首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induction of neurite retraction and growth cone collapse via G-protein-coupled receptors is involved in developmental as well as regenerative processes. The role of individual G-protein-mediated signaling processes in the regulation of neurite morphology is still incompletely understood. Using primary neurons from brains lacking Galpha(q)/Galpha(11) or Galpha(12)/Galpha(13), we show here that G(12)/G(13)-mediated signaling is absolutely required for neurite retraction and growth cone collapse induced by the blood-borne factors lysophosphatidic acid and thrombin. Interestingly, the effects of lysophosphatidic acid were mediated mainly by G(13), whereas thrombin effects required G(12). Surprisingly, lack of Galpha(q)/Galpha(11) resulted in overshooting responses to both stimuli, indicating that G(q)/G(11)-mediated signaling most likely via activation of Rac antagonizes the effects of G(12)/G(13).  相似文献   

2.
To examine the contribution of different G-protein pathways to lysophosphatidic acid (LPA)-induced protein kinase D (PKD) activation, we tested the effect of LPA on PKD activity in murine embryonic cell lines deficient in Galpha(q/11) (Galpha(q/11) KO cells) or Galpha(12/13) (Galpha(12/13) KO cells) and used cells lacking rhodopsin kinase (RK cells) as a control. In RK and Galpha(12/13) KO cells, LPA induced PKD activation through a phospholipase C/protein kinase C pathway in a concentration-dependent fashion with maximal stimulation (6-fold for RK cells and 4-fold for Galpha(12/13) KO cells in autophosphorylation activity) achieved at 3 microm. In contrast, LPA did not induce any significant increase in PKD activity in Galpha(q/11) KO cells. However, LPA induced a significantly increased PKD activity when Galpha(q/11) KO cells were transfected with Galpha(q). LPA-induced PKD activation was modestly attenuated by prior exposure of RK cells to pertussis toxin (PTx) but abolished by the combination treatments of PTx and Clostridium difficile toxin B. Surprisingly, PTx alone strikingly inhibited LPA-induced PKD activation in a concentration-dependent fashion in Galpha(12/13) KO cells. Similar results were obtained when activation loop phosphorylation at Ser-744 was determined using an antibody that detects the phosphorylated state of this residue. Our results indicate that G(q) is necessary but not sufficient to mediate LPA-induced PKD activation. In addition to G(q), LPA requires additional G-protein pathways to elicit a maximal response with G(i) playing a critical role in Galpha(12/13) KO cells. We conclude that LPA induces PKD activation through G(q), G(i), and G(12) and propose that PKD activation is a point of convergence in the action of multiple G-protein pathways.  相似文献   

3.
《Molecular cell》2022,82(22):4340-4352.e6
  1. Download : Download high-res image (233KB)
  2. Download : Download full-size image
  相似文献   

4.
Chemokines and their receptors play a key role in immune homeostasis regulating leukocyte migration, differentiation, and function. Viruses have acquired and optimized molecules that interact with the chemokine system. These virus-encoded molecules promote cell entry, facilitate dissemination of infected cells, and enable the virus to evade the immune response. One such molecule in the murine gammaherpesvirus 68 genome is the M3 gene, which encodes a secreted 44-kDa protein that binds with high affinity to certain murine and human chemokines and blocks chemokine signaling in vitro. To test the hypothesis that M3 directly interferes with diverse chemokines in vivo, we examined the interaction of M3 with CCL2 and CXCL13 expressed in the pancreas of transgenic mice. CCL2 expression in the pancreas promoted recruitment of monocytes and dendritic cells; CXCL13 promoted recruitment of B and T lymphocytes. Coexpression of M3 in the pancreas blocked cellular recruitment induced by both CCL2 and CXCL13. These results define M3 as multichemokine blocker and demonstrate its use as a powerful tool to analyze chemokine biology.  相似文献   

