首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of inhibition of protein synthesis on the replication of the R factor Rts1 in Proteus mirabilis was examined by using the technique of CsCl density gradient centrifugation. Only 12% of the copies of Rts1 were found to replicate during amino acid starvation, whereas there was a 30% increase in the amount of P. mirabilis chromosomal deoxyribonucleic acid (DNA) during the same period. Essentially the same amount of Rts1 and host chromosome replication was observed when chloramphenicol was used to inhibit protein synthesis. The replication of Rts1 DNA was also examined in experiments in which cultures were starved for amino acids in (14)N-labeled medium and then transferred to (15)N-labeled medium containing the required amino acids. These experiments showed that Rts1 replication took place throughout the first generation in (15)N-labeled medium and that each copy of Rts1 was replicated one time during the first generation of chromosomal DNA synthesis in (15)N-medium.  相似文献   

2.
Replication of the thermosensitive drug resistance factor Rts1 was studied at the nonpermissive temperature (42 degrees C). It was concluded from the following observations that replication of this plasmid takes place at 42 degrees C without involving the covalently closed circular (CCC) form of deoxyribonucleic acid (DNA). (i) DNA-DNA- reassociation kinetics studies with purified Rts1 DNA showed that Rts1 DNA increased several-fold during cell growth at 42 degrees C while very little, if any, CCC DNA was synthesized. (ii) When Escherichia coli 20S0(Rts1) was labeled with [3H]thymidine at 42 degrees C, a significant amount of radioactive DNA hybridizable to Rts1 DNA was formed. This DNA was found in a fraction where DNA other than CCC DNA was expected in alkaline sucrose density gradient centrifugation analysis. When E. coli 20S0(Rts1) was labeled at 32 degrees C, the labeled CCC DNA did not disappear during a chase period at 42 degrees C. This indicates that preformed CCC DNA does not participate in replication at the nonpermissive temperature. These results are consistent with the hypothesis that there are two modes of replication of Rts1 DNA, one involving a CCC molecule and the other not involving this form, and that only the latter mode takes place at the nonpermissive temperature.  相似文献   

3.
Control of replication and segregation of R plasmid Rts1.   总被引:7,自引:6,他引:1       下载免费PDF全文
A mutant plasmid, pTW2, which was derived from the integrated Rst1 genome in the Escherichia coli chromosome, was studied as to its mode of replication at 30 degrees C. When Proteus mirabilis Pm17 harboring pTW2 was grown in broth at 30 degrees C, a considerable number of R- segregants (approximately 40%) were consistently observed. This indicates that pTW2 is unstable even at the permissive temperature for the replication of Rts1. The pTW2+ cells in a culture were heterogeneous with respect to the level of kanamycin resistance, ranging from 500 to 4,000 mug of the drug per ml. The amount of pTW2 deoxyribonucleic acid (DNA) relative to the Pm17 chromosomal DNA was about fivefold as large as that of Rts1 DNA in an exponentially growing culture. In addition, pTW2 in P. mirabilis continued to replicate after the chromosome had ceased to replicate, which was shown in the study of the inhibition of protein synthesis. Contrary to pTW2, the parent plasmid Rts1 is highly stable, and the relative percent Rts1 DNA is maintained at approximately 7% in any cultural conditions at a permissive temperature. These results suggest that copies of pTW2 may not segregate evenly into the host progeny upon cell division and that the replication of pTW2 does not coordinate with that of the chromosome. A remarkable instability of pTW2 as well as an increase in the relative percent pTW2 DNA was also shown when E. coli were used as the host cells. These results suggest the possibility that there is a gene or a gene cluster on the Rst1 genome responsible for the control of both replication and segregation of Rts1.  相似文献   

