首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthetic fluorescent analogs of the natural lipopeptide trichogin GA IV were used to investigate the peptide position and orientation in model membranes. A translocation assay based on Forster energy transfer indicates that trichogin is associated to both the outer and inner leaflet of the membrane, even at low concentration, when it is not active. Fluorescence quenching measurements, performed by using water soluble quenchers and quenchers positioned in the membrane at different depths, indicate that at low membrane-bound peptide/lipid ratios trichogin lies close to the region of polar headgroups. By increasing peptide concentration until membrane leakage takes place, a cooperative transition occurs and a significant fraction of the peptide becomes deeply buried into the bilayer. Remarkably, this change in peptide position is strictly coupled with peptide aggregation. Therefore, the mechanism of trichogin action can be envisaged as based on a two-state transition controlled by peptide concentration. One state is the monomeric, surface bound and inactive peptide, and the other state is a buried, aggregated form, which is responsible for membrane leakage and bioactivity.  相似文献   

2.
Membrane-active peptides are a promising class of antimicrobial and anticancer therapeutics. For this reason, their molecular mechanisms of action are currently actively investigated. By exploiting Electron Paramagnetic Resonance, we study the membrane interaction of two spin-labeled analogs of the antimicrobial and cytotoxic peptide trichogin GA IV (Tri), with opposite bioactivity: Tri(Api8), able to selectively kill cancer cells, and Tri(Leu4), which is completely nontoxic. In our attempt to determine the molecular basis of their different biological activity, we investigate peptide impact on the lateral organization of lipid membranes, peptide localization and oligomerization, in the zwitter-ionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) model membrane We show that, despite their divergent bioactivity, both peptide analogs (i) are membrane-bound, (ii) display a weak tendency to oligomerization, and (iii) do not induce significant lipid rearrangement. Conversely, literature data show that the parent peptide trichogin, which is cytotoxic without any selectivity, is strongly prone to dimerization and affects the reorganization of POPC membranes. Its dimers are involved in the rotation around the peptide helix, as observed at cryogenic temperatures in the millisecond timescale. Since this latter behavior is not observed for the inactive Tri(Leu4), we propose that for short-length peptides as trichogin oligomerization and molecular motions are crucial for bioactivity, and membrane binding alone is not enough to predict or explain it. We envisage that small changes in the peptide sequence that affect only their ability to oligomerize, or their molecular motions inside the membrane, can tune the peptide activity on membranes of different compositions.  相似文献   

3.
Trichogin GA IV is a short lipopeptaibol antibiotic that is capable of enhancing the transport of small cations through the phospholipid double layer of the membrane. The antibiotic activity of the undecapeptide is thought to be based on either its self-assembling or membrane-modifying property. The chemical equilibrium between self-aggregated and non-aggregated molecular states was studied by CW-ESR spectroscopy using solutions of TOAC nitroxide spin-labelled trichogin analogues in an apolar solvent to mimic the membrane bound state. At room temperature the two different sets of signals observed in the spectrum were attributed to the presence of both monomers and aggregates in the sample. The ESR spectra of the monomeric and aggregated forms were separated and the dependence of the fraction of monomeric peptide molecules on concentration was obtained over the range 5 x 10(-6) to 7 x 10(-4) M. A two-step aggregation mechanism is proposed: dimerization of peptide molecules followed by aggregation of dimers to assemblies of four peptide molecules per aggregate. The equilibrium constants were estimated for both steps. In addition, the lower lifetime limit was determined for dimers and tetramers. It is shown that when the peptide concentration exceeds 10(-5) M. the major part of the peptide molecules in solution has the form of tetrameric aggregates. Independently, the PELDOR technique was used to investigate the concentration dependence of the parameters of the dipole-dipole interaction between spin labels in frozen (77 K] glassy solutions of aggregates of mono-labelled TOAC analogues. The number of molecules in aggregates as well as the frequency and amplitude of PELDOR signal oscillations were found to be concentration independent in the range 5 x 10(-4) to 8 x 10(-3) M. In the frozen glassy solution state, the number of peptide molecules per aggregate was determined to be close to four, which is in agreement with the value obtained for spin-labelled trichogin at room temperature. The present data provide experimental evidence in favour of a self-assembling rather than a membrane-modifying ion conduction mechanism.  相似文献   