5.
PKD is the founding member of a novel protein kinase family that also includes PKD2 and PKD3. PKD has been the focus of most studies up to date, but little is known about the mechanisms that mediate PKD3 activation. Here, we show that addition of aluminum fluoride to COS-7 cells cotransfected with PKD3 and Galpha13 or Galpha12 induced PKD3 activation, which was associated with a transient plasma membrane translocation of cytosolic PKD3. Treatment with Clostridium difficile toxin B blocked PKD3 activation induced by either bombesin or by aluminum fluoride-stimulated Galpha12/13 but did not affect Galphaq-induced PKD3 activation. Furthermore, PKD3 immunoprecipitated from cells cotransfected with a constitutively active Rac (RacV12) exhibited a marked increase in PKD3 basal catalytic activity. In contrast, cotransfection with active Rho (RhoQ63L), Cdc42 (Cdc42Q61L), or Ras (RasV12) did not promote PKD3 activation. Expression of either COOH-terminal dominant-negative fragment of Galpha13 or dominant negative Rac (Rac N17) attenuated bombesin-induced PKD3 activation. Treatment with protein kinase C (PKC) inhibitors prevented the increase in PKD3 activity induced by RacV12 and aluminum fluoride-stimulated Galpha12/13. The catalytic activation of PKD3 in response to RacV12, alpha12/13 signaling or bombesin correlated with Ser-731/Ser-735 phosphorylation in the activation loop of this enzyme. Our results indicate that Galpha12/13 and Rac are important components in the signal transduction pathways that mediate bombesin receptor-induced PKD3 activation.  相似文献   

6.
Cholecystokinin (CCK) is a major regulator of pancreatic acinar cells and was shown previously to be capable of inducing cytoskeletal changes in these cells. In the present study, using NIH3T3 cells stably transfected with CCK-A receptors as a model cell, we demonstrate that CCK can induce actin stress fibers through a G13- and RhoA-dependent mechanism. CCK induced stress fibers within minutes similar to those induced by lysophosphatidic acid (LPA), the active component of serum. The effects of CCK were mimicked by active RhoV14 and blocked by dominant-negative RhoN19, Clostridium botulinum C3 transferase, and the Rho-kinase inhibitor Y-27632. CCK rapidly induced active Rho in cells as shown with a pull-down assay using the Rho binding domain of rhotekin and by a serum response element (SRE)-luciferase reporter assay. To evaluate the G protein mediating the action of CCK, cells were transfected with active -subunits; G13 and G12 but not Gq induced stress fibers and in some cases cell rounding. A p115 Rho guanine nucleotide exchange factor (GEF) regulator of G protein signaling (RGS) domain known to interact with G12/13 inhibited active 12/13-and CCK-induced stress fibers, whereas RGS2 and RGS4, which are known to inhibit Gq, had no effect. Cotransfection with plasmids coding for the G protein -subunit carboxy-terminal peptide from 13 and, to a lesser extent 12, also inhibited the effect of CCK, whereas the peptide from q did not. These results show that in NIH3T3 cells bearing CCK-A receptors, CCK activates Rho primarily through G13, leading to rearrangement of the actin cytoskeleton. actin; cholecystokinin; Rho; Rho-kinase; stress fibers  相似文献   

7.
8.
G protein-coupled receptors play an important role in the regulation of lymphocyte functions such as migration, adhesion, proliferation, and differentiation. Although the role of G(i) family G proteins has been intensively studied, no in vivo data exist with respect to G12/G13 family G proteins. We show in this study that mice that lack the G protein alpha-subunits G alpha12 and G alpha13 selectively in B cells show significantly reduced numbers of splenic marginal zone B (MZB) cells, resulting in a delay of Ab production in response to thymus-independent Ags. Basal and chemokine-induced adhesion to ICAM-1 and VCAM-1, two adhesion molecules critically involved in MZB localization, is normal in mutant B cells, and the same is true for chemokine-induced migration. However, migration in response to serum and sphingosine 1-phosphate is strongly increased in mutant MZB cells, but not in mutant follicular B cells. Live-cell imaging studies revealed that G alpha12/G alpha13-deficient MZB cells assumed more frequently an ameboid form than wild-type cells, and pseudopod formation was enhanced. In addition to their regulatory role in serum- and sphingosine 1-phosphate-induced migration, G12/G13 family G proteins seem to be involved in peripheral MZB cell maturation, because also splenic MZB cell precursors are reduced in mutant mice, although less prominently than mature MZB cells. These data suggest that G12/G13 family G proteins contribute to the formation of the mature MZB cell compartment both by controlling MZB cell migration and by regulating MZB cell precursor maturation.  相似文献   