4.
Previous publications showed that a covalently closed circular (CCC) Rts1 plasmid deoxyribonucleic acid (DNA) that confers kanamycin resistance upon the host bacteria inhibits host growth at 42 degrees C but not at 32 degrees C. At 42 degrees C, the CCC Rts1 DNA is not formed, and cells without plasmids emerge. To investigate the possible role of cyclic adenosine 3',5'-monophosphate (cAMP) in the action of Rts1 on host bacteria, Rts1 was placed in an Escherichia coli mutant (CA7902) that lacks adenylate cyclase or in E. coli PP47 (a mutant lacking cAMP receptor protein). Rts1 did not exert the thermosensitive effect on these cells, and CCC Rts1 DNA was formed even at 42 degrees C. Upon addition of cAMP to E. coli CA7902(Rts1), cell growth and formation of CCC Rts1 DNA were inhibited at 42 degrees C. The addition of cAMP to E. coli PP47(Rts1) did not cause inhibitory effects on either cell growth or CCC Rts1 DNA formation at 42 degrees C. The inhibitory effect of cAMP on E. coli CA7902(Rts1) is specific to this cyclic nucleotide, and other cyclic nucleotides such as cyclic guanosine 3',5'-monophosphate did not have the effect. For this inhibitory effect, cells have to be preincubated with cAMP; the presence of cAMP at the time of CCC Rts1 DNA formation is not enough for the inhibitory effect. If the cells are preincubated with cAMP, one can remove cAMP during the [(3)H]thymidine pulse and still observe its inhibitory effect on the formation of CCC Rts1 DNA. The presence of chloramphenicol during this preincubation period abolished the inhibitory effect of cAMP. These observations suggest that cAMP is necessary to induce synthesis of a protein that inhibits CCC Rts1 DNA formation and cell growth at 42 degrees C.  相似文献   

5.
The thermosensitive replication of an R plasmid, pJY5, isolated from Enterobacter cloacae, was studied. pJY5 consisted of 61 million daltons of covalently closed circular (CCC) deoxyribonucleic acid (DNA) with a buoyant density of 1.714 g/cm3 (55 mol % guanine plus cytosine). In Escherichia coli, this plasmid replicated stringently at 32 degrees C, but ceased its CCC DNA replication after a short incubation at 42 degrees C, resulting in production of R- segregants. The thermosensitive replication of pJY5 was not overcome by the coexistence of non-thermosensitive R plasmids. The plasmid manifested an inhibitory effect on host bacterial cell growth at 42 degrees C, although the effect was less prominent than that of R plasmids belonging to the T-incompatibility group, Rts1, R401, and R402. When the pJY5 plasmid was transferred into E. cloacae, however, no R- segregants were detected at any culture temperature, even 42 degrees C. Alkaline sucrose gradient analysis revealed that a significant amount of pJY5 CCC DNA was synthesized in E. cloacae at the high temperature but not in E. coli. Furthermore, the growth-inhibitory effect of pJY5 on hosts at 42 degrees C was not observed in E. cloacae. On the other hand, Rts1 and R401 were found to be thermosensitive in E. cloacae as well as in E. coli.  相似文献   

6.
Unlike bacteria such as Escherichia coli and Bacillus subtilis, several species of freshwater cyanobacteria are known to contain multiple chromosomal copies per cell, at all stages of their cell cycle. We have characterized the replication of multi-copy chromosomes in the cyanobacterium Synechococcus elongatus PCC 7942 (hereafter Synechococcus 7942). In Synechococcus 7942, the replication of multi-copy chromosome is asynchronous, not only among cells but also among multi-copy chromosomes. This suggests that DNA replication is not tightly coupled to cell division in Synechococcus 7942. To address this hypothesis, we analysed the relationship between DNA replication and cell doubling at various growth phases of Synechococcus 7942 cell culture. Three distinct growth phases were characterised in Synechococcus 7942 batch culture: lag phase, exponential phase, and arithmetic (linear) phase. The chromosomal copy number was significantly higher during the lag phase than during the exponential and linear phases. Likewise, DNA replication activity was higher in the lag phase cells than in the exponential and linear phase cells, and the lag phase cells were more sensitive to nalidixic acid, a DNA gyrase inhibitor, than cells in other growth phases. To elucidate physiological differences in Synechococcus 7942 during the lag phase, we analysed the metabolome at each growth phase. In addition, we assessed the accumulation of central carbon metabolites, amino acids, and DNA precursors at each phase. The results of these analyses suggest that Synechococcus 7942 cells prepare for cell division during the lag phase by initiating intensive chromosomal DNA replication and accumulating metabolites necessary for the subsequent cell division and elongation steps that occur during the exponential growth and linear phases.  相似文献   

