首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of the respiratory electron transport pathway in the blue-green alga, Aphanocapsa, demonstrated the presence of cytochrome oxidase and a cytochrome complex. The use of antimycin A showed only the occurrence of a plastidal type of cytochrome complex (the cytochrome b6-f complex), which is insensitive to this inhibitor. Determination of the extent of photooxidation of cytochromes c-553 and f-556 under conditions of high and low cytochrome oxidase activities indicated an electron flow through both cytochromes to cytochrome oxidase. Direct evidence for a common segment of photosynthetic and respiratory electron transport from plastoquinone via the cytochrome b6-f complex to the soluble plastocyanin/cytochrome c-553 pool, as well as a competition between cytochrome oxidase and Photosystem I for reductants in this pool in the light, was obtained by measurements of electron transport with suitable electron donors in this alga.  相似文献   

2.
Chloroplast material active in photosynthetic electron transport has been isolated from Scenedesmus acutus (strain 270/3a). During homogenization, part of cytochrome 553 was solubilized, and part of it remained firmly bound to the membrane. A direct correlation between membrane cytochrome 553 and electron transport rates could not be found. Sonification removes plastocyanin, but leaves bound cytochrome 553 in the membrane. Photooxidation of the latter is dependent on added plastocyanin. In contrast to higher plant chloroplasts, added soluble cytochrome 553 was photooxidized by 707 nm light without plastocyanin present. Reduced plastocyanin or cytochrome 553 stimulated electron transport by Photosystem I when supplied together or separately. These reactions and cytochrome 553 photooxidation were not sensitive to preincubation of chloroplasts with KCN, indicating that both redox proteins can donate their electrons directly to the Photosystem I reaction center. Scenedesmus cytochrome 553 was about as active as plastocyanin from the same alga, whereas the corresponding protein from the alga Bumilleriopsis was without effect on electron transport rates.

It is suggested that besides the reaction sequence cytochrome 553 → plastocyanin → Photosystem I reaction center, a second pathway cytochrome 553 → Photosystem I reaction center may operate additionally.  相似文献   


3.
Rat liver mitochondria, stored with the energy-linked functions preserved or in aging conditions, were used to assay the activity of various enzymes during five days. The preservation of energy-linked functions was monitored by the respiratory control coefficient. ATPase, cytochrome oxidase and NADH dehydrogenase showed increased activity when the energy-linked functions were preserved. In aging conditions, cytochrome oxidase, NADH dehydrogenase and ATPase showed decreased activity. The ATPase activity increased only when mitochondria were stored in the presence of inhibitors of the electron transport chain. The activity of NADH oxidase did not change, and succinate oxidase and succinate dehydrogenase showed a small decrease in their activity. The enzymes of the matrix, alpha-ketoglutarate dehydrogenase, malate dehydrogenase and aspartate aminotransferase showed little decrease in activity under either of the conditions of storage. The total protein content decreased slightly under both conditions of storage. These results show that the activity of the enzymes analysed was maintained at reasonable levels, when the energy-linked functions of isolated mitochondria were preserved.  相似文献   

4.
The membrane fraction of Bacterionema matruchotii contains an electron transport chain with oxidizing activity for NADH and succinate. Respiration was inhibited by KCN, 2-heptyl-4-hydroxyquinoline-N-oxide, UV light irradiation and CO. UV light irradiation, analysis of membrane extracts, and reconstitution of respiration in UV light treated membranes suggested that respiration is mediated by a menaquinone derivative. The membranes contained cytochromes a, b, and c. Inhibition studies and the effect of KCN and CO on the cytochrome spectrum indicated the presence of an a+a3 cytochrome oxidase and cytochrome o. The membrane fraction from cells grown under O2-limiting conditions contained nitrate reductase activity. In B. matruchotii, electron transport is coupled to oxidative phosphorylation as judged by the effects of substrates and inhibitors on the intracellular ATP concentration.  相似文献   