9.
Sphingosine 1-phosphate (S1P) receptors represent a novel subfamily of G-protein-coupled receptors binding S1P specifically and with high affinity. Although their in vivo functions remain largely unknown, in vitro extracellular application of S1P induces distinct S1P receptor-dependent cellular responses including proliferation, differentiation, and migration. We have analyzed signaling pathways engaged by S1P(4), which is highly expressed in the lymphoid system. Here we show that S1P(4) couples directly to Galpha(i) and even more effectively to Galpha(12/13)-subunits of trimeric G-proteins, but not to Galpha(q) unlike other S1P receptors. Consequently, CHO-K1 cells ectopically expressing S1P(4) potently activate the small GTPase Rho and undergo cytoskeletal rearrangements, inducing peripheral stress fiber formation and cell rounding, upon S1P stimulation. Overexpression of S1P(4) in Jurkat T cells induces pertussis toxin-sensitive cell motility even in the absence of exogenously added S1P. In addition, S1P(4) is internalized upon binding of S1P. The capacity of S1P(4) to mediate cellular responses, such as motility and shape change through Galpha(i)- and Galpha(12/13)-coupled signaling pathways may be important for its in vivo function which is currently under investigation.  相似文献   

10.
The G protein-coupled receptors S1P2/Edg5 and S1P3/Edg3 both mediate sphingosine-1-phosphate (S1P) stimulation of Rho, yet S1P2 but not S1P3 mediates downregulation of Rac activation, membrane ruffling, and cell migration in response to chemoattractants. Specific inhibition of endogenous Galpha12 and Galpha13, but not of Galphaq, by expression of respective C-terminal peptides abolished S1P2-mediated inhibition of Rac, membrane ruffling, and migration, as well as stimulation of Rho and stress fiber formation. Fusion receptors comprising S1P2 and either Galpha12 or Galpha13, but not Galphaq, mediated S1P stimulation of Rho and also inhibition of Rac and migration. Overexpression of Galphai, by contrast, specifically antagonized S1P2-mediated inhibition of Rac and migration. The S1P2 actions were mimicked by expression of V14Rho and were abolished by C3 toxin and N19Rho, but not Rho kinase inhibitors. In contrast to S1P2, S1P3 mediated S1P-directed, pertussis toxin-sensitive chemotaxis and Rac activation despite concurrent stimulation of Rho via G12/13. Upon inactivation of Gi by pertussis toxin, S1P3 mediated inhibition of Rac and migration just like S1P2. These results indicate that integration of counteracting signals from the Gi- and the G12/13-Rho pathways directs either positive or negative regulation of Rac, and thus cell migration, upon activation of a single S1P receptor isoform.  相似文献   

11.
CXCL12-induced chemotaxis and adhesion to VCAM-1 decrease as B cells differentiate in the bone marrow. However, the mechanisms that regulate CXCL12/CXCR4-mediated signaling are poorly understood. We report that after CXCL12 stimulation of progenitor B cells, focal adhesion kinase (FAK) and PI3K are inducibly recruited to raft-associated membrane domains. After CXCL12 stimulation, phosphorylated FAK is also localized in membrane domains. The CXCL12/CXCR4-FAK pathway is membrane cholesterol dependent and impaired by metabolic inhibitors of G(i), Src family, and the GTPase-activating protein, regulator of G protein signaling 1 (RGS1). In the bone marrow, RGS1 mRNA expression is low in progenitor B cells and high in mature B cells, implying developmental regulation of CXCL12/CXCR4 signaling by RGS1. CXCL12-induced chemotaxis and adhesion are impaired when FAK recruitment and phosphorylation are inhibited by either membrane cholesterol depletion or overexpression of RGS1 in progenitor B cells. We conclude that the recruitment of signaling molecules to specific membrane domains plays an important role in CXCL12/CXCR4-induced cellular responses.  相似文献   