7.
N Raghavan  M Ishaq    A Kaji 《Journal of virology》1980,35(2):551-554
Rts1 is a plasmid which confers upon the host bacteria the capacity to restrict T4 bacteriophage growth at 32 degrees C but not at 42 degrees C. Pulse-labeling of phage-infected cells showed that Rts1 restricts the synthesis of T1 DNA. Despite efficient restriction of T4 phage growth and DNA synthesis, infected Escherichia coli 20SO harboring Rts1 synthesized both early and late T4 phage RNA. Synthesis of early T4 phage RNA under restrictive conditions (32 degrees C) was almost equal to that found under nonrestrictive conditions, and a lesser, but significant, amount of late T4 phage RNA was made in almost complete absence of T4 DNA synthesis. Moreover, very little, if any, T4 phage-coded lysozyme was detected in the infected E. coli 20SO/Rts1 at 32 degrees C, whereas normal amounts of lysozyme were present at 42 degrees C.  相似文献   

8.
The RepA protein of the Rts1 plasmid, consisting of 288 amino acids, is a trans-acting protein essential for replication. A mutant repA gene, repA delta C143, carrying a deletion that removed the 143 C-terminal amino acids of RepA, could transform, but at a low frequency, an Escherichia coli polA strain, JG112, when repA delta C143 was cloned into pBR322 with Rts1 ori in the natural configuration. The transformation was less efficient without the dyad DnaA box in the ori region, and no transformation occurred at 42 degrees C, characteristic of Rts1 replication. A fusion of the 3'-terminal half of repA of the P1 plasmid to repA delta C143 yielded a pBR322 chimeric plasmid that contained Rts1 ori through hybrid (Rts1-P1) repA. This plasmid was maintained much more stably in JG112 at 37 degrees C. At 42 degrees C, however, it was quite unstable. The overproduced hybrid RepA protein showed interference with mini-Rts1 replication in trans and also exhibited an autorepressor function, although both activities were decreased. These findings suggest that the N-terminal half of the RepA molecule of Rts1 is involved in the activation of the replication origin.  相似文献   

9.
Rts1 is a high-molecular-weight (126 x 10(6)) plasmid encoding resistance to kanamycin. It expresses unusual temperature-sensitive phenotypes, which affect plasmid maintenance and replication, as well as host cell growth. We have cloned the essential replication region of Rts1 from pAK8, a smaller derivative which is phenotypically similar to Rts1. Restriction endonuclease digests of isolated pAK8 deoxyribonucleic acid were allowed to "self-ligate" (ligation without an additional cloning vector) and subsequently were used to transform Escherichia coli strain 20SO to kanamycin resistance. Screening of these strains for the phenotypes of thermosensitive host growth and temperature-dependent plasmid elimination demonstrated that these two properties were expressed independently. Furthermore, it was shown that the Rts1 replication locus per se is not necessarily responsible for altered host growth at the nonpermissive temperature. The kanamycin resistance fragment of pAK8 was also cloned into pBR322. Electrophoretic analysis of BamHI restriction enzyme digests of this plasmid and similar digests of an Rts1 miniplasmid has allowed the identification of an 18.6-megadalton fragment carrying the replication locus and a 14.1-megadalton fragment carrying the kanamycin resistance gene.  相似文献   