5.
Lipid-depleted cytochrome c oxidase (EC 1.9.3.1) containing less than 20 microgram lipids per milligram protein was reconstituted with pure phospholipids of well-defined chemical structure and fatty acid composition without using detergents and (or) sonication. For the maximal restoration of electron transport activity, lipid-depleted cytochrome c oxidase required acidic phospholipds such as phosphatidylglycerol or phosphatidylserine or lysophospholipids such as lysophosphatidylcholine or lysophosphatidic acid, but no specific phospholipid fatty acid composition was necessary. The organization of the lipid environment of the reconstituted cytochrome c oxidase, having a well-defined lipid composition, morphology, and a high specific activity, was examined by electron spin resonance spectroscopy using 2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxyl (16-doxyl stearic acid) and 16-doxyl stearic acid - containing phosphatidylglycerol. The presence of boundary lipid was established in both lamellar and micellar organizations of reconstituted cytochrome c oxidase and was not necessarily related to the enzymatic activity of the complex. Our results have established that aside from structural considerations, the boundary lipid, at least in the reconstituted cytochrome c oxidase, is a necessary but not sufficient condition for the enzymatic expression of cytochrome c oxidase.  相似文献   

6.
The polyphenolic structure common to flavonoids enables them to donate electrons and exert antioxidant activity. Since the mitochondrial electron transport chain consists of a series of redox intermediates, the effect of flavonoids in a complex mixture of polyphenols, as well as related pure flavonoids, was evaluated on the rat liver mitochondrial electron transport chain. A French maritime pine bark extract (PBE), a complex mixture of polyphenols and related pure flavonoids, was able to reduce cytochrome c reversibly, possibly by donation of electrons to the iron of the heme group; the donated electrons can be utilized by cytochrome c oxidase. Among single flavonoids tested, (-)-epicatechin gallate had the greatest ability to reduce cytochrome c. In addition, PBE competitively inhibited electron chain activity in both whole mitochondria and submitochondrial particles. A 3.5-fold increase in the apparent Km value for succinate was calculated from reciprocal plots. Among the flavonoids tested, taxifolin and (-)-epicatechin gallate showed minor inhibitory effects, while (+/-)-catechin and (+)-epicatechin were ineffective. Activities of NADH-ubiquinone, succinate-ubiquinone, and ubiquinol-cytochrome c reductases were inhibited by low concentrations of PBE to a similar extent. However, inhibition of cytochrome c oxidase activity required 4-fold higher PBE concentrations. These results suggest that flavonoids reduce cytochrome c and that PBE inhibits electron transport chain activity mainly through NADH-ubiquinone, succinate-ubiquinone, and ubiquinol-cytochrome c reductases.  相似文献   

7.
The germination of conidiospores of wild-type Neurospora crassa was found to be dependent upon the function of the cytochrome-mediated electron transport pathway. The cyanide-insensitive alternate oxidase did not contribute significantly to the respiration of these germinating spores. The dormant spores contained all of the cytochrome components and a catalytically active cytochrome c oxidase required for the activity of the standard respiratory pathway, and these preserved components were responsible for the accelerating rates of oxygen uptake which began immediately upon suspension of the spores in an incubation medium. Mitochondria of the dormant spores contained all of the subunit peptides of the functional cytochrome c oxidase; nevertheless, de novo synthesis of these subunits began at low rates in the first stages of germination. Reactivation of the respiratory system of germinating N. crassa spores seems not to be dependent initially upon the function of either the mitochondrial or cytoplasmic protein-synthesizing systems. The respiratory activity of spores of three mutant cytochrome c oxidase-deficient strains of N. crassa also was found to depend upon the function of the cytochrome electron transport pathway; the dormant and germinating spores of these strains contained a catalytically active cytochrome c oxidase. Cytochrome c oxidase may be present in the dormant and germinating spores of these strains as the result of a developmental-phase-specific synthesis of and requirement for the enzyme.  相似文献   

8.
We reported previously that treatment of the pig kidney proximal tubular epithelial cell line LLC-PK(1) with cephaloridine (CLD) decreased the activity of cytochrome c oxidase in the mitochondria of the cells followed by increases in lipid peroxidation and cell necrosis. In this study, we investigated the effects of CLD on the activity of cytochrome c oxidase in mitochondria isolated from LLC-PK(1) cells and purified the enzyme from mitochondria of the rat renal cortex. The activity of cytochrome c oxidase in the isolated mitochondria from LLC-PK(1) cells was significantly decreased from 1 h after addition of 1 mM CLD. Other cephalosporin antibiotics, cefazolin and cefalotin, also decreased the activity of cytochrome c oxidase in the isolated mitochondria. The activity of cytochrome c oxidase purified from the mitochondria of the rat renal cortex was also decreased from 2 h after addition of 1 mM CLD in a non-competitive manner. These results suggest that the direct inhibition of cytochrome c oxidase activity in the mitochondrial electron transport chain by cephlosporins may result from the observed nephrotoxicity.  相似文献   