12.
Platelet activation is a complex process induced by a variety of stimuli, which act in concert to ensure the rapid formation of a platelet plug at places of vascular injury. We show here that fibrillar collagen, which initiates platelet activation at the damaged vessel wall, activates only a small fraction of platelets in suspension directly, whereas the majority of platelets becomes activated by mediators released from collagen-activated platelets. In Galpha(q)-deficient platelets that do not respond with activation of integrin alpha(IIb)beta(3) to a variety of mediators like thromboxane A2 (TXA2), thrombin, or ADP, collagen at high concentrations was able to induce aggregation, an effect that could be blocked by antagonists of the TXA2 or P2Y12 receptors. The activation of TXA2 or P2Y12 receptors alone, which in Galpha(q)-deficient platelets couple to G12/G13 and Gi, respectively, did not induce platelet integrin activation or aggregation. However, concomitant activation of both receptors resulted in irreversible integrin alpha(IIb)beta3-mediated aggregation of Galpha(q)-deficient platelets. Thus, the activation of G12/G13- and Gi-mediated signaling pathways is sufficient to induce integrin alpha(IIb)beta3 activation. Although G(q)-mediated signaling plays an important role in platelet activation, it is not strictly required for the activation of integrin alpha(IIb)beta3. This indicates that the efficient induction of platelet aggregation through G-protein-coupled receptors is an integrated response mediated by various converging G-protein-mediated signaling pathways involving G(q) and G(i) as well as G12/G13.  相似文献   

13.
Activation of GPIIb/IIIa is known to require agonist-induced inside-out signaling through G(q), G(i), and G(z). Although activated by several platelet agonists, including thrombin and thromboxane A(2), the contribution of the G(12/13) signaling pathway to GPIIb/IIIa activation has not been investigated. In this study, we used selective stimulation of G protein pathways to investigate the contribution of G(12/13) activation to platelet fibrinogen receptor activation. YFLLRNP is a PAR-1-specific partial agonist that, at low concentrations (60 microm), selectively activates the G(12/13) signaling cascade resulting in platelet shape change without stimulating the G(q) or G(i) signaling pathways. YFLLRNP-mediated shape change was completely inhibited by the p160(ROCK) inhibitor, Y-27632. At this low concentration, YFLLRNP-mediated G(12/13) signaling caused platelet aggregation and enhanced PAC-1 binding when combined with selective G(i) or G(z) signaling, via selective stimulation of the P2Y(12) receptor or alpha(2A)-adrenergic receptor, respectively. Similar data were obtained when using low dose (10 nm), a thromboxane A(2) mimetic, to activate G(12/13) in the presence of G(i) signaling. These results suggest that selective activation of G(12/13) causes platelet GPIIb/IIIa activation when combined with G(i) signaling. Unlike either G(12/13) or G(i) activation alone, co-activation of both G(12/13) and G(i) resulted in a small increase in intracellular calcium. Chelation of intracellular calcium with dimethyl BAPTA dramatically blocked G(12/13) and G(i)-mediated platelet aggregation. No significant effect on aggregation was seen when using selective inhibitors for p160(ROCK), PKC, or MEKK1. PI 3-kinase inhibition lead to near abolishment of platelet aggregation induced by co-stimulation of G(q) and G(i) pathways, but not by G(12/13) and G(i) pathways. These data demonstrate that co-stimulation of G(12/13) and G(i) pathways is sufficient to activate GPIIb/IIIa in human platelets in a mechanism that involves intracellular calcium, and that PI 3-kinase is an important signaling molecule downstream of G(q) but not downstream of G(12/13) pathway.  相似文献   