4.
The lipopeptaibol trichogin GA IV is a 10 amino acid-long residue and alpha-aminoisobutyric acid-rich antibiotic peptide of fungal origin. TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) spin-labeled analogs of this membrane active peptide were investigated in hydrated bilayers of dipalmitoylphosphatidylcholine by electron spin echo envelope modulation (ESEEM) spectroscopy and pulsed electron-electron double resonance (PELDOR). Since, the ESEEM of the spin label appears to be strongly dependent on the presence of water molecules penetrated into the membrane, this phenomenon was used to study the location of this peptide in the membrane. This was achieved by comparing the ESEEM spectra for peptides labeled at different positions along the amino acid sequence with spectra known for lipids with spin labels at different positions along the hydrocarbon chain. To increase the ESEEM amplitude and to distinguish the hydrogen nuclei of water from lipid protons, membranes were hydrated with deuterated water. The PELDOR spectroscopy technique was chosen to study peptide aggregation and to determine the mutual distance distribution of the spin-labeled peptides in the membrane. The location of the peptide in the membrane and its aggregation state were found to be dependent on the peptide concentration. At a low peptide/lipid molar ratio (less than 1:100) the nonaggregated peptide chain of the trichogin molecules lie parallel to the membrane surface, with TOAC at the 4th residue located near the 9th-11th carbon positions of the sn-2 lipid chain. Increasing this ratio up to 1:20 leads to a change in peptide orientation, with the N-terminus of the peptide buried deeper into membrane. Under these conditions peptide aggregates are formed with a mean aggregate number of about N = 2. The aggregates are further characterized by a broad range of intermolecular distances (1.5-4 nm) between the labels at the N-terminal residues. The major population exhibits a distance of approximately 2.5 nm, which is of the same order as the length of the helical peptide. We suggest that the constituting monomers of the dimer are antiparallel oriented.  相似文献   

5.
Peptaibols are naturally occurring, antimicrobial peptides endowed with well-defined helical conformations and resistance to proteolysis. Both features stem from the presence in their sequence of several, Cα-tetrasubstituted, α-aminoisobutyric acid (Aib) residues. Peptaibols interact with biological membranes, usually causing their leakage. All of the peptaibol–membrane interaction mechanisms proposed so far begin with peptide aggregation or accumulation. The long-length alamethicin, the most studied peptaibol, acts by forming pores in the membranes. Conversely, the carpet mechanism has been claimed for short-length peptaibols, such as trichogin. The mechanism of medium-length peptaibols is far less studied, and this is partly due to the difficulties of their synthesis. They are believed to perturb membrane permeability in different ways, depending on the membrane properties. The present work focuses on pentadecaibin, a recently discovered, medium-length peptaibol. In contrast to the majority of its family members, its sequence does not comprise hydroxyprolines or prolines, and its helix is not kinked. A reliable and effective synthesis procedure is described that allowed us to produce also two shorter analogs. By a combination of techniques, we were able to establish a 3D-structure–activity relationship. In particular, the membrane activity of pentadecaibin heavily depends on the presence of three consecutive Aib residues that are responsible for the clear, albeit modest, amphiphilic character of its helix. The shortest analog, devoid of two of these three Aib residues, preserves a well-defined helical conformation, but not its amphipathicity, and loses almost completely the ability to cause membrane leakage. We conclude that pentadecaibin amphiphilicity is probably needed for the peptide ability to perturb model membranes.  相似文献   