10.
We have confirmed and extended the observation of Terawaki et al. that the R factor, Rts1, alters the growth of its host at 42 C. In all media tested there was a period during which total cell numbers increased linearly, while viable counts remained constant. During this period the rate of precursor incorporation per cell particle into deoxyribonucleic acid, ribonucleic acid, and protein declined steadily. These patterns were a consequence of the accumulation of increasing numbers of cells which had lost colony-forming ability. A temperature shiftdown experiment showed that the colony formers could, after a lag, go on to divide normally, whereas most of the noncolony formers could not undergo even a limited number of divisions after shiftdown. The number of normal divisions which occurred after shiftup of Rts1 cells to 42 C was medium dependent. In rich medium there were, on the average, two or three doublings; in glucose medium, one; and in glycerol medium, only a fraction of a doubling. Even in glucose medium, however, no increase in viable counts was observed during growth at 42 C if the cells were first starved for glucose for 1 h at 42 C. A temperature shiftdown from 42 C to 27 C during glucose starvation reversed the effect of starvation at 42 C alone. These results are consistent with the hypothesis that the thermosensitive Rts1 component(s) responsible for the host effects is present at permissive temperature, but can undergo a reversible temperature-induced alteration which then interferes with some essential host function. The detrimental effects of this R factor on its host were also reflected in a heightened sensitivity to kanamycin and actinomycin D at 42 C. Electron microscope observations revealed changes in the appearance of the cell membrane. Membranous invaginations were noted at discrete sites in the cell.  相似文献   

11.
The RepA protein of the plasmid Rts1, consisting of 288 amino acids, is a trans-acting protein essential for initiation of plasmid replication. To study the functional domains of RepA, hybrid proteins of Rts1 RepA with the RepA initiator protein of plasmid P1 were constructed such that the N-terminal portion was from Rts1 RepA and the C-terminal portion was from P1 RepA. Six hybrid proteins were examined for function. The N-terminal region of Rts1 RepA between amino acid residues 113 and 129 was found to be important for Rts1 ori binding in vitro. For activation of the origin in vivo, an Rts1 RepA subregion between residues 177 and 206 as well as the DNA binding domain was required. None of the hybrid initiator proteins activated the P1 origin. Both in vivo and in vitro studies showed, in addition, that a C-terminal portion of Rts1 RepA was required along with the DNA binding and ori activating domains to achieve autorepression, suggesting that the C-terminal region of Rts1 RepA is involved in dimer formation. A hybrid protein consisting of the N-terminal 145 amino acids of Rts1 and the C-terminal 142 amino acids from P1 showed strong interference with both Rts1 and P1 replication, whereas other hybrid proteins showed no or little effect on P1 replication.  相似文献   

12.
The relationship between chromosome replication and cell division was investigated in a thymineless mutant of Escherichia coli B/r. Examination of the changes in average cell mass and DNA content of exponential cultures resulting from changes in the thymine concentration in the growth medium suggested that as the replication time (C) is increased there is a decrease in the period between termination of a round of replication and the subsequent cell division (D). Observations on the pattern of DNA synthesis during the division cycle were consistent with this relationship. Nevertheless, the kinetics of transition of exponential cultures moving between steady states of growth with differing replication velocities provided evidence to support the view that the time of cell division is determined by termination of rounds of replication under steady-state conditions.  相似文献   

13.
An R plasmid Rts1 was integrated into the gal region of the chromosome of Escherichia coli XA-7012 (galE) strain by the directed transposition technique. The integration of the Rts1 genome was confirmed mainly by conjugation studies and also by transduction experiments using phage P1. As a result, it was found that the integrated genome contained genes responsible for kanamycin resistance, conjugal transferability, and for autonomous replication. As reported previously, Rts1 is temperature sensitive in replication and inhibits the growth of the host at nonpermissive temperature. However, although a plasmid derived from the integrated Rts1 genome still demonstrates temperature sensitivity upon transfer and high level of kanamycin resistance, this plasmid no longer displays temperature sensitivity in replication and the inhibitory effect on the host. These results indicate that the temperature sensitivity of replication of Rts1 and its inhibitory effect on the host cell are due to the presence of a gene or gene cluster on the Rts1 genome and that the gene(s) is clearly discriminated from the one responsible for the temperature sensitivity of transfer.  相似文献   

