首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Pea plants (Pisum sativum L. cv. Alaska) were grown from seeds for eleven days at different irradiances. Cuttings were then excised and rooted at 16 W × m?2. Gibberellic acid (GA3, 10?11 to 10?3M) was applied to the cuttings immediately after excision. Cuttings from stock plants grown at the highest level of irradiance (38 W × m?2) formed the lowest number of roots. An increasing number of roots per cutting was obtained by decreasing the irradiance to the stock plants. In cuttings from stock plants grown at low irradiances, low concentrations of GA3 (10?8 and 10?7M) promoted root formation further. No effect on rooting by these GA3 concentrations was observed when applied to cuttings originating from stock plants grown at the high irradiances. Root formation in all cuttings was inhibited by GA3 at concentrations higher than 10?6M. The degree of inhibition by GA3 was influenced by the irradiance pretreatment and was increased with an increase in the irradiance during the stock plant growth. Seeds from different years produced cuttings with different response patterns regarding the irradiance and GA3 effects on rooting.  相似文献   

2.
Seedlings of Pinus sylvestris were grown for 6 weeks under natural light conditions in a temperature controlled environment room. Cuttings from these plants were rooted in tap water or in indolebutyric acid (IBA) solutions for 60 days at an irradiance of 16 W m-2. Experiments were performed at 3-week intervals during two growth seasons. — Seasonal changes in root formation were found in control cuttings as well as in IBA treated cuttings. The number of roots and the percentage of cuttings that rooted were high during early spring and autumn. During the summer period hardly any roots were formed. Stimulation of root formation by IBA occurred manily during spring and autumn when cuttings already possessed the ability to form roots. — The influence of photoperiod during stock plant growth was also investigated. Shorter photoperiod resulted in an increase in the number of roots and rooting percentage. The period during summer where rooting was inhibited under natural light conditions was considerably shortened when stock plants were grown at a photoperiod of only 4 h. The results demonstrate the importance of the growing conditions for stock plants for subsequent root formation. The results are discussed with special reference to the role of irradiance.  相似文献   

3.
Pea plants were grown at different irradiances for eleven days. At this stage they were used for cuttings. The irradiance during the rooting period (155 mW · dm?2) was the same in all the experiments, Cuttings from stock plants cultivated at the weakest irradiance obtained the highest number of roots, and the poorest rooting appeared in cuttings from stock plants grown at the highest irradiance. The results indicate that the nutritional status of the stock plant is an important factor for root formation in the cutting. Light may influence the production of inhibitors which directly or indirectly affect root formation. The possible role of carbohydrates and growth promoters in the process of root formation is discussed.  相似文献   

4.
Abstract Seedlings of Pinus sylvestris L. were grown under controlled conditions (temperature 20°C, photoperiod 17 h) at two irradiances, 8 or 40 W m-2. Hypocotyl cuttings were excised and rooted at different irradiances in tap water solutions of indolebutyric acid (IBA). The fastest rooting and highest rooting percentage were obtained with cuttings from stock plants grown at 8 W m-2 and treated with 10-5M IBA for 21 days. The concentration of 10-4M IBA inhibited root formation. In comparable treatments rooting was always better in cuttings from stock plants grown at 8 W m-2 than in cuttings from stock plants grown at 40 W m-2. The irradiance during the rooting period had only a minor influence on rooting. When cuttings from plants irradiated with 40 W m-2 were treated with 10-5M IBA for 21 days the rooting percentage almost reached the same level as in untreated cuttings from stock plants given 8 W m-2. In cuttings treated with IBA during the whole rooting period, rooting was depressed in comparison to untreated cuttings. Aeration of the 10-4M IBA solution increased the rooting percentage, but aeration had no effect on untreated cuttings and on cuttings treated with lower IBA concentrations.  相似文献   

5.
Rooting ability was studied for cuttings derived from stock plants of wild type pea seedlings and seedings of two mutants deficient in photosystem II activity and chlorophyll. Stock plants were grown at 15, 20, 25 or 30°C at 38 W m-2. Cuttings were rooted at 20°C and at an irradiance of 16 or 38 W m-2. The rooting ability seemed to be correlated with the initial carbohydrate content only at 38 W m-2. Based on the findings of the present study it may be concluded that for pea seedlings the growth temperature is more important than photosynthesis as regards accumulation of extractable carbohydrates. During the rooting period carbohydrates are necessary for root formation, but the effect of the iradiance on the number of roots formed is not mediated by the carbohydrate content. Under specific rooting conditions it is possible to correlate the initial carbohydrate content with the rooting capacity of the cuttings within a phenotype, but not always when different phenotypes are considered. The results indicate a connection between the metabolic activity of the cuttings and their ability to form adventitious roots.  相似文献   