9.
The electron transport system (with cytochrome aa3) coupled to the oxidation of methanol in Methylobacterium extorquens AM1 (former Pseudomonas AM1) was reconstituted with highly purified constituents of the system. A mixture of 2.7 microM methanol dehydrogenase, 3.2 microM cytochrome cH, and 71 nM cytochrome c oxidase (= cytochrome aa3) consumed oxygen at a lower rate in the presence of methanol, while its activity was enhanced 3-fold by the addition of 1.4 microM cytochrome cL (74 mol of O2 consumed/mol of heme a of cytochrome c oxidase per min). Further addition of amicyanin to the above mixture did not affect the activity. Although ammonium ion greatly activated the activity of methanol dehydrogenase, the ion had little effect on the oxygen consumption activity of the above mixture. On the basis of the results obtained in the present study, an electron transport system is proposed for the oxidation of methanol in M. extorquens AM1.  相似文献   

10.
Growth of the freshwater cyanobacterium Synechococcus 6311 under saline conditions stimulated respiration tenfold during the first 24 h, while growth and photosynthesis were inhibited. The elevated respiration rate was seen under both light and dark conditions, was uncoupler and cyanide sensitive, and did not decrease upon salt removal. Membrane preparations from salt-grown cells exhibited a tenfold increase in cytochrome oxidase activity, while electron transfer rates from NADPH to cytochrome c only increased threefold. Cytochrome oxidase activities were correlated with levels of EPR detectable Cu2+ in the salt and control membranes. Sodium-driven proton (antiproter) gradients in salt-grown cells were sensitive to cyanide but not dicyclohexylcarbodiimide, indicating the direct role of respiratory electron transport in maintaining low intracellular sodium levels.  相似文献   

11.
Subsarcolemmal mitochondria sustain progressive damage during myocardial ischemia. Ischemia decreases the content of the mitochondrial phospholipid cardiolipin accompanied by a decrease in cytochrome c content and a diminished rate of oxidation through cytochrome oxidase. We propose that during ischemia mitochondria produce reactive oxygen species at sites in the electron transport chain proximal to cytochrome oxidase that contribute to the ischemic damage. Isolated, perfused rabbit hearts were treated with rotenone, an irreversible inhibitor of complex I in the proximal electron transport chain, immediately before ischemia. Rotenone pretreatment preserved the contents of cardiolipin and cytochrome c measured after 45 min of ischemia. The rate of oxidation through cytochrome oxidase also was improved in rotenone-treated hearts. Inhibition of the electron transport chain during ischemia lessens damage to mitochondria. Rotenone treatment of isolated subsarcolemmal mitochondria decreased the production of reactive oxygen species during the oxidation of complex I substrates. Thus, the limitation of electron flow during ischemia preserves cardiolipin content, cytochrome c content, and the rate of oxidation through cytochrome oxidase. The mitochondrial electron transport chain contributes to ischemic mitochondrial damage that in turn augments myocyte injury during subsequent reperfusion.  相似文献   

12.
The nitrous oxide reductase activity of Paracoccusdenitrificans can be conveniently measured using an electrochemical method for determining N2O. Introduction of this procedure has shown that (i) N2O reductase activity is reversibly inhibited by oxygen; (ii) antimycin strongly inhibits electron flow to N2O and that the inhibition is bypassed by tetramethyl-p-phenylenediamine; (iii) ascorbate plus tetramethyl-p-phenylenediamine, presumably by donating electrons to cytochrome c, is an effective reductant for nitrous oxide reductase; (iv) in the presence of the nitrous oxide reductase inhibitor, acetylene, N2O is promptly produced from nitrite, consistent with the product of nitrite reductase being N2O.  相似文献   

