首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The negative diversity-invasion relationship observed in microbial invasion studies is commonly explained by competition between the invader and resident populations. However, whether this relationship is affected by invader-resident cooperative interactions is unknown. Using ecological and mathematical approaches, we examined the survival and functionality of Aminobacter niigataensis MSH1 to mineralize 2,6-dichlorobenzamide (BAM), a groundwater micropollutant affecting drinking water production, in sand microcosms when inoculated together with synthetic assemblies of resident bacteria. The assemblies varied in richness and in strains that interacted pairwise with MSH1, including cooperative and competitive interactions. While overall, the negative diversity-invasion relationship was retained, residents engaging in cooperative interactions with the invader had a positive impact on MSH1 survival and functionality, highlighting the dependency of invasion success on community composition. No correlation existed between community richness and the delay in BAM mineralization by MSH1. The findings suggest that the presence of cooperative residents can alleviate the negative diversity-invasion relationship.  相似文献   

2.
3.
4.
    
The strength of species interactions often varies geographically and locally with environmental conditions. Competitive interactions are predicted to be stronger in benign environments while facilitation is expected to be stronger in harsh ones. We tested these ideas with an aboveground neighbor removal experiment at six salt marshes along the California coast. We determined the effect of removals of either the dominant species, Salicornia pacifica, or the subordinate species on plant cover, aboveground biomass and community composition, as well as soil salinity and moisture. We found that S. pacifica consistently competed with the subordinate species and that the strength of competition varied among sites. In contrast with other studies showing that dominant species facilitate subordinates by moderating physical stress, here the subordinate species facilitated S. pacifica shortly after removal treatments were imposed, but the effect disappeared over time. Contrary to expectations based on patterns observed in east coast salt marshes, we did not see patterns in species interactions in relation to latitude, climate, or soil edaphic characteristics. Our results suggest that variation in interactions among salt marsh plants may be influenced by local‐scale site differences such as nutrients more than broad latitudinal gradients.  相似文献   

5.
    
BackgroundPlant–pollinator community diversity has been found to decrease under conditions of drought stress; however, research into the temporal dimensions of this phenomenon remains limited. In this study, we investigated the effect of seasonal drought on the temporal niche dynamics of entomophilous flowering plants in a water‐limited ecosystem. We hypothesized that closely related native and exotic plants would tend to share similar life history and that peak flowering events would therefore coincide with phylogenetic clustering in plant communities based on expected phenological responses of plant functional types to limitations in soil moisture availability.LocationGaliano Island, British Columbia, Canada.MethodsCombining methods from pollinator research and phylogenetic community ecology, we tested the influence of environmental filtering over plant community phenology across gradients of landscape disturbance and soil moisture. Floral resource availability and community structure were quantified by counts of flowering shoots. We constructed a robust phylogeny to analyze spatial and temporal variation in phylogenetic patterns across the landscape, testing the significance of the observed patterns against a randomly generated community phylogeny. Phylogenetic metrics were then regressed against factors of disturbance and soil moisture availability.ResultsCritical seasonal fluctuations in floral resources coincided with significant phylogenetic clustering in plant communities, with decreasing plant diversity observed under conditions of increasing drought stress. Exotic plant species in the Asteraceae became increasingly pervasive across the landscape, occupying a late season temporal niche in drought‐stressed environments.Main conclusionResults suggest that environmental filtering is the dominant assembly process structuring the temporal niche of plant communities in this water‐limited ecosystem. Based on these results, and trends seen elsewhere, the overall diversity of plant–pollinator communities may be expected to decline with the increasing drought stress predicted under future climate scenarios.  相似文献   

