首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simple pulse schemes are presented for the measurement of methyl 13C and 1H CSA values from 1H–13C dipole/13C CSA and 1H–13C dipole/1H CSA cross-correlated relaxation. The methodology is applied to protein L and malate synthase G. Average 13C CSA values are considerably smaller for Ile than Leu/Val (17 vs 25 ppm) and are in good agreement with previous solid state NMR studies of powders of amino acids and dipeptides and in reasonable agreement with quantum-chemical DFT calculations of methyl carbon CSA values in peptide fragments. Small averaged 1H CSA values on the order of 1 ppm are measured, consistent with a solid state NMR determination of the methyl group 1H CSA in dimethylmalonic acid.  相似文献   

2.
A new approach is described for measuring chemical shift anisotropy (CSA)/dipolar cross-correlated relaxation (CCR) rates based on the selection of the individual 15N doublet components prior to the relaxation period. The method uses the spin-state-selective element (S3E) of Sørensen and co-authors [Meissner et al. (1997) J. Mag. Reson., 128, 92–97]. The main advantage of the new method compared to other J-resolved experiments is that it does not create problems of additional signal overlap encountered in coupled spectra. At the same time, this approach allows a simpler control of magnetization pathways than the indirect methods. The method is demonstrated for the B3 domain of protein G.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s10858-004-7562-8  相似文献   

3.
The simultaneous interpretation of a suite of dipole-dipole and dipole-CSA cross-correlation rates involving the backbone nuclei 13C, 1H,13CO, 15N and 1HN can be used to resolve the ambiguities associated with each individual cross-correlation rate. The method is based on the transformation of experimental cross-correlation rates via calculated values based on standard peptide plane geometry and solid-state 13CO CSA parameters into a dihedral angle probability surface. Triple resonance NMR experiments with improved sensitivity have been devised for the quantification of relaxation interference between 1H(i)-13C(i)/15N(i)-1HN(i) and 1H(i–1)-13C(i–1)/15N(i)-1HN(i) dipole-dipole mechanisms in 15N,13C-labeled proteins. The approach is illustrated with an application to 13C,15N-labeled ubiquitin.  相似文献   

4.
Artifacts associated with the measurement of methyl 1H single quantum CPMG-based relaxation dispersion profiles are described. These artifacts arise due to the combination of cross-correlated spin relaxation effects involving intra-methyl 1H–1H dipolar interactions and imperfections in 1H refocusing pulses that are applied during CPMG intervals that quantify the effects of chemical exchange on measured transverse relaxation rates. As a result substantial errors in extracted exchange parameters can be obtained. A simple work-around is presented where the 1H chemical shift difference between the exchanging states is extracted from a combination of 13C single quantum and 13C–1H multiple quantum dispersion profiles. The approach is demonstrated with an application to a folding/unfolding reaction involving a G48M mutant Fyn SH3 domain.  相似文献   

5.
A set of new NMR pulse sequences has been designed for the measurement of 13C relaxation rate constants in RNA and DNA bases: the spin-lattice relaxation rate constant R(Cz), the spin-spin relaxation rate constant R(C+), and the CSA-dipolar cross-correlated relaxation rate constant . The use of spin-state selective correlation techniques provides increased sensitivity and spectral resolution. Sensitivity optimised C-C filters are included in the pulse schemes for the suppression of signals originating from undesired carbon isotopomers. The experiments are applied to a 15% 13C-labelled 33-mer RNA–theophylline complex. The measured ratios indicate that 13C CSA tensors do not vary significantly for the same type of carbon (C2, C6, C8), but that they differ from one type to another. In addition, conformational exchange effects in the RNA bases are detected as a change in the relaxation decay of the narrow 13C doublet component when varying the spacing of a CPMG pulse train. This new approach allows the detection of small exchange effects with a higher precision compared to conventional techniques.  相似文献   

