首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The signal peptide of secretory proteins requires a basic amino terminus followed by a stretch of hydrophobic residues to effect efficient translocation of precursor proteins. Replacement of the positively charged amino-terminal residues of prolipoprotein by acidic amino acids decreased the rate of precursor translocation (Inouye, S., Soberon, X., Franceschini, T., Nakamura, K., Itakura, K., and Inouye, M. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 3438-3441; Vlasuk, G. P., Inouye, S., Ito, H., Itakura, K., and Inouye, M. (1983) J. Biol. Chem. 258, 7141-7148). We demonstrate here that an arginine residue, but not an aspartate, when localized at position 9 of the hydrophobic region of the lipoprotein signal peptide, is able to suppress intramolecularly the processing defect caused by an acidic amino terminus. Furthermore, when present at position 14 of the signal peptide, this positive residue, but not aspartate, was able to support efficient translocation of unmodified prolipoprotein. This demonstrates that a positive residue can restore the function of a severely defective signal peptide and need not be localized at the amino terminus to do so. Both aspartate and arginine substitution at position 14 of the lipoprotein signal peptide stimulated prolipoprotein synthesis. This effect was position-specific, did not require precursor translocation, and was dominant to the inhibition of synthesis caused by an acidic amino terminus.  相似文献   

2.
The deletion of several codons within the signal sequence coding region of the Escherichia coli lipoprotein gene has been accomplished by oligonucleotide-directed site-specific mutagenesis. The deletion of the Leu-13 residue in a mutant in which two glycine residues had previously been deleted from the hydrophobic region (Inouye, S., Vlasuk, G., Hsiung, H., and Inouye, M. (1984) J. Biol. Chem. 259, 3729-3733) was found to cause the accumulation of the unmodified form of the protein in the cytoplasm and cytoplasmic membrane. This mutation also caused a cessation in cell growth within 15 min after synthesis of the mutant protein was induced. A deletion of the Val-7 residue was capable of suppressing the effect of the Leu-13 deletion when both are present. However, by itself the Val-7 deletion appeared to have little effect on the glycine mutant. The ability of the signal sequence to mediate the secretion of the protein after the deletion of 4 residues from the hydrophobic region demonstrates a surprising degree of flexibility in the length of this region. The deletion mutations were also found to have an unusual effect on the rate of synthesis of lipoprotein.  相似文献   

3.
The requirement for the glycine residue at the COOH terminus of the signal peptide of the precursor of the major Escherichia coli outer membrane lipoprotein was examined. Using oligonucleotide-directed site-specific mutagenesis, this residue was replaced by residues of increasing side chain size. Substitution by serine had no effect on the modification or processing of the prolipoprotein. Substitution by valine or leucine resulted in the accumulation of the unmodified precursor, whereas threonine substitution resulted in slow lipid modification and no detectable processing of the lipid modified precursor. The results indicate that serine is the upper limit on size for the residue at the cleavage site. Larger residues at this position prevent the action of both the glyceride transferase and signal peptidase II enzymes, indicating that the cleavage site residue plays a role in events prior to proteolytic cleavage. The upper limit on size of the cleavage site residue is similar to that found for exported proteins cleaved by signal peptidase I, as well as eucaryotic exported proteins. The possibility that the cleavage site residue may have a role other than active site recognition by the signal peptidase is discussed.  相似文献   

4.
A signal peptidase specifically required for the secretion of the lipoprotein of the Escherichia coli outer membrane cleaves off the signal peptide at the bond between a glycine and a cysteine residue. This cysteine residue was altered to a glycine residue by guided site-specific mutagenesis using a synthetic oligonucleotide and a plasmid carrying an inducible lipoprotein gene. The induction of mutant lipoprotein production was lethal to the cells. A large amount of the prolipoprotein was accumulated in the outer membrane fraction. No protein of the size of the mature lipoprotein was detected. These results indicate that the prolipoprotein signal peptidase requires a glyceride modified cysteine residue at the cleavage site.  相似文献   