6.
Allelopathy and exotic plant invasion   总被引:52,自引:0,他引:52  
The primary hypothesis for the astonishing success of many exotics as community invaders relative to their importance in their native communities is that they have escaped the natural enemies that control their population growth – the `natural enemies hypothesis'. However, the frequent failure of introduced biocontrols, weak consumer effects on the growth and reproduction of some invaders, and the lack of consistent strong top-down regulation in many natural ecological systems indicate that other mechanisms must be involved in the success of some exotic plants. One mechanism may be the release by the invader of chemical compounds that have harmful effects on the members of the recipient plant community (i.e., allelopathy). Here, we provide an abbreviated compilation of evidence for allelopathy in general, present a detailed case study for Centaurea diffusa, an invasive Eurasian forb in western North America, and review general evidence for allelopathic effects of invasive plants in native communities. The primary rationale for considering allelopathy as a mechanism for the success of invaders is based on two premises. First, invaders often establish virtual monocultures where diverse communities once flourished, a phenomenon unusual in natural communities. Second, allelopathy may be more important in recipient than in origin communities because the former are more likely to be naïve to the chemicals possessed by newly arrived species. Indeed, results from experiments on C. diffusa suggest that this invader produces chemicals that long-term and familiar Eurasian neighbors have adapted to, but that C. diffusa's new North American neighbors have not. A large number of early studies demonstrated strong potential allelopathic effects of exotic invasive plants; however, most of this work rests on controversial methodology. Nevertheless, during the last 15 years, methodological approaches have improved. Allelopathic effects have been tested on native species, allelochemicals have been tested in varying resource conditions, models have been used to estimate comparisons of resource and allelopathic effects, and experimental techniques have been used to ameliorate chemical effects. We do not recommend allelopathy as a `unifying theory' for plant interactions, nor do we espouse the view that allelopathy is the dominant way that plants interact, but we argue that non-resource mechanisms should be returned to the discussion table as a potential mechanism for explaining the remarkable success of some invasive species. Ecologists should consider the possibility that resource and non-resource mechanisms may work simultaneously, but vary in their relative importance depending on the ecological context in which they are studied. One such context might be exotic plant invasion.  相似文献   

7.
8.
    
Biological invasions depend in part on the resistance of native communities. Meta‐analyses of terrestrial experiments demonstrate that native primary producers and herbivores generally resist invasions of primary producers, and that resistance through competition strengthens with native producer diversity. To test the generality of these findings, we conducted a meta‐analysis of marine experiments. We found that native marine producers generally failed to resist producer invasions through competition unless the native community was diverse, and this diversity effect was weaker in marine than in terrestrial systems. In contrast, native consumers equally resisted invasive producers in both ecosystems. Most marine experiments, however, tested invasive consumers and these invasions were resisted more strongly than were producer invasions. Given these differences between ecosystems and between marine trophic levels, we used a model‐selection approach to assess if factors other than the resistance mechanism (i.e. competition vs. consumption) are more important for predicting marine biotic resistance. These results suggest that understanding marine biotic resistance depends on latitude, habitat and invader taxon, in addition to distinguishing between competition with and consumption by native species. By examining biotic resistance within and across ecosystems, our work provides a more complete understanding of the factors that underlie biological invasions.  相似文献   

9.
    
Plant diversity experiments generally find that increased diversity causes increased productivity; however, primary productivity is typically measured in the presence of a diverse food web, including pathogens, mutualists and herbivores. If food web impacts on productivity vary with plant diversity, as predicted by both theoretical and empirical studies, estimates of the effect of plant diversity on productivity may be biased. We experimentally removed arthropods, foliar fungi and soil fungi from the longest‐running plant diversity experiment. We found that fungi and arthropods removed a constant, large proportion of biomass leading to a greater reduction of total biomass in high diversity plots. As a result, the effect of diversity on measured plant productivity was much higher in the absence of fungi and arthropods. Thus, diversity increases productivity more than reported in previous studies that did not control for the effects of heterotrophic consumption.  相似文献   

10.
    
弱化的植物-土壤生物共生关系降低了一年生入侵植物与本地物种的竞争能力植物与土壤生物,特别是与丛枝菌根真菌(AMF)的关系,可能对外来植物在新环境中的建立和扩张发挥着至关重要的作用。但是,植物对AMF的依赖是否会在入侵后发生变化,及其如何影响与本 地物种的竞争仍然知之甚少。通过同质园实验,我们研究了入侵物种北美车前(Plantago virginica)的原产地(美国)和入侵地(中国)种群对AMF的响应,以及在有无竞争者的情况下这些响应是否发生变化。研究结果显示,原产地种群始终具有较高的AMF侵染率,并且其生物量和种子产量都受益于AMF。不同的是, 入侵地种群从AMF中获得的收益较少,甚至在存在竞争者的情况下,AMF的侵染使得入侵种群的生物量有所降低。入侵种群的这种低菌根依赖度可能与受到本地竞争者的更大抑制作用有关。北美车前入侵地和原产地种群对AMF的不同响应表明,其对菌根真菌的依赖性在入侵中国的过程中发生了改变。我们的发现表明,这种减少的依赖性会使入侵植物在种间竞争中付出一定的代价。  相似文献   