6.
Triple resonance HCN and HCNCH experiments are reliable methods of establishing sugar-to-base connectivity in the NMR spectra of isotopicaly labeled oligonucleotides. However, with larger molecules the sensitivity of the experiments is drastically reduced due to relaxation processes. Since the polarization transfer between 13C and 15N nuclei relies on rather small heteronuclear coupling constants (11–12 Hz), the long evolution periods (up to 30–40 ms) in the pulse sequences cannot be avoided. Therefore any effort to enhance sensitivity has to concentrate on manipulating the spin system in such a way that the spin–spin relaxation rates would be minimized. In the present paper we analyze the efficiency of the two known approaches of relaxation rate control, namely the use of multiple-quantum coherence (MQ) and of the relaxation interference between chemical shift anisotropy and dipolar relaxation – TROSY. Both theoretical calculations and experimental results suggest that for the sugar moiety (H1-C1-N1/9) the MQ approach is clearly preferable. For the base moiety (H6/8-C6/8-N1/9), however, the TROSY shows results superior to the MQ suppression of the dipole–dipole relaxation at moderate magnetic fields (500 MHz) and the sensitivity improvement becomes dramatically more pronounced at very high fields (800 MHz). The pulse schemes of the triple-resonance HCN experiments with sensitivity optimized performance for unambiguous assignments of intra-residual sugar-to-base connectivities combining both approaches are presented.  相似文献   

7.
The five phosphates of the deoxynucleotide d(CpGpTpApCpG)2 have been assigned by two-dimensional heteronuclear NMR spectroscopy. The chemical shift anisotropy and correlation time of each phosphate group has been determined from measurements of the spin-lattice, spin-spin relaxation rate constants and the 31P-{1H} nuclear Overhauser enhancement (NOE) at three magnetic field strengths (4.7 T, 9.4 T, and 11.75 T) and two temperatures (288 K and 298 K). As expected, the relaxation data require two mechanisms to account for the observed rate constants, i.e. dipole-dipole and chemical shift anisotropy. At 9.4 T and 11.75 T, the latter mechanism dominates the relaxation, leading to insignificant NOE intensities. The correlation time, chemical shift anisotropy and effective P-H distance were obtained from least-squares fitting to the data. Comparison of the fitted value for the correlation time with that obtained from 1H measurements shows that the molecule behaves essentially as rigid rotor on the nanosecond timescale. Large amplitude motions observed in long segments of DNA are due to bending motions that do not contribute significantly to relaxation in short oligonucleotides.Abbreviations CSA chemical shift anisotropy - NOE nuclear Overhauser enhancement Offprint requests to: A. N. Lane  相似文献   

8.
NMR of macromolecules is limited by large transverse relaxation rates. In practice, this results in low efficiency of coherence transfer steps in multidimensional NMR experiments, leading to poor sensitivity and long acquisition times. The efficiency of coherence transfer can be maximized by design of relaxation optimized pulse sequences using tools from optimal control theory. In this paper, we demonstrate that this approach can be adopted for studies of large biological systems, such as the 800 kDa chaperone GroEL. For this system, the 1H–15N coherence transfer module presented here yields an average sensitivity enhancement of 20–25% for cross-correlated relaxation induced polarization transfer (CRIPT) experiments.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s10858-005-3592-0  相似文献   

9.
C, N CP MAS and high resolution multinuclear NMR study of methyl

Four new derivatives of methyl

were studied by 1H, 13C, 15N NMR in CDCl3 solutions and by 13C, 15N NMR in the solid state. The replacement of one aryl substituent by another has no influence on the proton and carbon chemical shifts within the sugar moiety, in solution. The differences in 13C chemical shifts Δ = δliquid - δsolid are significant for C-3 (deshielding of -3.4 to -3.8 ppm), C-5 and OMe but not observed for C-2, where the ureido substituent is linked, thus indicating that this fragment of the structure is rigid. The values of Δ in 15N chemical shifts of N-3′ are -2.3 to -2.8 ppm (increase of shielding in the solids); the effect of replacement of substituent at aromatic ring is larger than the contribution of intermolecular H-bond interaction. The values of 15.5–16.1 Hz for 1JC-1′-N and 21.2–21.5 Hz for 1JCO-N indicate that the two C---N-3′ bonds are of significant double bond character.  相似文献   