6.
The interaction of the antimicrobial peptide trichogin GA IV with phospholipid bilayers has been studied. A series of analogs of trichogin was synthesized in which the nitroxide spin label, 4-amino-4-carboxy-2,2,6,6-tetramethylpiperidino-1-oxyl (TOAC), replaced one of the three alpha-aminoisobutyric acid (Aib) residues in the sequence. These modified peptides were used to assess the location of different residues of the peptide in a phospholipid bilayer composed of egg phosphatidylcholine containing 0.4 mol% of a fluorescently labelled phospholipid. We demonstrate that the substitution of Aib residues with TOAC does not alter the manner in which the peptide affects membrane curvature or induces vesicle leakage. The proximity of the nitroxide group on the peptide to the 4,4-difluoro-4-bora-3a,4a-diaza-S-indacene (BODIPY) fluorophore attached to the phospholipid was estimated from the extent of quenching of the fluorescence. By this criterion it was concluded that the peptide penetrates into the bilayer and that Aib4 is the most deeply inserted of the Aib residues. The results suggest that the helix axis of the peptide is oriented along the plane of the membrane. All of the peptides were shown to raise the bilayer to the hexagonal phase transition temperature of dipalmitoleoylphosphatidylethanolamine, indicating that they promote positive membrane curvature. This is a property observed with peptides that do not penetrate deeply into the bilayer or are oriented along the bilayer normal. We also demonstrate trichogin-promoted leakage of the aqueous contents of liposomes. These results indicate that the peptides cause bilayer destabilization. The extent of leakage induced by trichogin is very sensitive to the peptide to lipid ratio over a narrow range.  相似文献   

7.
Four analogs of the antimicrobial peptide trichogin GA IV were studied. Their sequences are as follows: GT, n-octanoyl-Aib-Gly-Leu-Aib-Gly-Gly-Leu-Aib-Gly-Ile-Leu-OMe; ST, n-octanoyl-Aib-Ser-Leu-Aib-Ser-Ser-Leu-Aib-Ser-Ile-Leu-OMe; BT, n-octanoyl-Aib-Ser(tBu)-Leu-Aib-Ser(tBu)-Ser(tBu)-Leu-Aib-Ser(tBu)-Ile-Leu-OMe; and DT, n-octanoyl-Aib-Ser(tBu)-Leu-Aib-Ser(tBu)-Ser(tBu)-Leu-Aib-Ser(tBu)-Ile-Leu-Aib-Ser(tBu)-Leu-Aib-Ser(tBu)-Ser(tBu)-Leu-Aib-Ser(tBu)-Ile-Leu-OMe. The trichogin GA IV differs from GT only in the nature of the C-terminal residue, being a 1,2 aminoalcohol (leucinol) in the case of the parent peptide. Compared with GT, ST has an increased amphiphilicity. In contrast, BT has little amphiphilicity being composed only of hydrophobic amino acids. DT is an octanoylated head-to-tail dimer of BT. We show that BT and DT lower the bilayer-to-hexagonal phase transition temperature (T(H)) of dipalmitoleoylphosphatidylethanolamine, indicating that the peptides promote negative curvature. These two peptides, composed of only hydrophobic amino acids, have their bulkier groups on one face of the helix, suggesting that they may penetrate membranes at an oblique angle. In contrast, GT and ST, like trichogin itself, increase TH, promoting positive curvature. These peptides have contrasting membrane lytic activities. Whereas DT and BT did not produce leakage of aqueous contents, GT and ST, like trichogin, did cause rapid leakage. The leakage activity with liposomes also correlates with the greater potency of GT and ST, compared with the hydrophobic analogs, in their hemolytic and bacteriostatic action. ST has greater lytic ability than GT in liposomal leakage as well as hemolysis. We also measured the rate of peptide-promoted lipid mixing as an indication of membrane fusion. BT produced lipid mixing only with large unilamellar vesicles enriched with dioleoylphosphatidylethanolamine; ST did not produce lipid mixing, as its apparent reduction of energy transfer proved to be artifactual. Quasi-elastic light scattering of large unilamellar vesicles was also carried out after adding ST and BT. Peptide BT, but not ST, was able to aggregate large unilamellar vesicles. Thus, one of the properties of BT that leads to the induction of lipid mixing is that it is able to aggregate vesicles, placing the bilayers in juxtaposition. Thus, the two pairs of peptides, BT and DT vs GT and ST, exhibit contrasting behaviour with respect to a number of membrane biophysical properties. This occurs despite the fact that the chemical structures of the peptides are rather similar. Such distinct behavior is also reflected in their hemolytic and bacteriostatic actions.  相似文献   