13.
Bax inhibitor-1 (BI-1) is an evolutionarily conserved cell death suppresser in animals, yeast, and plants. In this study, yeast strains carrying single-gene deletions were screened for factors related to cell death suppression by Arabidopsis BI-1 (AtBI-1). Our screen identified mutants that failed to survive Bax-induced lethality even with AtBI-1 coexpression (Bax suppressor). The Deltacox16 strain was isolated as a BI-1-inactive mutant; it was disrupted in a component of the mitochondrial cytochrome c oxidase. Other mutants defective in mitochondrial electron transport showed a similar phenotype. ATP levels were markedly decreased in all these mutants, suggesting that BI-1 requires normal electron transport activity to suppress cell death in yeast.  相似文献   

14.
We have devised a relatively simple method for the purification of cytochrome aa3 of Paracoccus denitrificans with three major subunits similar to those of the larger subunits of the mitochondrial cytochrome oxidase. This preparation has no c-type cytochrome. Studies were made of the oxidation of soluble cytochromes c from bovine heart and Paracoccus. The cytochrome-c oxidase activity was stimulated by low concentrations of either cytochrome c, providing an explanation for the multiphasic nature of plots of v/S versus v. Kinetics of the oxidation of bovine cytochrome c by the Paracoccus oxidase resembled those of bovine oxidase with bovine cytochrome c in every way; the Paracoccus oxidase with bovine cytochrome c can serve as an appropriate model for the mitochondrial system. The kinetics of the oxidation of the soluble Paracoccus cytochrome c by the Paracoccus oxidase were different from those seen with bovine cytochrome c, but resembled the latter if poly(L-lysine) was added to the assays. The important difference between the two species of cytochrome c is the more highly negative hemisphere on the side of the molecule way from the heme crevice in the Paracoccus cytochrome. Thus, the data emphasize the importance of all of the charged groups on cytochrome c in influencing the binding or electron transfer reactions of this oxidation-reduction system. The data also permit some interesting connotations about the possible evolution from the bacterial to the mitochondrial electron transport system.  相似文献   

15.
Plastocyanin and cytochrome c6 are two small soluble electron carriers located in the intrathylacoidal space of cyanobacteria. Although their role as electron shuttle between the cytochrome b6f and photosystem I complexes in the photosynthetic pathway is well established, their participation in the respiratory electron transport chain as donors to the terminal oxidase is still under debate. Here, we present the first time-resolved analysis showing that both cytochrome c6 and plastocyanin can be efficiently oxidized by the aa3 type cytochrome c oxidase in Nostoc sp. PCC 7119. The apparent electron transfer rate constants are ca. 250 and 300 s(-1) for cytochrome c6 and plastocyanin, respectively. These constants are 10 times higher than those obtained for the oxidation of horse cytochrome c by the oxidase, in spite of being a reaction thermodynamically more favourable.  相似文献   

16.
The effects of arachidonic acid on the enzyme complexes in the electron transport system were investigated using submitochondrial particles from rat brain. Arachidonic acid irreversibly inhibited NADH-CoQ oxidoreductase (complex I) activity, but had no effect on the activities of succinate-CoQ oxidoreductase (complex II), CoQH2-cytochrome c oxidoreductase (complex III), cytochrome c oxidase (complex IV), ATPase (complex V), glutamate dehydrogenase, and malate dehydrogenase up to 50 microM. The inhibition was dose-dependent with an IC50 value of 110 nmol/mg protein. The Lineweaver-Burk plot revealed that the inhibition by arachidonic acid was noncompetitive against CoQ with a Ki value of 33 microM and uncompetitive against NADH with a Ki value of 22 microM.  相似文献   

17.
After mild dissociation of cytochrome c oxidase protomers, and polyacrylamide gel electrophoresis, copper was found predominantly in polypeptides of Bands V (m.w. 12,100) and VII (m.w. 3,400), and heme a predominantly in polypeptides of Bands I (m.w. 35,300) and II (m.w. 21,000). Some copper was found in Band II – III, and heme a in Band V.  相似文献   

