and photo-activated enzyme.  相似文献   

8.
We have previously observed that the quadruple (S407T-N417D-A419T-K473M) and triple (S407T-N17D-A419T) mutants of the chimeric construct of P450 2B1/2B2 do not undergo mechanism-based inactivation by 17alpha-ethynylestradiol (17EE) and tert-butyl 1-methyl-2-propynyl ether (tBMP). The ability of these mutants to metabolize 17EE, benzphetamine, and testosterone has been investigated. The profile for 17EE metabolism by both mutants was characteristic of both wild-types. The two mutants metabolized testosterone to form androstenedione with no formation of the hydroxy products as was seen with both the wild-types. Benzphetamine metabolism by the mutants showed that both mutants exhibited an increased tendency to catalyze demethylation rather than debenzylation. In the presence of the alternate oxidants cumene hydroperoxide and tert-butyl hydroperoxide, the wild-type 2B1 was not inactivated by 17EE. Metabolism of 17EE by 2B1 supported by these alternate oxidants revealed differences in the metabolites that may be related to the inability of 2B1 to be inactivated under these conditions.  相似文献   

9.
A combined structural and computational analysis of rabbit cytochrome P450 2B4 covalently bound to the mechanism-based inactivator tert-butylphenylacetylene (tBPA) has yielded insight into how the enzyme retains partial activity. Since conjugation to tBPA modifies a highly conserved active site residue, the residual activity of tBPA-labeled 2B4 observed in previous studies was puzzling. Here we describe the first crystal structures of a modified mammalian P450, which show an oxygenated metabolite of tBPA conjugated to Thr 302 of helix I. These results are consistent with previous studies that identified Thr 302 as the site of conjugation. In each structure, the core of 2B4 remains unchanged, but the arrangement of plastic regions differs. This results in one structure that is compact and closed. In this conformation, tBPA points toward helix B', making a 31° angle with the heme plane. This conformation is in agreement with previously performed in silico experiments. However, dimerization of 2B4 in the other structure, which is caused by movement of the B/C loop and helices F through G, alters the position of tBPA. In this case, tBPA lies almost parallel to the heme plane due to the presence of helix F' of the opposite monomer entering the active site to stabilize the dimer. However, docking experiments using this open form show that tBPA is able to rotate upward to give testosterone and 7-ethoxy-4-trifluoromethylcoumarin access to the heme, which could explain the previously observed partial activity.  相似文献   

10.
Fluorescence quenching of riboflavin by cytochrome P450 2B4 was used to probe the ligand--enzyme binding interaction ((lambda ex = 385 nm, lambda em = 520 nm). Riboflavin is a component of a flavoprotein NADPH dependent cytochrome P450 reductase, an essential electron carrier during cytochrome P450 catalysis. Fluorescence titration measurements revealed that cytochrome P450 2B4 and riboflavin formed a complex with an apparent Kd = 8.8 +/- 1 microM. The fluorescence intensity of riboflavin decreased upon the addition of cytochrome P450 2B4, which may be caused by the resonance excitation energy transfer from the fluorescent donor riboflavin to the cytochrome P450 2B4 heme acceptor. These data suggest that there may exist specific sites of binding of riboflavin with the protein globule of cytochrome P450 2B4.  相似文献   