10.
Temperature-dependence of protein dynamics can provide information on details of the free energy landscape by probing the characteristics of the potential responsible for the fluctuations. We have investigated the temperature-dependence of picosecond to nanosecond backbone dynamics at carbonyl carbon sites in chicken villin headpiece subdomain protein using a combination of three NMR relaxation rates: 13C′ longitudinal rate, and two cross-correlated rates involving dipolar and chemical shift anisotropy (CSA) relaxation mechanisms, 13C′/13C′-13Cα CSA/dipolar and 13C′/13C′–15N CSA/dipolar. Order parameters have been extracted using the Lipari-Szabo model-free approach assuming a separation of the time scales of internal and molecular motions in the 2–16°C temperature range. There is a gradual deviation from this assumption from lower to higher temperatures, such that above 16°C the separation of the time scales is inconsistent with the experimental data and, thus, the Lipari-Szabo formalism can not be applied. While there are variations among the residues, on the average the order parameters indicate a markedly steeper temperature dependence at backbone carbonyl carbons compared to that probed at amide nitrogens in an earlier study. This strongly advocates for probing sites other than amide nitrogen for accurate characterization of the potential and other thermodynamics characteristics of protein backbone.  相似文献   

11.
Summary Internal motions play an important role in the biological function of proteins and NMR relaxation studies may characterize them over a wide range of frequencies. An experimental pulse scheme is proposed for the measurement of the 13CO-13C cross-relaxation rate. For sensitivity reasons, this measurement is performed in an indirect manner through several coherence transfer steps, which should thus be calibrated independently. Contributions of other relaxation pathways can be eliminated by the determination of the initial slope of the buildup curve. The cross-relaxation rates have been determined on a 15N-/13C-labelled 116-residue protein and the significant variations along the sequence have been interpreted as evidence of an increased amount of fast local motion.  相似文献   

12.
We perform a detailed comparison of fast backbone dynamics probed at amide nitrogen versus carbonyl carbon sites for dematin headpiece C-terminal domain (DHP) and its S74E mutant (DHPS74E). Carbonyl dynamics is probed via auto-correlated longitudinal rates and transverse C′/C′-Cα CSA/dipolar and C′/C′–N CSA/dipolar cross-correlated rates, while 15N data are taken from a previous study. Resulting values of effective order parameters and internal correlation times support the conclusion that C′ relaxation reports on a different subset of fast motions compared to those probed at N–H bond vectors in the same peptide planes. 13C′ order parameters are on the average 0.08 lower than 15N order parameters with the exception of the flexible loop region in DHP. The reduction of mobility in the loop region upon the S74E mutation can be seen from the 15N order parameters but not from the 13C order parameters. Internal correlation times at 13C′ sites are on the average an order of magnitude longer than those at 15N sites for the well-structured C-terminal subdomains, while the more flexible N-terminal subdomains have more comparable average internal correlation times.  相似文献   