14.
We analyzed the signaling pathways initiated by endothelin receptors ETA and ETB in intestinal circular and longitudinal smooth muscle cells. The response to endothelin-1 (ET-1) consisted of two phases in both cell types. The initial, transient phase of contraction and phosphorylation of 20-kDa myosin light chain (MLC20) was mediated additively by ETA and ETB receptors and initiated by Gq-, Ca2+/calmodulin-dependent activation of MLC kinase. In contrast, the sustained phase was mediated selectively by ETA receptors via a pathway involving sequential activation of G13, RhoA, and Rho kinase, resulting in phosphorylation of MYPT1 at Thr696 and phosphorylation of MLC20. Although PKC was activated, CPI-17 was not phosphorylated and hence did not contribute to inhibition of MLC phosphatase. The absence of CPI-17 phosphorylation by PKC reflected active dephosphorylation of CPI-17 by protein phosphatase 2A (PP2A). PP2A was activated via a pathway involving ETB-dependent stimulation of p38 MAPK activity. CPI-17 phosphorylation was unmasked in the presence of the ETB antagonist BQ-788, but not the ETA antagonist BQ-123, and in the presence of a low concentration of okadaic acid, which selectively inactivates PP2A. The resultant phosphorylation of CPI-17 was blocked by bisindolylmaleimide, providing direct confirmation that it was PKC dependent. We conclude that the two phases of the intestinal smooth muscle response to ET-1 involve distinct receptors, G proteins, and signaling pathways. The sustained response is mediated via selective ETA-dependent phosphorylation of MYPT1. In contrast, ETB initiates an inhibitory pathway involving p38 MAPK-dependent activation of PP2A that causes dephosphorylation of CPI-17. endothelin receptor type A; endothelin receptor type B; myosin phosphatase targeting subunit  相似文献   

15.
16.
17.
The M(3) muscarinic acetylcholine receptor (mAChR) expressed in HEK-293 cells couples to G(q) and G(12) proteins and stimulates phospholipase C (PLC) and phospholipase D (PLD) in a pertussis toxin-insensitive manner. To determine the type of G protein mediating M(3) mAChR-PLD coupling in comparison to M(3) mAChR-PLC coupling, we expressed various Galpha proteins and regulators of the G protein signaling (RGS), which act as GTPase-activating proteins for G(q)- or G(12)-type G proteins. PLD stimulation by the M(3) mAChR was enhanced by the overexpression of Galpha(12) and Galpha(13), whereas the overexpression of Galpha(q) strongly increased PLC activity without affecting PLD activity. Expression of the RGS homology domain of Lsc, which acts specifically on Galpha(12) and Galpha(13), blunted the M(3) mAChR-induced PLD stimulation without affecting PLC stimulation. On the other hand, overexpression of RGS4, which acts on Galpha(q)- but not Galpha(12)-type G proteins, suppressed the M(3) mAChR-induced PLC stimulation without altering PLD stimulation. We conclude that the M(3) mAChR in HEK-293 cells apparently signals to PLD via G(12)- but not G(q)-type G proteins and that G protein subtype-selective RGS proteins can be used as powerful tools to dissect the pertussis toxin-resistant G proteins and their role in receptor-effector coupling.  相似文献   

18.
Using adenoviruses encoding RGS2, RGS4 and Lsc (regulator of G protein signalling (RGS) domain of p115 RhoGEF), we investigated the contributions of G(q/11), Gi and G(12/13) proteins to G protein-coupled receptor (GPCR)-mediated activation of the extracellular signal-regulated kinase (ERK) pathway in adult rat ventricular myocytes (ARVM). Exposure to phenylephrine, endothelin-1 (ET-1) or thrombin induced significant activation of ERK1/2 and their downstream target 90 kDa ribosomal S6 kinase (p90RSK), which was abolished by overexpression of RGS4 (inhibits signalling via G(q/11) and Gi) or RGS2 (inhibits signalling via G(q/11)). Pertussis toxin (inhibits signalling via Gi) only partially attenuated the activation of ERK1/2 and p90(RSK) by phenylephrine and ET-1, but abolished such activation by thrombin. Overexpression of Lsc (inhibits signalling via G(12/13)) did not affect the responses to phenylephrine and ET-1, but suppressed the activation of ERK1/2 and p90RSK by thrombin. We conclude that full activation of the ERK pathway in ARVM by alpha1-adrenergic, ET-1 and thrombin receptors requires the activation of distinct families of heterotrimeric G proteins.  相似文献   