8.
Model peptides composed of alanine and leucine residues are often used to mimic single helical transmembrane domains. Many studies have been carried out to determine how they interact with membranes. However, few studies have investigated their lipid-destabilizing effect. We designed three peptides designated KALRs containing a hydrophobic stretch of 14, 18, or 22 alanines/leucines surrounded by charged amino acids. Molecular modeling simulations in an implicit membrane model as well as attenuated total reflection-Fourier transform infrared analyses show that KALR is a good model of a transmembrane helix. However, tryptophan fluorescence and attenuated total reflection-Fourier transform infrared spectroscopy indicate that the extent of binding and insertion into lipids increases with the length of the peptide hydrophobic core. Although binding can be directly correlated to peptide hydrophobicity, we show that insertion of peptides into a membrane is determined by the length of the peptide hydrophobic core. Functional studies were performed by measuring the ability of peptides to induce lipid mixing and leakage of liposomes. The data reveal that whereas KALR14 does not destabilize liposomal membranes, KALR18 and KALR22 induce 40 and 50% of lipid-mixing, and 65 and 80% of leakage, respectively. These results indicate that a transmembrane model peptide can induce liposome fusion in vitro if it is long enough. The reasons for the link between length and fusogenicity are discussed in relation to studies of transmembrane domains of viral fusion proteins. We propose that fusogenicity depends not only on peptide insertion but also on the ability of peptides to destabilize the two leaflets of the liposome membrane.  相似文献   

9.
We synthesized using solution-phase methods three analogs of [l-Leu11-OMe] trichogin GA IV, a membrane active synthetic precursor of the lipopeptaibol antibiotic in which the N-terminal n-octanoyl group and each of the three Aib residues in positions 1, 4 and 8 are replaced by an acetyl group and the lipophilic Calpha,alpha-disubstituted glycine l-(alphaMe)Aun, respectively [partial (alphaMe)Aun scan]. FT-IR absorption and CD analyses unequivocally show that the main three-dimensional structural features of [l-Leu11-OMe] trichogin GA IV are preserved in the analogs. Also, [l-Leu11-OMe] trichogin GA IV and the three Nalpha-acetylated l-(alphaMe)Aun analogs exhibit strictly comparable membrane-modifying properties. Taken together, these results strongly favor the conclusion that a shift of the long hydrocarbon moiety from the Nalpha-blocking group to the side-chain of the 1, 4 or 8 residue does not have any significant effect on the conformational properties or the membrane activity of [l-Leu11-OMe] trichogin GA IV and, by extension, of the natural lipopeptaibol.  相似文献   