6.
Cuttings obtained from seedlings of Pisum sativum L. were rooted in water solution. Shoot growth continued after excision and shoot length increased considerably before roots emerged. Increase in dry weight was strongly dependent on light supply. Continued growth was dependent on supply of mineral nutrients to the rooting solution. Mineral nutrients had no or slight influence on the number of roots formed on cuttings from stock plants grown in fertilized soil, but the growth in length of the roots was dependent on the presence of calcium in the solution. Root formation was dependent on photosynthetic products formed after excision. No roots were formed on cuttings kept in the dark. The number of roots increased with increasing irradiance given to the leafy part of the cutting. At a low level of irradiance sucrose supply through the rooting medium increased the number of roots. Light given to the basal part of the cuttings had a strongly inhibitory effect on the number of roots formed. It is concluded that the carbohydrate level easily becomes a limiting factor for root formation in growing pea cuttings. Availability of mineral nutrients influences in the first place the growth of the shoots.  相似文献   

7.
Sucrose was supplied to stock plants of Pisum sativum L. cv. Alaska grown at different levels of irradiance. There was no significant effect on the rooting of the cuttings by sucrose supply to intact plants regardless of the irradiance. However, an increase in the number of roots per cutting was obtained at increasing concentrations of sucrose when the stock plants had been grown at 4 W m?2 and their cotyledons had been removed two days before the cuttings were excised. Cotyledons were removed from stock plants at different times before the excision of cuttings with the intent to regulate the endogenous supply of carbohydrate. The number of roots per cutting was reduced by removal of the cotyledons and this reduction was correlated to the number of days the stock plants had grown without cotyledons as well as to the irradiance pre-treatment. A greater reduction occurred in cuttings from plants grown under 4 W m?2 than from those grown under 38 W m?2. The growth of the stock plants and the subsequent stem growth of the cuttings was determined by the irradiance to the stock plants and by the time of removal of the cotyledons. Exogenous supply of sucrose had no effect on the stem growth of the cuttings.  相似文献   

8.
Rooting ability was studied for cuttings derived from pea plants ( Pisum sativum , L. cv. Alaska) grown in controlled environment rooms. When the cuttings were rooted at 70 μmol m−2 s, 1 (photosynthetic photon flux density) or more, a stock plant irradiance at 100 μmol m−2 s−1 decreased rooting ability in cuttings compared to 5 μmol m−2, s−1, However, cuttings rooted at 160 μmol m−2 s−1 formed more roots compared to 5 (μmol m−2 s−1. Although a high irradiance increased the number of roots formed, it could not overcome a decreased potential for root formation in stock plants grown at high irradiance. Light compensation point and dark respiration of cuttings decreased by 70% during the rooting period, and the final levels were strongly influenced by the irradiance to the cuttings. Respiratory O2 uptake decreased in the apex and the base of the cutting from day 2 onwards, whereas a constant level was found in the leaves. Only the content of extractable fructose, glucose, sucrose and starch varied during the early part of the rooting period. We conclude that the observed changes in the cuttings are initiated by excision of the root system, and are not involved in the initiation of adventitious roots.  相似文献   

9.
A positive correlation between the length of the basis and the ability of the cuttings to form adventitious roots was observed in pea cuttings. Plants with a different basis length (the third internode) were obtained in different ways: Regulation by the level of irradiance, dark treatment or gibberellic acid. The length of the basis was also regulated by excision of the cuttings at different places on the stock plants. With increasing basis length an increase was found in the number of roots subsequently formed. The results were similar in cuttings from plants grown at different levels of irradiance or from dark treated plants. Optimal rooting was obtained by cutting the plants just above the second scale leaf. Cuttings from plants treated with 10?3M GA3 showed the same correlation between the length of the third internode and root formation as found in the other experiments, but the number of roots were at a lower level.  相似文献   

10.
Experiments were undertaken to determine the effect of stock plant etiolation and stem banding, prior to cutting propagation, on the auxin dose-response of rooting in Carpinus betulus L. Fastigiata stem cuttings. Stock plants were forced in a greenhouse, etiolated for 10 days and banded with black, light-tight Velcro for 8 weeks. Indole-3-butyric acid was applied to cuttings at concentrations ranging from 0 to 79 mM. Rooting percentages and numbers increased to a peak reponse at 20 mM in light-grown and 40 mM in etiolated shoots, followed by an inhibition at higher concentrations for all except etiolated and banded shoots. Cuttings prepared from shoots which had been etiolated or banded rooted better than controls at low and optimal IBA concentrations. Cuttings from shoots receiving both etiolation and banding also yielded higher rooting percentages and more roots per rooted cutting. Furthermore, etiolation and banding reduced the sensitivity of cuttings to supra-optimal auxin-induced inhibition of adventitious root initiation.  相似文献   