19.
Protease-activated receptor 1 (PAR1) is an unusual GPCR that interacts with multiple G protein subfamilies (G(q/11), G(i/o), and G(12/13)) and their linked signaling pathways to regulate a broad range of pathophysiological processes. However, the molecular mechanisms whereby PAR1 interacts with multiple G proteins are not well understood. Whether PAR1 interacts with various G proteins at the same, different, or overlapping binding sites is not known. Here we investigated the functional and specific binding interactions between PAR1 and representative members of the G(q/11), G(i/o), and G(12/13) subfamilies. We report that G(q/11) physically and functionally interacts with specific amino acids within the second intracellular (i2) loop of PAR1. We identified five amino acids within the PAR1 i2 loop that, when mutated individually, each markedly reduced PAR1 activation of linked inositol phosphate formation in transfected COS-7 cells (functional PAR1-null cells). Among these mutations, only R205A completely abolished direct G(q/11) binding to PAR1 and also PAR1-directed inositol phosphate and calcium mobilization in COS-7 cells and PAR1-/- primary astrocytes. In stark contrast, none of the PAR1 i2 loop mutations disrupted direct PAR1 binding to either G(o) or G(12), or their functional coupling to linked pertussis toxin-sensitive ERK phosphorylation and C3 toxin-sensitive Rho activation, respectively. In astrocytes, our findings suggest that PAR1-directed calcium signaling involves a newly appreciated G(q/11)-PLCε pathway. In summary, we have identified key molecular determinants for PAR1 interactions with G(q/11), and our findings support a model where G(q/11), G(i/o) or G(12/13) each bind to distinct sites within the cytoplasmic regions of PAR1.  相似文献   

20.
Heme oxygenase-1 (HO-1), an inducible enzyme that metabolizes the heme group, is highly expressed in human Kaposi sarcoma lesions. Its expression is up-regulated by the G protein-coupled receptor from the Kaposi sarcoma-associated herpes virus (vGPCR). Although recent evidence shows that HO-1 contributes to vGPCR-induced tumorigenesis and vascular endothelial growth factor (VEGF) expression, the molecular steps that link vGPCR to HO-1 remain unknown. Here we show that vGPCR induces HO-1 expression and transformation through the Galpha(12/13) family of heterotrimeric G proteins and the small GTPase RhoA. Targeted small hairpin RNA knockdown expression of Galpha(12), Galpha(13), or RhoA and inhibition of RhoA activity impair vGPCR-induced transformation and ho-1 promoter activity. Knockdown expression of RhoA also reduces vGPCR-induced VEFG-A secretion and blocks tumor growth in a murine allograft tumor model. NIH-3T3 cells expressing constitutively activated Galpha(13) or RhoA implanted in nude mice develop tumors displaying spindle-shaped cells that express HO-1 and VEGF-A, similarly to vGPCR-derived tumors. RhoAQL-induced tumor growth is reduced 80% by small hairpin RNA-mediated knockdown expression of HO-1 in the implanted cells. Likewise, inhibition of HO-1 activity by chronic administration of the HO-1 inhibitor tin protoporphyrin IX to mice reduces RhoAQL-induced tumor growth by 70%. Our study shows that vGPCR induces HO-1 expression through the Galpha(12/13)/RhoA axes and shows for the first time a potential role for HO-1 as a therapeutic target in tumors where RhoA has oncogenic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号