11.
We studied the effect of intermolecular interactions between cytochromes P450 1A2 (CYP1A2) and 2B4 (CYP2B4) on the barotropic inactivation of the ferrous carbonyl complexes of the hemoproteins. When taken separately, these hemoproteins reveal quite distinct barotropic behavior. While the 2B4(Fe(2+))-CO complex is very sensitive to hydrostatic pressures and undergoes P450 --> P420 transition at rather low pressures (P(1/2) = 297 MPa, DeltaV(0) = -61 ml/mol), the 1A2(Fe(2+))-CO is extremely resistant to barotropic inactivation. Only about 8% of the 1A2 was exposed to pressure-induced P450 --> P420 transition (P(1/2) = 420 MPa, DeltaV(0) = -28 ml/mol). The formation of the mixed oligomers of 2B4 and 1A2 was found to have a dramatic effect on the barotropic behavior of 2B4. In the heterooligomers of 1A2 and 2B4, the 2B4 hemoprotein appears to be largely protected from barotropic inactivation. In 1:1 mixed oligomers no more than 25% of the total P450 content undergoes P450 --> P420 inactivation with the molar reaction volume value (DeltaV(0) = -26 ml/mol) similar to those found for pure 1A2. Moreover, interactions between 1A2 and 2B4 results in a displacement of the Soret band of the ferrous carbonyl complex of CYP2B4 to shorter wavelength (from 451.3 to 448.4 nm) and largely strengthens the dependence of the Soret band wavenumber on hydrostatic pressure below 200 MPa. This effect suggests an important hydration of the CYP2B4 heme moiety in response to the interactions with CYP1A2. We discuss these results in terms of the hypothesis that the heterooligomerization of cytochromes P450 in microsomes plays an important role in the control of the activity and coupling of the microsomal monooxygenase.  相似文献   

12.
The mechanism of the cytochrome P450 2B4 modification by hydrogen peroxide (H2O2) formed as a result of partial coupling of NADPH-dependent monooxygenase reactions has been studied in the monooxygenase system reconstituted from the highly purified microsomal proteins: cytochrome P450 2B4 (P450) and NADPH-cytochrome P450 reductase in the presence of detergent Emulgen 913. It was found, that H2O2-mediated P450 self-inactivation during benzphetamine oxidation is accompanied by heme degradation and apoenzyme modification. The P450 heme modification involves the heme release from the enzyme under the action of H2O2 formed within P450s active center via the peroxycomplex decay. Additionally, the heme lost is destroyed by H2O2 localized outside of enzyme's active center. The modification of P450 apoenzyme includes protein aggregation that may be due to the change in the physico-chemical properties of the inactivated enzyme. The modified P450 changes the surface charge that is confirmed by the increasing retention time on the DEAE column. Oxidation of amino acid residues (at least cysteine) may lead to the alteration into the protein hydrophobicity. The appearance of the additional ionic and hydrophobic attractions may lead to the increase of the protein aggregation. Hydrogen peroxide can initiate formation of crosslinked P450 dimers, trimers, and even polymers, but the main role in this process plays nonspecific radical reactions. Evidence for the involvement of hydroxyl radical into the P450 crosslinking is carbonyl groups formation.  相似文献   

13.
Cytochrome P450 2B4 (CYP2B4) lacking the NH(2)-terminal signal anchor sequence (2-27) was used to study the impact of replacement of histidine with alanine at position 285 on electron transfer from NADPH-cytochrome P450 reductase (P450R). Absorption and circular dichroism spectra of the recombinant hemoproteins indicated that amino acid substitution neither grossly perturbed the geometry of the immediate heme vicinity nor the global polypeptide backbone folding. Fitting of the initial-velocity patterns of P450R-directed reduction of the ferric CYP2B4 (2-27) forms to the Michaelis-Menten kinetics revealed an approximately 3.5-fold increase in the apparent K(m) value for the electron donor of the H285A mutant, while its reductive capacity (V(max)) remained unchanged; this caused a strong drop in reductive efficiency of the engineered enzyme. Circumstantial analysis suggested that impaired association of the redox partners accounted for this phenomenon. Thus, deletion of the positive charge at position 285 of CYP2B4 (2-27) might have disrupted contacts with oppositely charged entities on the P450R surface. Measurements of the stoichiometry of aerobic NADPH consumption and H(2)O(2) production disclosed the oxyferrous H285A species to autoxidize more readily compared with the shortened wild type. This was assumed to arise from less efficient coupling of the system due to defective donation of the second electron by P450R. These results are consistent with the view that His-285 in the truncated CYP2B4 is of importance in the functional interaction with the flavoprotein reductase.  相似文献   