5.
To investigate the functions of signal peptide in protein secretion in the middle silk gland of silkworm Bombyx mori, a series of recombinant Autographa californica multiple nucleopolyhedroviruses containing enhanced green fluorescent protein (egfp) gene, led by sericin-1 promoter and mutated signal peptide coding sequences, were constructed by region-deletions or single amino acid residue deletions. The recombinant Autographa californica multiple nucleopolyhedroviruses were injected into the hemocoele of newly ecdysed fifth-instar silkworm larvae. The expression and secretion of EGFP in the middle silk gland were examined by fluorescence microscopy and Western blot analysis. Results showed that even with a large part (up to 14 amino acid residues) of the ser-1 signal peptide deleted, the expressed EGFP could still be secreted into the cavity of the silk gland. Western blot analysis showed that shortening of the signal peptide from the C-terminal suppressed the maturation of pro-EGFP to EGFP. When 8 amino acid residues were deleted from the C-terminal of the signal peptide (mutant 13 aa), the secretion of EGFP was incomplete, implicating the importance of proper coupling of the h-region and c-region. The deletion of amino acid residue(s) in the h-region did not affect the secretion of EGFP, indicating that the recognition of signal peptide by translocation machinery was mainly by a structural domain, but not by special amino acid residue(s). Furthermore, the deletion ofArg^2 or replacement with Asp in the n-region of the signal peptide did not influence secretion of EGFP, suggesting that a positive charge is not crucial.  相似文献   

6.
A globomycin-resistant mutant of Escherichia coli was found to produce a precursor of the major outer membrane lipoprotein (prolipoprotein), in which the glycine residue at position 14 within the signal peptide was replaced by an aspartic acid residue. The same mutation has been reported by Lin et al. (Proc. Natl. Acad. Sci. U.S.A. 175:4891-4895, 1978). The structural gene of the mutant prolipoprotein was inserted into an inducible expression cloning vehicle. When the mutant prolipoprotein was produced in lipoprotein-minus host cells, 82% of the unprocessed protein was found in the membrane fraction, with the remaining 18% localized in the soluble fraction. However, when the production of the mutant prolipoprotein was induced in the wild-type lpp+ host cells, only 31% of the mutant prolipoprotein was found in the membrane fraction, leaving the remaining 69% in the soluble, cytoplasmic fraction. In addition, the assembly of the wild-type lipoprotein in these cells was not affected, whether the mutant prolipoprotein was produced or not. These results suggest that secretions of both mutant and wild-type prolipoproteins utilize the same component(s) responsible for the initial stages of secretion across the cytoplasmic membrane. However, it appears that the wild-type lipoprotein has a higher affinity for these components than does the mutant lipoprotein.  相似文献   

7.
The hydrophobic region of the signal peptide of the OmpA protein of the Escherichia coli outer membrane was extensively altered in its hydrophobicity and predicted secondary structure by site-specific mutagenesis. The mutated signal peptides were fused to nuclease A from Staphylococcus aureus, and the function of the signal peptide was examined by measuring the rate of processing of the signal peptide. Six of the 12 mutated signal peptides in the nuclease hybrid were processed faster than the wild-type. In particular, the processing of the mutated signal peptide in which the alanine residue at position 9 was substituted with a valine residue was enhanced almost twofold over the processing of the wild-type signal peptide. In addition, the production of nuclease A fused with this mutated signal peptide also increased twofold. However, these effects were not observed when the mutated signal peptide was fused to TEM beta-lactamase. Analysis of the present mutations suggests that both overall hydrophobicity and distinct structural requirements in the hydrophobic region have important roles in signal peptide function.  相似文献   

8.
A total of 37 separate mutants containing single and multiple amino acid substitutions in the leader and amino-terminal conserved region of the Type IV pilin from Pseudomonas aeruginosa were generated by oligonucleotide-directed mutagenesis. The effect of these substitutions on the secretion, processing, and assembly of the pilin monomers into mature pili was examined. The majority of substitutions in the highly conserved amino-terminal region of the pilin monomer had no effect on piliation. Likewise, substitution of several of the residues within the six amino acid leader sequence did not affect secretion and leader cleavage (processing), including replacement of one or both of the positively charged lysine residues with uncharged or negatively charged amino acids. One characteristic of the Type IV pili is the presence of an amino-terminal phenylalanine after leader peptide cleavage which is N-methylated prior to assembly of pilin monomers into pili. Substitution of the amino-terminal phenylalanine with a number of other amino acids, including polar, hydrophobic, and charged residues, did not affect proper leader cleavage and subsequent assembly into pili. Amino-terminal sequencing showed that the majority of substitute residues were also methylated. Substitution of the glycine residue at the -1 position to the cleavage site resulted in the inability to cleave the prepilin monomers and blocked the subsequent assembly of monomers into pili. These results indicate that despite the high degree of conservation in the amino-terminal sequences of the Type IV pili, N-methylphenylalanine at the +1 position relative to the leader peptide cleavage site is not strictly required for pilin assembly. N-Methylation of the amino acids substituted for phenylalanine was shown to have taken place in four of the five mutants tested, but it remains unclear as to whether pilin assembly is dependent on this modification. Recognition and proper cleavage of the prepilin by the leader peptidase appears to be dependent only on the glycine residue at the -1 position. Cell fractionation experiments demonstrated that pilin isolated from mutants deficient in prepilin processing and/or assembly was found in both inner and outer membrane fractions, indistinguishable from the results seen with the wild type.  相似文献   