11.
 Adventitious root formation in cuttings from fascicular shoots in loblolly pine (Pinus taeda L.) consists of four more or less discontinuous stages: (1) proliferation of cells at the base of the cutting, (2) differentiation of wound vascular tissue and periderm, (3) dedifferentiation of a zone near the wound cambium and wound phloem to form a root initial, and (4) formation of a root meristem. Anatomical changes during adventitious root initiation are described in cuttings from donors of different types and ages. Cuttings from seedlings and 3- to 7-year-old hedged stock plants rooted better than cuttings from 3-year-old tree form donors. It is concluded that the loss of rooting capacity in loblolly pine can be arrested by shearing loblolly pine stock plants to low hedges. The process of root initiation, however, was similar in cuttings from all sources and is apparently not the cause for the rapid decline of rooting potential with increasing age of the donor plant. Received: 3 June 1997 / Accepted: 15 August 1997  相似文献   

12.
Cuttings were taken from 4-week-old seedlings of Norway spruce ( Picea abies L. Karst.) raised at two different irradiation levels. Rooting experiments showed that root formation was increased by the ethylene formed by adding 1-aminocyclopropane-1-carboxylic acid ACC or Ethrel, especially in the slowly rooting cuttings grown under high light (HL). Cobaltousion. an ethylene synthesis inhibitor, delayed rooting, especially in the easily rooted cuttings grown under low light (LL).
Compounds isolated from the cuttings using immunoaffinity chromatography, on a column with antibodies against cytokinins, and separated by HPLC decreased in amount during the first week of the rooting period. An increase in ethylene production accelerated this process, especially in cuttings grown under HL, whereas cobaltous ion delayed it. We suggest that ethylene stimulates rooting by enhancing the degradation of cytokinins.  相似文献   

13.
Stock pea plants (Pisum sativum L.) were etiolated fully or partially at the third internode that acted as the cutting base. The etiolation started the fifth day after sowing and lasted till cutting preparation. Cuttings derived from partially etiolated plants rooted more than non-etiolated ones while fully etiolated ones rooted more only after treatment with 1% sucrose solution for 4 days. Endogenous IAA in the base of etiolated cuttings was higher during the first 24 h after cutting preparation than in the control. Z/ZR did not show significant differences while iAde/iAdo was higher in the control. Ethylene was increased 24 h after cutting preparation and the increase was greater from partially etiolated cuttings. The results showed that besides IAA and cytokinins, which played a role in the rooting of cuttings, sucrose influenced rooting in the case of fully etiolated stock plants.  相似文献   

14.
Comparative studies on rooting and growth performance of cuttings raised from in vitro and in vivo grown plants of Rosa damascena are described. Cuttings were treated with different auxins and upon transfer to soil their growth performance was recorded. Overall, the auxin treated cuttings of in vitro raised plants responded better than the cuttings of in vivo raised plants. Optimal response for percentage of rooting, root number, root length and bottom breaks was observed at 100 mg dm–3 IBA. The cuttings derived from in vitro raised plants showed a significantly better response for percent rooting, root number, root length and bottom buds in control treatments.  相似文献   

15.
Cuttings of Agathis australis (D. Don) Lindl passed through a well-defined series of morphological changes prior to root emergence. These phases were incorporated into a morphological index which can be used as a guide for the selection of cuttings at known developmental and anatomical stages. After a variable period (lag phase) during which no external change occurred there was an increase in stem diameter a few milimetres above the cut base. This swelling gradually increased in size and isolated bulges developed. Longitudinal splits then arose in the epidermis over the bulges, followed by root emergence through the splits. Root initiation occurred shortly after the sub-basal swelling commenced in cuttings that eventually rooted. Removal of the basal 8 mm of a rooted cutting (which included the roots) usually led to re-rooting of the cuttings. However, if the roots were merely trimmed off, the cutting never formed new roots and always died. The basal region apparently has the capacity to produce only one set of roots. Occasionally the stem diameter continued to increase and the swelling extended to include the basal region. Such cuttings never formed isolated wellings and never rooted.
In general the younger the plant from which the cutting was taken, the shorter the lag phase and the higher the final percentage rooting. Cuttings taken from older plants had a lower rooting percentage and a more variable lag phase, which was related to the time of year the cuttings were taken since root emergence always occurred in spring. Irrespective of the age of the original material there was a constant time period (3–4 weeks) from root initiation to root emergence.  相似文献   