10.
We have synthesized by solution-phase methods two analogues of the 11-residue lipopeptaibol antibiotic trichogin GA IV in which the N-terminal n-octanoyl group is replaced either by an N-acetylated 2-amino-2-methyl-l -undecanoic acid or by an N-acetylated α-aminoisobutyric acid. CD, FTIR absorption, and NMR analyses unequivocally show that the main structural features of trichogin GA IV are preserved in these analogues. Since only the peptide containing the lipophilic chain exhibits membrane-modifying properties, these results strongly support the view that moving the long acyl moiety from the Nα-blocking group to the side chain of the N-terminal extra-residue does not affect the conformational properties or the membrane activity of trichogin GA IV. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
The effects of varying the cationic sequence of oligotryptophan-tagged antimicrobial peptides were investigated in terms of peptide adsorption to model lipid membranes, liposome leakage induction, and antibacterial potency. Heptamers of lysine (K7) and arginine (R7) were lytic against Escherichia coli bacteria at low ionic strength. In parallel, both peptides adsorbed on to bilayers formed by E. coli phospholipids, and caused leakage in the corresponding liposomes. K7 was the more potent of the two peptides in causing liposome leakage, although the adsorption of this peptide on E. coli membranes was lower than that of R7. The bactericidal effect, liposome lysis, and membrane adsorption were all substantially reduced at physiological ionic strength. When a tryptophan pentamer tag was linked to the C-terminal end of these peptides, substantial peptide adsorption, membrane lysis, and bacterial killing were observed also at high ionic strength, and also for a peptide of lower cationic charge density (KNKGKKN-W5). Strikingly, the order of membrane lytic potential of the cationic peptides investigated was reversed when tagged. This and other aspects of peptide behavior and adsorption, in conjunction with effects on liposomes and bacteria, suggest that tagged and untagged peptides act by different lytic mechanisms, which to some extent counterbalance each other. Thus, while the untagged peptides act by generating negative curvature strain in the phospholipid membrane, the tagged peptides cause positive curvature strain. The tagged heptamer of arginine, R7W5, was the best candidate for E. coli membrane lysis at physiological salt conditions and proved to be an efficient antibacterial agent.  相似文献   

12.
Shrimp High Density Lipoprotein-beta-Glucan Binding Protein (HDL/BGBP) has been studied by its role in nutrition and innate defense. Although the mechanisms of lipid loading are still unknown, HDL-BGBP binds and aggregates phospholipids vesicles in vitro. To gain insights into the HDL-BGBP mechanism of interaction with membranes, we have used fluorescence spectroscopy and electron microscopy. Data show that HDL-BGBP does not induce membrane fusion, leakage nor lipid exchange, although microstructural changes are clearly observed. This work supports a model where protein aggregation leads to liposome clustering. Such interaction may be a critical factor for the activation of the shrimp blood cell in vivo.  相似文献   

13.
A correct mode of calculating liposome membrane permeability determined with dialysis is proposed. The liposome membrane permeability is calculated with regard for the ion passage through two diffusion barriers: liposomal membrane and cellophane membrane. The asymmetrical ion distribution under equilibrium conditions is shown. The asymmetry is due to the formation of unstirred layers near the membrane. The equilibrium ion concentration in unstirred layers and the measured average bulk concentration in solution are different. The formula for calculating liposome membrane permeability that takes the mentioned factors into account is suggested.  相似文献   

14.
Prion diseases are fatal neurodegenerative disorders characterized by the accumulation in the brain of an abnormally misfolded, protease-resistant, and beta-sheet rich pathogenic isoform (PrP(SC)) of the cellular prion protein (PrP(C)). In the present work, we were interested to study the mode of prion protein interaction with the membrane using the 106-126 peptide and small unilamellar lipid vesicles as model. As previously demonstrated, we showed by MTS assay that PrP 106-126 induces alterations in the human neuroblastoma SH-SY5Y cell line. We demonstrated for the first time by lipid-mixing assay and by the liposome vesicle leakage test that PrP 106-126, a non-tilted peptide, induces liposome fusion thus a potential cell membrane destabilization, as supported by membrane integrity assay (LDH). By circular dichroism (CD) analysis we showed that the fusogenic property of PrP 106-126 in the presence of liposome is associated with a predominantly beta-sheet structure. These data suggest that the fusogenic property associated with a predominant beta-sheet structure exhibited by the prion peptides contributes to the neurotoxicity of these peptides by destabilizing cellular membranes. The latter might be attached at the membrane surface in a parallel orientation as shown by molecular modeling.  相似文献   