14.
Xanthates have previously been shown to inactivate the phenobarbital-inducible rat cytochrome P450 2B1 as well as its human homologue P450 2B6. The inactivation was mechanism-based and the loss in enzymatic activity was due to covalent binding of a reactive xanthate intermediate to the P450 2B1 apoprotein. In this report, we investigated various mechanistic events to elucidate the individual step(s) in the P450 catalytic cycle that are compromised due to the inactivation by xanthates. Different xanthates displayed typical type I binding spectra and the spectral binding constants were in the low-millimolar range. A dramatic loss in 7-ethoxy-4-(trifluoromethyl)coumarin activity was observed when P450 2B1 was incubated with five different xanthates in the presence of NADPH. With the exception of the C14 xanthate, virtually no loss of absorbance at 418 or 450 nm in the reduced-CO complex was observed. Long-chain xanthates were able to affect the rate of the first electron transfer in the P450 catalytic cycle by stabilizing the heme in its low-spin state. n-Octyl xanthate (C8) metabolism led to very little observable oxy-ferro intermediate complex formation. The alternate oxidant tert-butyl hydroperoxide was able to support the inactivation reaction of C8 in the absence of reductase or NADPH. The rates of reduction of native, C8-exposed, and C8-inactivated P450 2B1 were measured. The C8-inactivated P450 had a 62% lower rate of reduction in the absence or presence of benzphetamine compared to the native enzyme. Product formation of the three enzyme preparations was quantified with benzphetamine as the substrate. The C8-inactivated P450 2B1 exhibited a much lower rate of NADPH consumption and formation of formaldehyde. However, the ratio of H2O2 to formaldehyde production increased from 1:1 for the native enzyme to 2.8:1 for the inactivated P450. Together these observations indicate that the covalent modification of P450 2B1 by a reactive intermediate of xanthates reduces the rate of the first electron transfer by the reductase and also leads to uncoupling of electron transfer from product formation by diverting a greater proportion of the electrons to H2O2 formation.  相似文献   

15.
The role of electrostatic interactions in the association of P450s with their nicotinamide adenine dinucleotide phosphate- (NADPH) dependent flavoprotein reductases was studied by fluorescence resonance energy transfer. The fluorescent probe 7-(ethylamino)-3-(4'-maleimidylphenyl)-4-methylcoumarin maleimide (coumarylphenylmaleimide, CPM) was introduced into the flavoprotein molecule at a 1:1 molar ratio. The interaction of P450 2B4 and NADPH-P450 reductase (CPR) from rabbit liver microsomes was compared with that of the isolated heme domain (BMP) and the flavoprotein domain (BMR) of P450BM-3. The cross-pairs of the components were also studied. Increasing ionic strength (0.05-0.5 M) was shown to result in the dissociation of the CPR-P450 2B4 complex with the dissociation constant increasing from 0.01 to 0.09 microM. This behavior is consistent with the assumption that charge pairing between CPR and P450 2B4 is involved in their association. In contrast, the electrostatic component of the interaction of the partners in P450BM-3 was shown to have an opposite sign. The isolated BMP and BMR domains have very low affinity for each other and the dissociation constant of their complex decreases from 8 to 3 microM with increasing ionic strength (0.05-0.5 M). Importantly, the BMP-CPR and P450 2B4-BMR "mixed", heterogeneous pairs behave similarly to the pairs of BMP and P450 2B4 with their native electron donors. Therefore, the observed difference in the interaction mechanisms between these two systems is determined mainly by the different structure of the heme proteins rather than their flavoprotein counterparts. P450BM-3 is extremely efficient and highly coupled, with the reductase and the P450 domains tethered to one another. Therefore, in contrast to P450 2B4-CPR binding, very tight binding between the P450BM-3 redox partners would be of no value in the synchronization of complex formation during catalytic turnover.  相似文献   