13.
Carbonyl 13C′ relaxation is dominated by the contribution from the 13C′ chemical shift anisotropy (CSA). The relaxation rates provide useful and non-redundant structural information in addition to dynamic parameters. It is straightforward to acquire, and offers complimentary structural information to the 15N relaxation data. Furthermore, the non-axial nature of the 13C′ CSA tensor results in a T1/T2 value that depends on an additional angular variable even when the diffusion tensor of the protein molecule is axially symmetric. This dependence on an extra degree of freedom provides new geometrical information that is not available from the NH dipolar relaxation. A protocol that incorporates such structural restraints into NMR structure calculation was developed within the program Xplor-NIH. Its application was illustrated with the yeast Fis1 NMR structure. Refinement against the 13C′ T1/T2 improved the overall quality of the structure, as evaluated by cross-validation against the residual dipolar coupling as well as the 15N relaxation data. In addition, possible variations of the CSA tensor were addressed. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The presence of dipole-dipole cross-correlated relaxation as well as unresolved E.COSY effects adversely impacts the accuracy of 1 J NH splittings measured from gradient-enhanced IPAP-HSQC spectra. For isotropic samples, the size of the systematic errors caused by these effects depends on the values of 2 J NHα , 3 J NHβ and 3 J HNHα . Insertion of band-selective 1H decoupling pulses in the IPAP-HSQC experiment eliminates these systematic errors and for the protein GB3 yields 1 J NH splittings that agree to within a root-mean-square difference of 0.04 Hz with values measured for perdeuterated GB3. Accuracy of the method is also highlighted by a good fit to the GB3 structure of the 1H-15N RDCs extracted from the minute differences in 1JNH splitting measured at 500 and 750 MHz 1H frequencies, resulting from magnetic susceptibility anisotropy. A nearly complete set of 2 J NHα couplings was measured in GB3 in order to evaluate whether the impact of cross-correlated relaxation is dominated by the 15N–1H α or 15N–1H β dipolar interaction. As expected, we find that 2 J NHα  ≤ 2 Hz, with values in the α-helix (0.86 ± 0.52 Hz) slightly larger than in β-sheet (0.66 ± 0.26 Hz). Results indicate that under isotropic conditions, N–HN/N–H β cross-correlated relaxation often dominates. Unresolved E.COSY effects under isotropic conditions involve 3 J HNHα and J NHα , but when weakly aligned any aliphatic proton proximate to both N and HN can contribute. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
A number of different dynamics models are considered for fitting 13C and 2H side chain methyl relaxation rates. It is shown that in cases where nanosecond time scale dynamics are present the extended Lipari–Szabo model which is explicitly parameterized to include the effects of slow motions can produce wide distributions of fitting parameters even in cases where the errors are relatively small and large numbers of relaxation rates are considered. In contrast, fits of 15N backbone dynamics using this model are far more robust. The origin of this difference is analyzed and can be explained by the different functional forms of the spectral density in these two cases. The utility of a number of models for the analysis of methyl side chain dynamics is presented.  相似文献   

16.
Summary The peptide hormone motilin was synthesised with a 13C-enriched -carbon in the leucine at position 10. In aqueous solution, six different relaxation rates were measured for the 13C–H fragment as a function of temperature and with and without the addition of 30% (v/v) of the cosolvent d 2-1,1,1,3,3,3-hexafluoro-2-propanol (HFP). The relaxation rates were analysed employing the spectral density mapping technique introduced by Peng and Wagner [(1992) J. Magn. Reson., 98, 308–322] and using the model-free approach by Lipari and Szabo [(1982) J. Am. Chem. Soc., 104, 4546–4570]. The fit to various models of dynamics was also considered. Different procedures to evaluate the overall rotational correlation time were compared. A single exponential time correlation function was found to give a good fit to the measured spectral densities only for motilin in 30% (v/v) HFP at low temperatures, whereas at high temperatures in this solvent, and in D2O at all temperatures, none of the considered models gave an acceptable fit. A new empirical spectral density function was tested and found to accurately fit the experimental spectral density mapping points. The application of spectral density mapping based on NMR relaxation data for specific 13C–1H vector is shown to be a highly useful method to study biomolecular dynamics. Advantages are high sensitivity, high precision and uniform sampling of the spectral density function over the frequency range.Abbreviations CD circular dichroism - NOE nuclear Overhauser enhancement - NOESY two-dimensional NOE spectroscopy - INEPT insensitive nuclei enhanced by polarisation transfer - DANTE delays alternating with nutations for tailored excitation - WALTZ-16 wideband, alternating phase, low-power technique for zero residual splitting - FID Free induction decay - ppm parts per million - TSPA 3-trimethylsilyl-(3,3,2,2-d)-propionic acid - HFP d 2-1,1,1,3,3,3-hexafluoro-2-propanol - CPMG Carr-Purcell-Meiboom-Gill - TFD time-resolved fluorescence depolarisation - CSA chemical shift anisotropy Partly presented at the symposium Dynamics and Function of Biomolecules, Szeged, Hungary, July 31–August 2, 1993.  相似文献   

