首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The native molecular weight of the basic helix-loop-helix (bHLH) proteins myogenin, MyoD, and E12 was calculated from their mobilities on sucrose gradients and molecular sieve chromatography. The muscle bHLH proteins associate to form a variety of higher order complexes, most of which are larger than dimers. Homodimers bind to DNA sequences such as the MEF-1 site in the creatine kinase enhancer whereas homotetramers and larger forms do not recognize this DNA sequence. The ubiquitous bHLH protein E12 forms monomers or homodimers with little evidence for higher order complexes. Mixtures of myogenin and E12 show some heterodimeric structures, but most of the myogenin remains in large complexes. This result using purified proteins is also obtained in nuclear extracts from differentiated myotubes, in which most of the myogenin is present in large complexes that do not bind to the creatine kinase enhancer. A fusion protein containing only the myogenin HLH region forms large homomeric complexes. A model is presented in which each helix associates with a different subunit to form chains or ring structures to explain these observations. The partition of myogenin in nuclear extracts into dimers that recognize known DNA sequences and higher order complexes that do not raises important new issues concerning the regulation of skeletal muscle bHLH protein activity during myogenesis.  相似文献   

7.
8.
9.
10.
11.
12.
Electrical activity is thought to be the primary neural stimulus regulating muscle mass, expression of myogenic regulatory factor genes, and cellular activity within skeletal muscle. However, the relative contribution of neural influences that are activity-dependent and -independent in modulating these characteristics is unclear. Comparisons of denervation (no neural influence) and spinal cord isolation (SI, neural influence with minimal activity) after 3, 14, and 28 days of treatment were used to demonstrate whether there are neural influences on muscle that are activity independent. Furthermore, the effects of these manipulations were compared for a fast ankle extensor (medial gastrocnemius) and a fast ankle flexor (tibialis anterior). The mass of both muscles plateaued at approximately 60% of control 2 wk after SI, whereas both muscles progressively atrophied to <25% of initial mass at this same time point after denervation. A rapid increase in myogenin and, to a lesser extent, MyoD mRNAs and proteins was observed in denervated and SI muscles: at the later time points, these myogenic regulatory factors remained elevated in denervated, but not in SI, muscles. This widespread neural activity-independent influence on MyoD and myogenin expression was observed in myonuclei and satellite cells and was not specific for fast or slow fiber phenotypes. Mitotic activity of satellite and connective tissue cells also was consistently lower in SI than in denervated muscles. These results demonstrate a neural effect independent of electrical activity that 1) helps preserve muscle mass, 2) regulates muscle-specific genes, and 3) potentially spares the satellite cell pool in inactive muscles.  相似文献   

13.
14.
EGLN3, a member of the EGLN family of prolyl hydroxylases, has been shown to catalyze hydroxylation of the alpha subunit of hypoxia-inducible factor-alpha, which targets hypoxia-inducible factor-alpha for ubiquitination by a ubiquitin ligase complex containing the von Hippel-Lindau (VHL) tumor suppressor. We now report that EGLN3 levels increase during C2C12 skeletal myoblast differentiation. EGLN3 small interference RNAs and EGLN3 antisense oligonucleotides blocked C2C12 differentiation and decreased levels of myogenin, a member of the MyoD family of myogenic regulatory factors, which plays a critical role in myogenic differentiation. We also report that EGLN3 interacts with and stabilizes myogenin protein, whereas VHL associates with and destabilizes myogenin via the ubiquitin-proteasome system. The effect of VHL on myogenin stability and ubiquitination can be reversed, at least in part, by overexpression of EGLN3, suggesting that its binding to myogenin may prevent VHL-mediated degradation. These data demonstrate a novel role for EGLN3 in regulating skeletal muscle differentiation and gene expression. In addition, this report provides evidence for a novel pathway that regulates myogenin expression and skeletal muscle differentiation.  相似文献   

15.
16.
17.
cis-4-Hydroxy-L-proline (cis-OH-Pro) and ethyl-3,4-dihydroxybenzoate (EDHB), two distinct inhibitors of collagen synthesis, prevented myogenesis in C2C12 mouse skeletal muscle cells. Both inhibitors blocked myotube formation and the expression of sarcomeric myosin heavy chain. Northern blot analysis showed that cis-OH-Pro- and EDHB-treated C2C12 muscle cells did not express the myogenic regulatory genes, MyoD1 and myogenin, but continued to express non-muscle isoforms of actin (beta and gamma) and alpha-tropomyosin. 10TFL2-3B cells, a C3H10T1/2 cell line permanently transfected with myogenin cDNA, constitutively expressed exogenous myogenin in the presence of cis-OH-Pro but failed to activate endogenous myogenin and to undergo myogenesis. These results demonstrate that commitment to terminal differentiation and activation of myogenic regulatory genes requires active synthesis of the extracellular matrix component collagen.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号