14.
A replication region, consisting of a 1.1-megadalton (Md) EcoRI/HindIII fragment, was isolated from an Rts1 derivative plasmid. This 1.1-Md fragment, designated as mini-Rts1, was ligated to either pBR322 or a nonreplicating DNA fragment specifying a drug resistance, and its replication properties were investigated. The mini-Rts1 plasmid was cured at a high frequency at 42 °C, while it was maintained stably at 37 °C despite it existed in low copy number. These behaviors are quite similar to those of Rts1. By dissecting the pBR322:mini-Rts1 chimeric plasmid with AccI endonuclease, an inc region of 0.34 Md in size was cloned, which expressed incompatibility toward Rts1. Proteins encoded on the mini-Rts1 genome were examined in the minicell system, and one specific product of 35,000 daltons in molecular weight was identified. Any polypeptides specific for the 0.34-Md inc+ region within mini-Rts1 were not detected.  相似文献   

15.
The dnaA gene is essential for initiation of chromosomal replication in Escherichia coli. A gene homologous with the E. coli dnaA was found in the replication origin region of the Bacillus subtilis chromosome. We have now isolated a temperature sensitive mutant of the B. subtilis dnaA by in vitro mutagenesis of the cloned gene. At a nonpermissive temperature, 49 degrees C, DNA replication stops completely after 60% increase in a rich medium, while cell mass continues to increase exponentially at 2.5 times the rate at 30 degrees C. A ratio of gene frequency between purA (origin marker) and metB (terminus marker) changes gradually from 2.7 at 30 degrees C to 1.0 in 45 min at 49 degrees C, indicating completion of the ongoing replication cycle. Upon the temperature shift down to 30 degrees C after the incubation at 49 degrees C for 60 min, DNA replication resumes without delay, and the purA/metB ratio increases rapidly to 6, i.e. consecutive initiation of more than two rounds of replication. Addition of chloramphenicol at the time of the temperature shift down did not inhibit the increase in the purA/metB ratio, while rifampicin inhibited the re-initiation completely. The mutation is a single base change from C to T in the dnaA gene resulting in an amino acid substitution from Ser to Phe in the DnaA protein. The mutation was responsible for both temperature sensitive growth and the defect in initiation of chromosomal replication. We observed a remarkable correlation between the amount of DnaA protein and the amount of initiation potential accumulated during incubation at the non-permissive temperature.  相似文献   

16.
Incompatibility of the R plasmid Rts1 and its replication mutant pTW2 was studied in recA host cells of Escherichia coli. When the R plasmid R401, belonging to the same incompatibility group as Rts1, was used as a test plasmid, R401 was eliminated preferentially from (Rts-R401)+ cells irrespective of the direction of transfer. In contrast, pTW2 and R401 were mutually excluded. The decreased incompatibility of pTW2 was confirmed by a direct incompatibility test in which a derivative of Rts1 expelled pTW2 exclusively. Alkaline sucrose gradients of pTW2 and Rts1 DNA indicated that approximately one-fourth of the Rts1 genome was deleted in pTW2. In addition, both the various temperature-dependent properties of Rts1 and the inhibitory effect on phage T4 development were also lost in pTW2. A possible mechanism that regulates the stringent replication of Rts1 is discussed.  相似文献   

17.
Plasmids R68.45, RP4, RP4::Mu cts62, RP1ts::Tn10, RP1ts::Tn9, Rts1 and RP41 were transferred into cells of photosynthetic nitrogen-fixation bacterium Rhodopseudomonas sphaeroides from Escherichia coli and Pseudomonas aeruginosa. The transfer of plasmids occurred with high frequency of 10(-1) to 10(-2) per donor cell in all cases. Mobilization of R. sphaeroides 2R chromosome was obtained by RP4 and Rts1 plasmids at a frequency of 10(-7) to 10(-8) per donor cell in all cases. Mobilization of R. sphaeroides 2R chromosome was obtained by RP4 and Rts1 plasmids at a frequency of 10(-7) to 10(-8) per donor cell. Bacteriophage Mu cts62 could be induced from the plasmid DNA in R. sphaeroides 2R cells and was capable of the lytic growth and producing phage progeny. It was demonstrated that an increase in the efficiency of donor chromosomal genes transfer into recipient cells could be achieved in crosses with the donor carrying RP4::Mcts62 plasmid.  相似文献   