16.
Mak PJ  Im SC  Zhang H  Waskell LA  Kincaid JR 《Biochemistry》2008,47(12):3950-3963
Resonance Raman studies of P450 2B4 are reported for the substrate-free form and when bound to the substrates, benzphetamine (BZ) or butylated hydroxytoluene (BHT), the latter representing a substrate capable of inducing an especially effective conversion to the high-spin state. In addition to studies of the ferric resting state, spectra are acquired for the ferrous CO ligated form. Importantly, for the first time, the RR technique is effectively applied to interrogate the changes in active site structure induced by binding of cytochrome P450 reductase (CPR) and Mn(III) cytochrome b 5 (Mn cyt b 5); the manganese derivative of cyt b 5 was employed to avoid spectroscopic interferences. The results, consistent with early work on mammalian P450s, demonstrate that substrate structure has minimal effects on heme structure or the FeCO fragment of the ferrous CO derivatives. Similarly, the data indicate that the protein is flexible and that substrate binding does not exert significant strain on the heme peripheral groups, in contrast to P450 cam, where substantial effects on heme peripheral groups are seen. However, significant differences are observed in the RR spectra of P450 2B4 when bound with the different redox partners, indicating that the heme structure is clearly sensitive to perturbations near the proximal heme binding site. The most substantial changes are displacements of the peripheral vinyl groups toward planarity with the heme macrocycle by cyt b 5 but away from planarity by CPR. These changes can have an impact on heme reduction potential. Most interestingly, these RR results support an earlier observation that the combination of benzphetamine and cyt b 5 binding produce a synergy leading to unique active site structural changes when both are bound.  相似文献   

17.
Expression of the membrane-bound cytochrome P450 2B4 by the pLW01-P450 expression vector, which utilizes a T7 promoter, is markedly improved by employing Escherichia coli strain C41(DE3) [Miroux, B., and Walker, J. (1996) J. Mol. Biol 260, 289--298; Bridges, A., Gruenke, L., Chang, Y.-T., Vasker, I., Loew, G., and Waskell, L. (1998) J. Biol. Chem. 273, 17036--17049]. Using this expression system, it was possible to routinely obtain an average of 50--60 mg and as high as 100 mg of cyt P450 2B4 per liter of cell culture in volumes of 500 ml. An improved purification procedure for cyt P450 2B4 is also described which allows recovery of 30% of the expressed protein. It was possible in one step using B-PER reagent and polyoxyethylene-9-lauryl ether to both lyse the E. coli and solubilize the expressed cyt P450. Cyt P450 2B4 with a specific content of 17 nmol/mg protein and a single band on polyacrylamide gel electrophoresis was routinely isolated. The yield of cyt P450 from the improved purification procedure is twice that from the original procedure and the purity of the recovered protein typically has a specific content of 17 nmol cyt P450/mg of protein.  相似文献   

18.
Experiments demonstrating that cytochrome (cyt) b5 inhibits the activity of cytochrome P450 2B4 (cyt P450 2B4) at higher concentrations suggested that cyt b5 was occupying the cyt P450 reductase-binding site on cyt P450 2B4 and preventing the reduction of ferric cyt P450 (Zhang, H., Im, S.-C., and Waskell, L. (2007) J. Biol. Chem. 282, 29766-29776). In this work experiments were undertaken with manganese-containing cyt b5 (Mn-cyt b5) to test this hypothesis. Because Mn-cyt b5 does not undergo oxidation state changes under our experimental conditions, interpretation of the experimental results was unambiguous. The rate of electron transfer from cyt P450 reductase to ferric cyt P450 2B4 was decreased by Mn-cyt b5 in a concentration-dependent manner. Moreover, reduction of cyt P450 2B4 by cyt P450 reductase was incomplete in the presence of Mn-cyt b5. At a Mn-cyt b(5):cyt P450 2B4:cyt P450 reductase molar ratio of 5:1:1, the rate of reduction of ferric cyt P450 was decreased by 10-fold, and only 30% of the cyt P450 was reduced, whereas 70% remained oxidized. It could be demonstrated that Mn-cyt b5 had its effect by acting on cyt P450, not the reductase, because the reduction of cyt c by cyt P450 reductase in the presence of Mn-cyt b5 was not effected. Furthermore, under steady-state conditions in the cyt P450 reconstituted system, Mn-cyt b5, which lacks the ability to reduce oxyferrous cyt P450 2B4, was unable to stimulate the activity of cyt P450. Mn-cyt b5 only inhibited the cyt P450 2B4 activity. In conjunction with site-directed mutagenesis studies and experiments that strongly suggested that cyt b5 competed with cyt P450 reductase for binding to cyt P450, the current investigation demonstrates unequivocally that cyt b5 inhibits the activity of cyt P450 2B4 by preventing cyt P450 reductase from binding to cyt P450, a prerequisite for electron transfer from cyt P450 reductase to cyt P450 and catalysis.  相似文献   