11.
Kaplan I  Lynch ME  Dively GP  Denno RF 《Oecologia》2007,152(4):665-675
Many herbivores elicit biochemical, physiological, or morphological changes in their host plants that render them more resistant to co-occurring herbivores. Yet, despite the large number of studies that investigate how induced resistance affects herbivore preference and performance, very few have simultaneously explored the cascading effects of induction on higher trophic levels and consequences for prey suppression. In our study system, early-season herbivory by leafhoppers elevated plant resistance to subsequent attack by chrysomelid beetles sharing the same host plant. Notably, beetles feeding on leafhopper-damaged plants incurred developmental penalties (e.g., prolonged time in early larval instars) that rendered them more susceptible to predation by natural enemies. As a result, the combined bottom-up effect of leafhopper-induced resistance and the top-down effect of enhanced predation resulted in the synergistic suppression of beetle populations. These results emphasize that higher trophic level dynamics should be considered in conjunction with induced resistance to better understand how plants mediate interspecific interactions in phytophagous insect communities.  相似文献   

12.
13.
李钧敏  董鸣 《生态学报》2011,31(4):1174-1184
寄生植物是生态系统中的特殊类群之一。植物寄生可以驱动生态系统中生物与非生物因子的变化,在生态系统结构与功能中起关键作用。寄生植物可以通过对寄主营养的集聚、改变凋落物的质量与数量、改变根的周转与分泌物格局、改变土壤水势,从而影响土壤理化特性。寄生植物会改变寄主的行为,改变寄主与非寄主植物之间的相互作用,从而影响植物群落的结构、多样性和动态,进而影响植被演替和植被生产力等。寄生植物与寄主均可被消费者取食,可直接或间接地影响生态系统的食草动物,包括草食昆虫等。寄生植物与寄主的其它寄生物存在竞争关系,可以直接或间接地影响寄主的其它寄生植物或病原真菌。寄生植物可以明显地改变土壤地球化学循环,将固有的不可动的成分转变为可利用的营养成分,改变土壤生物群落的结构与功能,从而显著影响地下生物群落。这些表明,植物寄生对生态系统的结构和功能有重要影响。针对特殊的被入侵的植物群落,该地寄生植物可以通过影响入侵植物寄主的生长、繁殖、生物量分配格局,改变土壤的理化特性,促进非寄主的非优势本地植物的生长,从而改变被入侵植物群落结构与多样性,达到生物防治及生态恢复的目的。  相似文献   

14.
    
Disturbance is thought to be a major factor influencing patterns of biodiversity. In addition, disturbance can modify community composition if there are species specific trade-offs between fitness and disturbance tolerance. Here, we examine the role of disturbance on the evolution of coexisting biofilm-forming morphotypes of Pseudomonas fluorescens maintained in spatially structured laboratory microcosms. We identified four heritably stable ecotypes that varied significantly in their competitiveness under different disturbance treatments. Furthermore, we identified significant trade-offs in competitiveness across disturbance treatments for three of four of these ecotypes. These trade-offs modified dominance relationships between strains and thus altered community composition, with a peak of ecotype diversity occurring at intermediate disturbance frequencies.  相似文献   

15.
    
Recent evidence suggests that interference competition between bacteria shapes the distribution of the opportunistic pathogen Staphylococcus aureus in the lower nasal airway of humans, either by preventing colonization or by driving displacement. This competition within the nasal microbial community would add to known host factors that affect colonization. We tested the role of toxin‐mediated interference competition in both structured and unstructured environments, by culturing S. aureus with toxin‐producing or nonproducing Staphylococcus epidermidis nasal isolates. Toxin‐producing S. epidermidis invaded S. aureus populations more successfully than nonproducers, and invasion was promoted by spatial structure. Complete displacement of S. aureus was prevented by the evolution of toxin resistance. Conversely, toxin‐producing S. epidermidis restricted S. aureus invasion. Invasion of toxin‐producing S. epidermidis populations by S. aureus resulted from the evolution of toxin resistance, which was favoured by high initial frequency and low spatial structure. Enhanced toxin production also evolved in some invading populations of S. epidermidis. Toxin production therefore promoted invasion by, and constrained invasion into, populations of producers. Spatial structure enhanced both of these invasion effects. Our findings suggest that manipulation of the nasal microbial community could be used to limit colonization by S. aureus, which might limit transmission and infection rates.  相似文献   

16.
    