18.
Hydroxyurea (10 mM) arrests the exponential growth of Tetrahymena by blocking DNA replication during S-phase. After removal of the hydroxyurea (HU), they have a long recovery period during which they are active in DNA synthesis. 3H-TdR uptake showed that on completion of the recovery period, the cells divide (recovery division) and enter a cell cycle which lacks G1. The frequency, size and DNA content of the extranuclear chromatin bodies (ECB) formed at this division are all markedly increased (2–4) over the corresponding values obtained from exponential growth phase controls. Microspectrophotometric analysis of macronuclear DNA content (N) coupled with the cytoplasmic dry mass (C) values suggest that specific N to C ratios (N/C) are required for the initiation of DNA replication and fission: during a normal (exponential growth) cell cycle, both N and C double, but asynchronously, so that the N/C of both post-fission-daughter cells and pre-fission cells is identical (standardized to N/C = 1) but late G1 cells have a low N/C. During a 10 hr exposure to HU, the N remains essentially the same whereas the C increases. When the HU is removed, the N increases by 4× and the C continues to increase until just prior to recovery division when it also reaches a value 4× that of the original daughter cells. Thus, the N/C = 1 is re-established. The enlarged ECB formed during recovery division may function to lower the N/C in the daughter cells, which in turn may in some way stimulate immediate DNA replication, thus eliminating G1. The elimination of G1 (and shortening in a few subsequent cell cycles) allows less time for cytoplasmic growth and results in the return of the cells to the generation time and the N and C values observed prior to the HU treatment.  相似文献   

19.
An Hfr strain of Escherichia coli K-12 was obtained by integrative suppression with a thermosensitive plasmid, Rts1. The R plasmid was integrated into the chromosome between rif and thr, and transfer of the chromosome occurred counterclockwise. The thermosensitivity of host cell growth due to the dnaA mutation was markedly but not completely reduced in this integratively suppressed Hfr strain. When the dnaA mutation was removed by transducing the dnaA+ genome to this Hfr, the thermosensitivity of cell growth due to existence of Rts1 was suppressed in contrast to strains carrying it autonomously. Thermosensitivity of cell growth appeared again when the plasmid was detached from the chromosome to exist autonomously. Contrary to the effect on cell growth, the transfer of the chromosome and the plasmid itself and the ability to "restrict" T-even phages were still thermosensitive in all of these strains carrying Rts1, irrespective of its state of existence. The detached plasmid as well as the original Rts1 were segregated upon growth at 42 C. These data are discussed in relation to chromosome-plasmid interaction. One of the most important conculusions is that some plasmid genes, related to their replication, are phenotypically suppressed by the chromosome when it is integrated.  相似文献   

20.
Polyoma (Py) virus multiplies, at 34 and 38.5 C, in wild-type (WT-4) and in ts A1S9 mouse L cells, which are temperature sensitive for growth and for DNA replication (R. Sheinin, 1976; L. H. Thompson et al., 1970). De novo synthesis of double-stranded, fully covalently closed Py DNA has been shown to proceed by semiconservative replication in WT-4 and ts A1S9 cells at the permissive and nonpermissive temperatures. Cell DNA is made late during infection, by both cell types and at both temperatures. Semiconservative replication of cell DNA proceeds in Py-infected WT-4 cells incubated at 34 or at 38.5 C and in Py-infected ts A1S9 cells incubated at 34 C. In virus-infected ts A1S9 cells incubated at 38.5 C, cell DNA synthesis appears to proceed almost entirely by a process analogous to repair replication. The inability of ts A1S9 cells to produce large-molecular-weight chromosomal DNA strands, at 38.5 C, by the normal mechanism is not overcome by Py infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号