9.
Hybrid proteins were constructed by coupling beta-lactamase to the signal sequence (plus nine amino acids) of selected mutant prolipoproteins of Escherichia coli. The mutant prolipoprotein signal peptides contained lesions in two structural domains of the signal peptide, the basic amino-terminal domain and the hydrophobic core domain. We then compared the processing and localization of the mutant prolipo-beta-lactamases to the processing and localization of the comparable mutant prolipoproteins. We show that a mutant signal sequence with an anionic amino terminus exhibits similar limitations in the processing of prolipo-beta-lactamase as previously observed in prolipoprotein. Deletion of four hydrophobic residues from hydrophobic core results in a signal peptide which slowly translocates a fraction of the total mutant hybrid protein synthesized. This signal peptide was previously shown to translocate lipoprotein efficiently. Alteration of this hydrophobic core, which stimulated synthesis of mutant prolipoproteins, does not stimulate synthesis of prolipo-beta-lactamase. Finally mutations that slowed processing of prolipoprotein by affecting the proposed helical structure of the signal peptide had no significant effect on the processing of prolipo-beta-lactamase. These results suggest that the positively charged amino-terminal domain of the signal peptide has a common role in protein secretion regardless of the secretory protein. On the other hand, other domains of the signal peptide exhibit different phenotypes when the secretory protein is changed.  相似文献   

10.
A deletion mutation, malE delta 12-18, removes seven residues from the hydrophobic core of the maltose binding protein (MBP) signal peptide and thus prevents secretion of this protein to the periplasm of E. coli. Intragenic suppressor mutations of malE delta 12-18 have been obtained, some highly efficient in their ability to restore proper MBP export. Twelve independently isolated suppressors represent six unique mutational events. Five result in alterations within the MBP signal peptide; one changes the amino acid at residue 19 of the mature MBP. Analysis of these suppressors indicates that the length of the hydrophobic core is a major determinant of signal peptide function. The experiments further suggest that the hydrophobic core region serves primarily a structural role in mediating protein secretion, and that other sequences outside of this region may be responsible for providing the initial recognition of the MBP nascent chain as a secreted protein.  相似文献   

11.
Oligonucleotide-directed site-specific mutagenesis was used to systematically shorten the hydrophobic region within the signal peptide of the Escherichia coli outer membrane protein OmpA. DNA encoding the wild type and mutant OmpA signal peptides were then fused in frame to DNA encoding the mature regions of Staphylococcus aureus nuclease A and TEM beta-lactamase. The ability of these signal peptides to direct processing of the resulting hybrid proteins was dependent on both their length and the protein to which they were fused. Deletion of two or more residues progressively slowed processing of pro-OmpA-nuclease. By contrast, pro-OmpA-beta-lactamase was less sensitive to the length of the hydrophobic region than to the nature of the deleted residue(s). Deletion of an Ala residue tended to reduce processing efficiency of pro-OmpA-beta-lactamase, while deletion of an Ile residue, together with the Ala residue, resulted in improvement. The loss of either 3 or 4 residues abolished processing of both hybrids. These data indicate that both the length as well as the identity of residues in the hydrophobic region are important. The relative importance of these two factors depends on the mature region of the protein being secreted.  相似文献   

12.
Influenza haemagglutinin (HA) is responsible for fusing viral and endosomal membranes during virus entry. In this process, conformational changes in the HA relocate the HA(2) N-terminal 'fusion peptide' to interact with the target membrane. The highly conserved HA fusion peptide shares composition and sequence features with functionally analogous regions of other viral fusion proteins, including the presence and distribution of glycines and large side-chain hydrophobic residues. HAs with mutations in the fusion peptide were expressed using vaccinia virus recombinants to examine the requirement for fusion of specific hydrophobic residues and the significance of glycine spacing. Mutant HAs were also incorporated into infectious influenza viruses for analysis of their effects on infectivity and replication. In most cases alanine, but not glycine substitutions for the large hydrophobic residues, yielded fusion-competent HAs and infectious viruses, suggesting that the conserved spacing of glycines may be structurally significant. When viruses containing alanine substitutions for large hydrophobic residues were passaged, pseudoreversion to valine was observed, indicating a preference for large hydrophobic residues at specific positions. Viruses were also obtained with serine, leucine or phenylalanine as the N-terminal residue, but these replicated to significantly lower levels than wild-type virus with glycine at this position.  相似文献   