15.
Amyloid aggregates, found in patients that suffer from Alzheimer's disease, are composed of fibril-forming peptides in a beta-sheet conformation. One of the most abundant components in amyloid aggregates is the beta-amyloid peptide 1-42 (Abeta 1-42). Membrane alterations may proceed to cell death by either an oxidative stress mechanism, caused by the peptide and synergized by transition metal ions, or through formation of ion channels by peptide interfacial self-aggregation. Here we demonstrate that Langmuir films of Abeta 1-42, either in pure form or mixed with lipids, develop stable monomolecular arrays with a high surface stability. By using micropipette aspiration technique and confocal microscopy we show that Abeta 1-42 induces a strong membrane destabilization in giant unilamellar vesicles composed of palmitoyloleoyl-phosphatidylcholine, sphingomyelin, and cholesterol, lowering the critical tension of vesicle rupture. Additionally, Abeta 1-42 triggers the induction of a sequential leakage of low- and high-molecular-weight markers trapped inside the giant unilamellar vesicles, but preserving the vesicle shape. Consequently, the Abeta 1-42 sequence confers particular molecular properties to the peptide that, in turn, influence supramolecular properties associated to membranes that may result in toxicity, including: 1), an ability of the peptide to strongly associate with the membrane; 2), a reduction of lateral membrane cohesive forces; and 3), a capacity to break the transbilayer gradient and puncture sealed vesicles.  相似文献   

16.
Lipid aggregates are considered promising carriers for macromolecules and toxic drugs. In order to fulfill this function, aggregates should have properties that ensure the efficient delivery of their cargo to the desired location. One of these properties is their stability in blood when accumulating in the targeted tissue. This stability may be affected by a number of factors, including enzymatic activity, protein adsorption, and non-specific lipid exchange between the aggregate and morphological blood components. Since blood cells in the majority consist of erythrocytes, their interaction with aggregates should be carefully analyzed. In this paper, we present a method that allows the exchange of lipid between liposomes and the erythrocyte plasma membrane to be evaluated. The extent of this exchange was measured in terms of the toxicity of a cationic lipid (DOTAP) incorporated into the liposome lipid bilayer, evaluated by plasma membrane mechanical properties. After liposomes were formed from DOTAP/PC or DOTAP/PE mixtures, erythrocyte plasma membranes were destabilized in a manner dependent on DOTAP concentration. A constant quantity of DOTAP mixed with various proportions of SM caused no such effect, indicating very limited lipid exchange with the cell membrane for such liposome formulations.  相似文献   

17.
The simian immunodeficiency virus fusion peptide constitutes a 12-residue N-terminal segment of the gp32 protein that is involved in the fusion between the viral and cellular membranes, facilitating the penetration of the virus in the host cell. Simian immunodeficiency virus fusion peptide is a hydrophobic peptide that in Me(2)SO forms aggregates that contain beta-sheet pleated structures. When added to aqueous media the peptide forms large colloidal aggregates. In the presence of lipidic membranes, however, the peptide interacts with the membranes and causes small changes of the membrane electrostatic potential as shown by fluorescein phosphatidylethanolamine fluorescence. Thioflavin T fluorescence and Fourier transformed infrared spectroscopy measurements reveal that the interaction of the peptide with the membrane bilayer results in complete disassembly of the aggregates originating from an Me(2)SO stock solution. Above a lipid/peptide ratio of about 5, the membrane disaggregation and water precipitation processes become dependent on the absolute peptide concentration rather than on the lipid/peptide ratio. A schematic mechanism is proposed, which sheds light on how peptide-peptide interactions can be favored with respect to peptide-lipid interactions at various lipid/peptide ratios. These studies are augmented by the use of the fluorescent dye 1-(3-sulfonatopropyl)-4-[beta[2-(di-n-octylamino)-6-naphthyl]vinyl ] pyridinium betaine that shows the interaction of the peptide with the membranes has a clear effect on the magnitude of the so-called dipole potential that arises from dipolar groups located on the lipid molecules and oriented water molecules at the membrane-water interface. It is shown that the variation of the membrane dipole potential affects the extent of the membrane fusion caused by the peptide and implicates the dipolar properties of membranes in their fusion.  相似文献   