18.
The properties of electron transport systems present in soluble and particulate fractions of spores of Bacillus megaterium KM?HAVE BEEN COMPARED WIth those of similar fractions prepared from exponential-phase vegetative cells of this organism. The timing and localization of modifications of the electron transport system occurring during sporulation have been investigated by using a system for separating forespores from mother cells at all stages during development [8]. Spore membranes contained cytochromes a + a3, and o at lower concentrations than in vegetative membranes, and in addition cytochrome c, which was not found in exponential-phase vegetative membranes. An NADH oxidase activity of similar specific activity was found in both spore and vegetative membranes but DL-glycerol 3-phosphate and L-malate oxidase activities were found only in vegetative membranes. A soluble NADH oxidase of low specific activity was found in spores and vegetative cells which probably involves a flavoprotein reaction with oxygen because the activity was stimulated by FAD or FMN and difference spectra of concentrated soluble fractions showed spectra typical of a flavoprotein. Particulate NADH oxidase was sensitive to all classical inhibitors of electron transport tested whereas soluble NADH oxidase was insensitive to many of these inhibitors. Cytochrome c was formed between stage I and II of sporulation and this coincided with a five-fold increase in NADH-cytochrome c reductase activity. Forespore membranes had lower contents of cytochromes than sporangial cell membranes but similar levels of NADH and L-malate oxidases; DL-glycerol 3-phosphate oxidase activity could not be detected in either membranes by stage III of sporulation. This characterization of spore electron transport systems provides a basis for suggestions concerning initial metabolic events during spore germination and the effect of a number of germination inhibitors.  相似文献   

19.
The effect of treating mitochondria with visible light above 400 nm on electron transport and coupled reactions was examined. The temporal sequence of changes was: stimulation of respiration coupled to ATP synthesis, a decline in ATP synthesis, inactivation of respiration, increased ATPase activity and, later, loss of the membrane potential. Loss of respiration was principally due to inactivation of dehydrogenases. Of the components of dehydrogenase systems, flavins and quinones were most susceptible to illumination, the iron-sulfur centers were remarkably resistant to being damaged. Succinate dehydrogenase was inactivated before choline and NADH dehydrogenase. Redox reactions of cytochromes and cytochrome c oxidase activity were unaffected.Inactivation was O2-dependent and prevented by anaerobiosis or the presence of substrates for the dehydrogenases. Light in the range 400–500 nm was most effective and the presence of free flavins greatly enhanced inactivation of all of the above mitochondrial activities. This suggests that visible light mediates a flavin-photosensitized reaction that initiates damage involving participation of an activated species of oxygen in the damage propagation.  相似文献   

20.
1. During anaerobic glucose de-repression the respiration rate of whole cells of Saccharomyces carlsbergensis remained constant and was insensitive to antimycin A but was inhibited by 30% by KCN. Aeration of cells for 1 h led to increased respiration rate which was inhibited by 80% by antimycin A or KCN. 2. Homogenates were prepared from sphaeroplasts of anaerobically grown, glucose de-repressed cells and the distribution of marker enzymes was investigated after zonal centrifugation on sucrose gradients containing MgCl(2). These homogenates contained no detectable cytochrome c oxidase or catalase activity. The complex density distributions of NADH- and NADPH-cytochrome c oxidoreductases and adenosine triphosphatase(s) [ATPase(s)] were very different from those of anaerobically grown, glucose-repressed cells. 3. The specific activity of total ATPase was lowered and sensitivity to oligomycin decreased from 58 to 7% during de-repression. 4. Cytochrome c oxidase and catalase activities were detectable in homogenates of cells after 10min aeration. Zonal centrifugation indicated complex, broad sedimentable distributions of all enzyme activities assayed; the peaks of activity were at 1.27g/ml. 5. Centrifugation of homogenates of cells adapted for 30min and 3 h indicated a shift of density of the major sedimentable peak from 1.25g/ml (30min) to 1.235g/ml (3 h). After 30min adaptation a minor zone of oligomycin-sensitive ATPase and 15% of the total cytochrome c oxidase activities were detected at rho=1.12g/l; these particles together with those of higher density containing cytochrome c oxidase, ATPase and NADH-cytochrome c oxidoreductase activities were all sedimented at 10(5)g-min. 6. Electron microscopy indicated that the mitochondria-like structures of anaerobically grown, glucose-de-repressed cells were similar to those of repressed cells. After 10min of respiratory adaptation highly organized mitochondria were evident which resembled the condensed forms of mitochondria of aerobically grown, glucose-de-repressed cells. High-density zonal fractions of homogenates of cells after adaptation also contained numerous electron-dense vesicles 0.05-0.2mum in diameter. 7. The possibility that the ;promitochondria' of anaerobically grown cells may not be the direct structural precursors of fully functional mitochondria is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号