13.
The beta-lactamase signal peptide alone is not sufficient to direct secretion of chicken muscle triosephosphate isomerase, a normally cytoplasmic protein, into the periplasm of Escherichia coli. The signal peptide and at least the first 3 residues of the mature beta-lactamase are required before any secretion of the isomerase can be observed. At this point the level of secretion is very low, but the addition of further residues of the mature beta-lactamase enhances the secretion of the hybrid protein. The maximum level of secretion is achieved when 12 or more residues of the mature beta-lactamase intervene between the signal peptide and the isomerase. It is the proximity of an arginine residue at position 3 of the isomerase that is responsible for the blockade to secretion of these hybrid proteins (see Summers, R.G., Harris, C.R., and Knowles, J.R. (1989) J. Biol. Chem. 264, 20082-20088). With 12 residues of the mature beta-lactamase between the signal peptide and the isomerase, the offending arginine now lies at position 15 of the hybrid. The 14 residues that immediately follow the signal peptide therefore define a region of constrained properties that is critical to the secretability of proteins from E. coli.  相似文献   

14.
The role of the histidine residue at position -17 of the amino-terminal signal peptide of rat peroxisomal 3-ketoacyl-CoA thiolase was studied in vivo, employing site-directed mutagenesis. Among the nine amino acids tested, only glutamine could partially substitute for the histidine. Mutants carrying basic amino acids, arginine and lysine, and hydrophobic residues, leucine and valine, in place of histidine were all translocated to mitochondria, but not to peroxisomes. These results indicate that the signal peptide of the thiolase is recognized by a mechanism totally different from that for the SKL motif, a known peroxisomal targeting signal. Relationship of the thiolase signal peptide to those of mitochondrial proteins is discussed.  相似文献   

15.
We have investigated the importance of serine and threonine residues within the signal peptide in the secretion and processing of the major outer membrane lipoprotein precursor prolipoprotein in Escherichia coli. This was accomplished by systematically replacing these residues with alanine utilizing oligodeoxyribonucleotide-directed mutagenesis. The results demonstrated that the replacement of serine 15 but not threonine 16 alone caused an initial accumulation of membrane-bound unmodified prolipoprotein. In addition, replacement of both serine 15 and threonine 16 resulted in a greater accumulation of this membrane-bound precursor. The accumulated prolipoprotein could be matured to lipoprotein in a quantitative manner, and this process was inhibited by globomycin and carbonyl cyanide m-chlorophenylhydrazone. These results will be discussed in terms of the contribution that serine and threonine have in determining the overall secondary structure of the signal peptide and its importance in secretion and/or processing.  相似文献   

16.
Previous studies showed that when the signal sequence plus 9 amino acid residues from the amino terminus of the major lipoprotein of Escherichia coli was fused to beta-lactamase, the resulting hybrid protein was modified, proteolytically processed, and assembled into the outer membrane as was the wild-type lipoprotein (Ghrayeb, J., and Inouye, M. (1983) J. Biol. Chem. 259, 463-467). We have constructed several hybrid proteins with mutations at the cleavage site of the prolipoprotein signal peptide. These mutations are known to block the lipid modification of the lipoprotein at the cysteine residue, resulting in the accumulation of unprocessed, unmodified prolipoprotein in the outer membrane. The mutations blocked the lipid modification of the hybrid protein. However, in contrast to the mutant lipoproteins, the cleavage of the signal peptides for the mutant hybrid proteins did occur, although less efficiently than the unaltered prolipo-beta-lactamase. The mutant prolipo-beta-lactamase proteins were cleaved at a site 5 amino acid residues downstream of the prolipoprotein signal peptide cleavage site. This new cleavage between alanine and lysine residues was resistant to globomycin, a specific inhibitor for signal peptidase II. This indicates that signal peptidase II, the signal peptidase which cleaves the unaltered prolipo-beta-lactamase, is not responsible for the new cleavage. The results demonstrate that the cleavage of the signal peptide is a flexible process that can occur by an alternative pathway when the normal processing pathway is blocked.  相似文献   

17.
We have investigated the function of a leucine residue in the transit peptide of the rat mitochondrial malate dehydrogenase precursor using in vitro mutagenesis. Amino acid replacement of leucine 13 with glutamic acid and asparagine abolished import into mitochondria, while substitutions with proline, histidine, and arginine severely diminished uptake. In contrast, glutamine, tyrosine, valine, and alanine replacement resulted in normal levels of import, suggesting that there is a requirement for an uncharged residue at this position. Mutants involving rearrangements of the native sequence at positions 12-14 were imported as efficiently as the wild-type mitochondrial malate dehydrogenase, indicating that there was not an obligatory order of amino acid residues. However, deletion of leucine 13 resulted in diminished import. Binding studies with isolated mitochondria revealed that several position 13 mutants were deficient in binding to the mitochondrial surface, accounting for the reduced import of these proteins. This impairment could be distinguished from the effects due to decreased positive charge. We conclude that while translocation depends on the net positive charge, binding to the mitochondrial surface is mediated by uncharged residues within the transit peptides of mitochondrial precursor proteins.  相似文献   