19.
An extensive body of research on the structural properties of cytochrome P450 enzymes has established that these proteins possess a b-type heme prosthetic group which is noncovalently bound at the active site. Coordinate, electrostatic, and hydrogen bond interactions between the protein backbone and heme functional groups are readily overcome upon mild acid treatment of the enzyme, which releases free heme from the protein. In the present study, we have used a combination of HPLC, LC/ESI-MS, and SDS-PAGE techniques to demonstrate that members of the mammalian CYP4B, CYP4F, and CYP4A subfamilies bind their heme in an unusually tight manner. HPLC chromatography of CYP4B1 on a POROS R2 column under mild acidic conditions caused dissociation of less than one-third of the heme from the protein. Moreover, heme was not substantially removed from CYP4B1 under electrospray or electrophoresis conditions that readily release the prosthetic group from other non-CYP4 P450 isoforms. This was evidenced by an intact protein mass value of 59,217 +/- 3 amu for CYP4B1 (i.e., apoprotein plus heme) and extensive staining of this approximately 60 kDa protein with tetramethylbenzidine/H(2)O(2) following SDS-PAGE. In addition, treatment of CYP4B1, CYP4F3, and CYP4A5/7 with strong base generated a new, chromatographically distinct, polar heme species with a mass of 632.3 amu rather than 616.2 amu. This mass shift is indicative of the incorporation of an oxygen atom into the heme nucleus and is consistent with the presence of a novel covalent ester linkage between the protein backbone of the CYP4 family of mammalian P450s and their heme catalytic center.  相似文献   

20.
A cytochrome P450 2B4 (CYP2B4) model was used to select key residues supposed to serve in interactions with NADPH-cytochrome P450 reductase (P450R). Eight amino acid residues located on the surface of the hemoprotein were chosen for mutagenesis experiments with CYP2B4(Delta2-27) lacking the NH(2)-terminal signal anchor sequence. The mutated proteins were expressed in Escherichia coli, purified, and characterized by EPR- and CD-spectral analysis. Replacement of histidine 226 with alanine caused a 3.8-fold fall in the affinity for P450R with undisturbed reductive capacity of the system. Similarly, the K225A, R232A, and R253A variants exhibited P450R-directed activity that was depressed to about half that of the control enzyme, suggesting that the deletion of positive charges on the surface of CYP2B4(Delta2-27) resulted in impaired electrostatic contacts with complementary amino acids on the P450R protein. While the Y235A mutant did not show appreciably perturbed reduction activity, the conservative substitution with alanine of the phenylalanine residues at positions 223 and 227 gave a 2.1- to 6. 1-fold increase in the K(m) values with unchanged V(max); this was attributed to the disruption of hydrophobic forces rather than to global structural rearrangement(s) of the engineered pigments. Measurement of the stoichiometry of aerobic NADPH consumption and H(2)O(2) formation revealed the oxyferrous forms of the F223A, H226A, and F227A mutants to autoxidize more readily owing to less efficient coupling of the systems. Noteworthy, the F244A enzyme did not exhibit significant reduction activity, suggesting a pivotal role of Phe-244 in the functional coupling of P450R. The residue was predicted to constitute part of an obligatory electron transfer conduit through pi-stacking with Phe-296 located close to the heme unit. All of the residues examined reside in the putative G helix of CYP2B4, so that this domain obviously defines part of the binding site for P450R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号