1. Effects of the genotypic identity of a plant can extend beyond the individual phenotype to the community. Because plant material is moved around at an increasing rate, introductions of non‐local plant genotypes that are difficult to distinguish from local ones are probably common. Even though such introductions can cause cryptic invasions, their effects on local communities remain largely unexplored. 2. Ammophila arenaria is transported and planted throughout the world for dune stabilisation. We used this grass to address the impact of the introduction of non‐local genotypes on the diversity of the local invertebrate community. We installed plants from the local population and five introduced populations from regions throughout the natural range in a common environment and identified all naturally colonising aboveground invertebrates. 3. The diversity of the entire invertebrate community, as well as that of herbivores, decreased with increasing geographical distance of the plants’ location of origin. Differences between plant populations in predator and detritivore diversity were less consistent with this pattern. Invertebrate species turnover was not related to genetic distance between populations. 4. Our study demonstrates that introduction of non‐local genotypes of a resident plant species can negatively affect the invertebrate community. This confirms the idea that caution should be exerted when selecting plant material for restoration or sand stabilisation purposes. Hitherto, explanations for the invasiveness of A. arenaria in other continents have been sought in its release from belowground pathogens. Our observation of lower shoot herbivore diversity on non‐local plants, however, may indicate a role for release from aboveground enemies.  相似文献   

17.
    
While several studies have established a positive correlation between community diversity and invasion resistance, it is less clear how species interactions within resident communities shape this process. Here, we experimentally tested how antagonistic and facilitative pairwise interactions within resident model microbial communities predict invasion by the plant–pathogenic bacterium Ralstonia solanacearum. We found that facilitative resident community interactions promoted and antagonistic interactions suppressed invasions both in the lab and in the tomato plant rhizosphere. Crucially, pairwise interactions reliably explained observed invasion outcomes also in multispecies communities, and mechanistically, this was linked to direct inhibition of the invader by antagonistic communities (antibiosis), and to a lesser degree by resource competition between members of the resident community and the invader. Together, our findings suggest that the type and strength of pairwise interactions can reliably predict the outcome of invasions in more complex multispecies communities.  相似文献   

18.
    
Recently, many studies have focused on the possibility of restoring mangrove ecosystems by introducing fast‐growing mangroves. However, methods for managing an exotic fast‐growing species to restore mangrove ecosystems and at the same time preventing invasion by introduced species remains unclear. Sonneratia apetala Buch‐Ham is one example of an exotic mangrove with both high ecological value and potential risk for invasion after introduction. To investigate the possibility of reducing the potential for invasion by altering light availability, we simulated different irradiances of S. apetala understory in the greenhouse. For each irradiance treatment, three levels of competition between S. apetala and native mangroves Aegiceras corniculatum (L.) were used: no competition, intraspecific competition and interspecific competition. Compared with A. corniculatum, S. apetala showed a significantly higher growth rate for both height and biomass accumulation under full irradiation. Compared to the full irradiation treatment, the shading treatment significantly reduced the height, total biomass and biomass allocation to leaves of S. apetala by 61.31, 71.0, and 76.2%, respectively, whereas the growth of A. corniculatum was not affected. The results suggested that lowering light availability could inhibit the growth of S. apetala and increase the competitiveness of A. corniculatum. Planting introduced fast‐growing mangroves at a density of approximately 2,000 plants/hm2 is an effective strategy for preventing potential invasion and restoring wetland habitats. By taking advantage of the differences in shade tolerance between fast‐growing exotic mangroves and native mangroves, introduction of fast‐growing mangroves in coastal areas could have huge potential for reforesting mangrove ecosystems.  相似文献   

19.
20.
    
To investigate patterns of biotic community composition at different spatial scales and biological contexts, we used environmental DNA metabarcoding to characterize eukaryotic and prokaryotic assemblages present in the phytotelmata of three bromeliad species (Aechmea gamosepala, Vriesea friburgensis, and Vriesea platynema) at a single Atlantic Forest site in southern Brazil. We sampled multiple individuals per species and multiple tanks from each individual, totalizing 30 samples. We observed very high levels of diversity in these communities, and remarkable variation across individuals and even among tanks from the same individual. The alpha diversity was higher for prokaryotes than eukaryotes, especially for A. gamosepala and V. platynema samples. Some biotic components appeared to be species‐specific, while most of the biota was shared among species, but varied substantially in frequency among samples. Interestingly, V. friburgensis communities (which were sampled at nearby locations) tended to be more heterogeneous across samples, for both eukaryotes and prokaryotes. The opposite was true for V. platynema, whose samples were more broadly spaced but whose communities were more similar to each other. Our results indicate that additional attention should be devoted to within‐individual heterogeneity when assessing bromeliad phytotelmata biodiversity, and highlight the complexity of the biotic assemblages gathered in these unique habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号