16.
The rooting of softwood cuttings of Alnus incana (L.) Moench in nutrient solution was studied under controlled conditions. Cuttings consisting of one internode with the leaf and axillary bud attached rooted easily and more rapidly than shoot tip cuttings. Light was necessary for rooting but good rooting was obtained in photon flux densities of both 40 and 190 μmol m-2s-1. Root number and root length was reduced when light reached the base of the cuttings. Treatment with indolebutyric acid (10-6–10-4M) increased the number of roots but 10-4M delayed rooting and decreased the root length. Debudded internode cuttings rooted as well as intact cuttings, and detached leaves also contained sufficient substances for rooting.  相似文献   

17.
Stock plants of pea (Pisum sativum L. cv. Alaska) were grown at different controlled levels of irradiance (4, 16 or 38 W m?2) for 11 days from sowing. Morphactin (CFM, methyl-2-chloro-9-hydroxy-fluorene-9-carboxylate) was applied to the apex of the stock plants 3 days before cuttings were excised. The cuttings were rooted at 16 W m?2. High levels of morphactin (>5 × 10?3 mg l?1) inhibited root formation in the cuttings. Low concentrations of CFM (5 × 10?5 mg l?1) promoted the formation of adventitious roots in cuttings from plants grown at all three levels of irradiance, with the most pronounced effect in cuttings from 4 W m?2. Measurements of ethylene evolution by CFM-treated plants 3 days after application, revealed a stimulatory effect on ethylene production by high CFM concentrations.  相似文献   

18.
Vegetative Propagation of Pinus sylvestris   总被引:1,自引:0,他引:1  
Methods for the vegetative propagation of Pinus sylvestris L. from interfascicular shoots are described. Using 5-year-old plants the outgrowth of interfascicular shoots was promoted by removal of terminal and lateral buds; this response was augmented substantially by application of cytokinin, tri-iodobenzoic acid, alar and morphactin alone and especially in combination. The rooting capacity of shoot cuttings from interfascicular shoots appeared to be largely determined by the state of growth of the stock plant. Cuttings from dormant stock plants subjected to short-day treatment followed by a period of low temperature gave the best rooting, especially when the cuttings themselves had been cold-stored prior to planting. Rooting was optimal when such cuttings were treated with a mixture of 25 mg/l of indolebutyric acid and 25 mg/l of napthaleneacetic acid as a 48 h basal soak, and were planted on a heated mistbench under extended illumination; over 90% of such cuttings could be rooted. These results are discussed in relation to bud activity, endogenous hormone levels and promoting tissue extracts also tested.  相似文献   

19.
Untreated and indole-3-butyrie acid-treated (IBA) cuttings from 90-day-old Pinus banksiana Lamb, stock plants were propagated under normal greenhouse irradiance (max. 900 $$mol m-2 s-1) and shade (max. 120 $$mol m-2 s-1) to determine effects on adventitious rooting and on reducing sugar and starch concentrations in needles and basal stems. In one experiment, cuttings were assessed at days 15 and 25 of propagation for basal 1-cm stem fresh weight, proportion rooted, number of roots and longest root length. In a second experiment with cuttings, basal 1-cm stem fresh weight and concentrations of reducing sugar and starch in needles and basal stems were measured each day for the first 10 days of propagation. Carbohydrate measurements were also made for seedling stock plants as controls for the second experiment. Carbohydrate data for cuttings were primarily evaluated based on net (cutting minus seedling) concentrations, to correct for changes in cuttings not related to adventitious rooting. Increase of basal stem fresh weight and rooting of cuttings, based on all measured variables, occurred in the order: light + IBA > light > shade + IBA > shade. The best rooting required the greater irradiance. Compared to results from cuttings in the light, shading resulted in lesser accumulations of reducing sugars and starch in needles and basal stems. Reducing sugar: starch concentration ratios were significantly greater in shade- vs light-propagated cuttings, IBA treatment did not offset the effects of shade on rooting or on reducing sugar and starch concentrations or ratios. Overall, the results suggested that decreased reducing sugar and starch concentrations and/or their increased ratios are associated with shade-induced poor rooting of P. banksiana cuttings.  相似文献   

20.
In this paper, we provide evidence that the rooting performance of cuttings can be improved by the arbuscular mycorrhizal (AM) symbiosis of donor plants. Poinsettia stock plants were inoculated with the Glomus intraradices isolate H510 and grown in three different cultivation systems (two organic and one conventional). AM colonization was not related to P availability in the substrate. Decay of the excised cuttings in response to unfavorable postharvest storage conditions was significantly reduced by AM colonization of the stock plants. In most cases, AM significantly promoted the formation of adventitious roots in the stored cuttings. The strongest effect of AM was found when donor plants were grown in a modified organic substrate; then AM-conditioned cuttings showed higher leaf sugar levels and a changed kinetic of carbohydrates during storage. Analyses of N, P, and K in cuttings did not indicate a nutritional effect. The results support the idea that an altered carbohydrate metabolism and plant hormones can contribute to improved rooting performance of cuttings excised from mycorrhizal donor plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号