18.
Regulatory features of protein-induced membrane fusion are largely unclear, particularly at the level of the fusion peptide. Fusion peptides being part of larger protein complexes, such investigations are met with technical limitations. Here, we show that the fusion activity of influenza virus or Golgi membranes is strongly inhibited by minor amounts of (lyso)lipids when present in the target membrane but not when inserted into the viral or Golgi membrane itself. To investigate the underlying mechanism, we employ a membrane-anchored peptide system and show that fusion is similarly regulated by these lipids when inserted into the target but not when present in the peptide-containing membrane. Peptide-induced fusion is regulated by a reversible switch of secondary structure from a fusion-permissive alpha-helix to a nonfusogenic beta-sheet. The "on/off" activation of this switch is governed by minor amounts of (lyso)-phospholipids in targets, causing a drop in alpha-helix and a dramatic increase in beta-sheet contents. Concomitantly, fusion is inhibited, due to impaired peptide insertion into the target membrane. Our observations in biological fusion systems together with the model studies suggest that distinct lipids in target membranes provide a means for regulating membrane fusion by causing a reversible secondary structure switch of the fusion peptides.  相似文献   

19.
The efficiency of cell-cell fusion mediated by heterologously expressed vesicular stomatitis virus G-protein has previously been shown to be affected by mutating its transmembrane segment. Here, we show that a synthetic peptide modeled after this transmembrane segment drives liposome-liposome fusion. Addition of millimolar Ca(2+) concentrations strongly potentiated the effect of the peptides suggesting that Ca(2+)-mediated liposome aggregation supports the activity of the peptide. Peptide-driven fusion was suppressed by lysolipid, an established inhibitor of natural membrane fusion, and involved inner and outer leaflets of the liposomal bilayer. Thus, transmembrane segment peptide-driven liposome fusion exhibits important hallmarks characteristic of natural membrane fusion. Importantly, the mutations previously shown to attenuate the function of full-length G-protein in cell-cell fusion also attenuated the fusogenicity of the peptide, albeit in a less pronounced fashion. Therefore, the function of the peptide mimic is dependent on its primary structure, similar to full-length G-protein. Together, our data suggest that the G-protein transmembrane segment is an autonomous functional domain. We propose that it acts at a late step in membrane fusion elicited by vesicular stomatitis virus.  相似文献   

20.
The membrane-destabilizing effect of the peptide melittin on phosphatidylcholine membranes is modulated by the presence of cholesterol. This investigation shows that inclusion of 40 mol % cholesterol in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine liposomes reduces melittin's affinity for the membrane. It is significant that the presence of cholesterol does not increase the amount of membrane-associated melittin needed to cause maximum leakage from, or major structural rearrangements of, the liposomes. Furthermore, comparison of microscopy and leakage data suggests that melittin-induced leakage occurs via different mechanisms in the cholesterol-free and cholesterol-supplemented systems. In the absence of cholesterol, leakage of carboxyfluorescein takes place from intact liposomes in a manner compatible with the presence of small melittin-induced pores. In the presence of cholesterol, on the other hand, adsorption of the peptide causes complete membrane disruption and the formation of long-lived open-bilayer structures. Moreover, in the case of cholesterol-supplemented systems, melittin induces pronounced liposome aggregation. Cryotransmission electron microscopy was used, together with ellipsometry, circular dichroism, turbidity, and leakage measurements, to investigate the effects of melittin on phosphatidylcholine membranes in the absence and presence of cholesterol. The melittin partitioning behavior in the membrane systems was estimated by means of steady-state fluorescence spectroscopy measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号