17.
Chemical shift anisotropy (CSA) tensor parameters have been determined for the protonated carbons of the purine bases in an RNA kissing complex in solution by extending the model-independent approach [Fushman, D., Cowburn, D. (1998) J. Am. Chem. Soc. 120, 7109–7110]. A strategy for determining CSA tensor parameters of heteronuclei in isolated X–H two-spin systems (X = 13C or 15N) in molecules undergoing anisotropic rotational diffusion is presented. The original method relies on the fact that the ratio κ2=R2auto/R2cross of the transverse auto- and cross-correlated relaxation rates involving the X CSA and the X–H dipolar interaction is independent of parameters related to molecular motion, provided rotational diffusion is isotropic. However, if the overall motion is anisotropic κ2 depends on the anisotropy D||/D of rotational diffusion. In this paper, the field dependence of both κ2 and its longitudinal counterpart κ1=R1auto/R1cross are determined. For anisotropic rotational diffusion, our calculations show that the average κav = 1/2 (κ12), of the ratios is largely independent of the anisotropy parameter D||/D. The field dependence of the average ratio κav may thus be utilized to determine CSA tensor parameters by a generalized model-independent approach in the case of molecules with an overall motion described by an axially symmetric rotational diffusion tensor.  相似文献   

18.
Summary In order to examine the internal dynamic processes of the dodecamer d(CGCAAATTTGCG)2, the 13C-enriched oligonucleotide has been synthesized. The three central thymines were selectively 13C-labeled at the C1′ position and their spin-lattice relaxation parameters R(CZ), R(CX,Y), R(HZ→CZ), R(2HZCZ), R(2HZCX,Y) and R(H infZ supC ) were measured. Density functions were computed for two models of internal motions. Comparisons of the experimental data were made with the spin-lattice relaxation rates rather than with the density functions, whose values were altered by accumulation of the uncertainties of each relaxation rate measurement. The spin-lattice relaxation rates were computed with respect to the motions of the sugar around the C1′-N1 bond. A two-state jump model between the anti- and syn-conformations with P(anti)/P(syn)=91/9 or a restricted rotation model with Δχ=28° and an internal diffusion coefficient of 30×107 s-1 gave a good fit with the experimental data. Twist, tilt or roll base motions have little effect on 13C1′ NMR relaxation. Simulation of spin-relaxation rates with the data obtained at several temperatures between 7 and 32 °C, where the dodecamer is double stranded, shows that the internal motion amplitude is independent of the temperature within this range, as expected for internal motion. Using the strong correlation which exists in a B-DNA structure between the χ and δ angle, we suggest that the change in the glycosidic angle value should be indicative of a sugar puckering between the C1′-exo and C2′-endo conformations.  相似文献   

19.
Methyl α-cellobioside (methyl β-d-glucopyranosyl-(1→4)-α-d-glucopyranoside) was labeled with 13C at C4′ for use in NMR studies in DMSO-d6 solvent to attempt the detection of a trans-H-bond J-coupling (3hJCCOH) between C4′ and OH3. Analysis of the OH3 signal at 600 MHz revealed only the presence of two homonuclear J-couplings: 3JH3,OH3 and a smaller, longer range JHH. No evidence for 3hJC4′,OH3 was found. The longer range JHH was traced to 4JH4,OH3 based on 2D 1H–1H COSY data and inspection of the H2 and H4 signal lineshapes. A limited set of DFT calculations was performed on a methyl cellobioside mimic to evaluate the structural dependencies of 4JH2,O3H and 4JH4,O3H on the H3–C3–O3–H torsion angle. Computed couplings range from about −0.7 to about +1.1 Hz, with maximal values observed when the C–H and O–H bonds are roughly diaxial.  相似文献   

20.
The effects of cross-correlated relaxation in Quantitative J methods are analyzed. One-bond 1H–13C scalar and dipolar couplings of protein methine and methylene sites are obtained by monitoring proton and carbon magnetization in Quantitative J experiments. We find that scalar and dipolar couplings of the same pair of nuclei vary depending on the type of magnetization involved. These discrepancies can be as large as several Hz for methylene moieties. The contribution of dynamic frequency shifts, which are known to affect J couplings, is too small to explain the observed differences. We show that processes of magnetization transfer originated by cross-correlated relaxation are largely responsible for these discrepancies. We estimate the error transferred to methylene J values by cross-correlation interference, and show that is close to the experimentally observed one. Furthermore, this analysis indicates that cross-correlated relaxation effects under isotropic and anisotropic media differ, indicating that errors are not cancelled in residual dipolar coupling measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号