18.
The relationship between the modification and processing of prolipoprotein and the formation of murein-bound lipoprotein has been investigated using Escherichia coli mutants altered in the signal sequence of prolipoprotein and an E. coli strain producing OmpF-Lpp hybrid protein. The glyceride-modified prolipoprotein in mutant lppT20 and in globomycin-treated wild-type strain were covalently attached to the peptidoglycan. Likewise, the unmodified prolipoproteins in mutants lppL20, lppV20, and lppG21 were attached to the peptidoglycan. The OmpF-Lpp hybrid protein that is processed but not modified with lipid due to the absence of the cysteine-containing modification site in the hybrid protein was also covalently linked to the peptidoglycan. These results indicate that neither lipid modification nor the processing of prolipoprotein is essential for the formation of murein-bound lipoprotein in E. coli. In contrast, introduction of a charged amino acid residue such as Asp or Arg at the 14th position of prolipoprotein affected not only the lipid modification and processing of the mutant prolipoprotein but also the formation of murein-bound lipoprotein. Replacement of the Gly14 with Glu or Lys partially affected the lipid modification and processing of prolipoprotein; the peptidoglycan of the lppE14 and lppK14 mutants contained a reduced amount of mature lipoprotein but no mutant prolipoprotein. In addition, lpp mutants A20I23I24 and A20I23K24 were found to be defective in both lipid modification/processing of prolipoprotein and the formation of murein-bound lipoprotein. The defective formation of murein-bound lipoprotein in the latter mutants may be related to an alteration in the secondary structure at the modification/processing site of the mutant prolipoproteins.  相似文献   

19.
The Tn10 derived Tet repressor contains an amino acid segment with high homology to the alpha-helix-turn-alpha-helix motif (HTH) of other DNA binding proteins. The five most conserved amino acids in HTH are probably involved in structural formation of the motif. Their functional role was probed by saturation mutagenesis yielding 95 single amino acid replacement mutants of Tet repressor. Their binding efficiencies to tet operator were quantitatively determined in vivo. All functional mutants contain amino acid substitutions consistent with their proposed role in a HTH. In particular, only the two smallest amino acids (serine, glycine) can substitute a conserved alanine in the proposed first alpha-helix without loss of activity. The last position of the first alpha-helix, the second position in the turn, and the fourth position in the second alpha-helix require mostly hydrophobic residues. The proposed C-terminus of the first alpha-helix is supported by a more active asparagine compared to glutamine replacement mutant of the wt leucine residue. The turn is located close to the protein surface as indicated by functional lysine and arginine replacements for valine. A glycine residue at the first position in the turn can be replaced by any amino acid yielding mutants with at least residual tet operator affinity. A structural model of the HTH of Tet repressor is presented.  相似文献   

20.
The signal sequence of the Klebsiella oxytoca pulG gene product, which is required for extracellular secretion of the enzyme pullulanase, is similar in many respects to the corresponding segment of the precursors of type IV (me-Phe) pilins. The significance of this similarity is confirmed by the observation that the pulO gene product processes prePulG at the consensus type IV prepilin peptidase cleavage site at the amino-terminal end of the PulG signal sequence. Like most type IV pilins, processed PuiG was found to have a methylated amino-terminal phenylaianine residue. Site-directed mutagenesis was used to replace amino acids in prePulG that correspond to residues shown by others to be essential for processing, methylation and assembly of type IV pilins. The glycine residue on the amino-terminal side of the prePulG cleavage site is absolutely required for processing and for pullulanase secretion. The glutamate residue at position 11 (+5) is also required for pullulanase secretion but not for processing or methylation. This result contrasts with that reported for corresponding variants of Pseudomonas aeruginosa type IV prepilin, which were processed but only inefficiently IV-methylated. Cleavage of prePulG and pullulanase secretion were both unaffected by replacement of the phenylalanine residue on the car-boxy-terminal side of the cleavage site by leucine, isoleucine or valine, by a conservative substitution within the hydrophobic core of the prePulG signal sequence, or by a glutamine to proline substitution within the processed segment. However, replacement of the same glutamine residue by arginine abolished secretion without affecting either processing or methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号