首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The T-tubules and sarcoplasmic reticulum (SR) serving excitation-contraction (EC) coupling in lobster (Homarus americanus) cardiac muscle are similar to those in mammalian myocardium. Tetanic contraction is elicited by a burst of action potentials from the cardiac ganglion. In this study we evaluated the roles of the sarcolemma and SR in EC coupling of the ostial valve muscle (orbicularis ostii m. or OOM) of lobster heart. The OOM was mounted in a bath with saline on a microscope stage; force was measured by strain gauge. [Ca2+]i was measured using iontophoretically micro-injected fura-2 salt. Peak [Ca+]i, peak tetanic force and time to peak [Ca2+]i increased with that of stimulus train duration (TD), to a maximum at a TD of 500 ms. Force increased with [Ca2+]. Cd2+ reduced force by 90%; ryanodine and caffeine reduced tetanic [Ca2+]i transients by 80% and 70%, and force by 90% and 80%, respectively. Ryanodine, caffeine and cyclopiazonic acid slowed the decline of [Ca2+]i and force during relaxation. Relaxation required [Na+]o. The rate of decline of [Ca2+]i appeared to be a sigmoidal function of the [Ca2+]i and increased for any [Ca2+]i with TD. Inactivity slowed relaxation of force; stimulation accelerated relaxation. These data suggest important contributions of Ca2+ transport both across the sarcolemma and across the SR membrane during EC-coupling of lobster cardiac muscle, while average cytosolic [Ca2+]i regulates the rate of [Ca2+]i elimination during relaxation.  相似文献   

2.
We have studied the modulation by intracellular Ca2+ of the epithelial Ca2+ channel, ECaC, heterologously expressed in HEK 293 cells. Whole-cell and inside-out patch clamp current recordings were combined with FuraII-Ca2+ measurements:1. Currents through ECaC were dramatically inhibited if Ca2+ was the charge carrier. This inhibition was dependent on the extracellular Ca2+ concentration and occurred also in cells buffered intracellularly with 10 mM BAPTA.2. Application of 30 mM [Ca(2)]e induced in non-Ca2+] buffered HEK 293 cells at -80 m V an increase in intracellular Ca2+([Ca2]i) with a maximum rate of rise of 241 +/-15nM/s (n= 18 cells) and a peak value of 891 +/- 106 nM. The peak of the concomitant current with a density of 12.3 +/- 2.6 pA/pF was closely correlated with the peak of the first-time derivative of the Ca2+ transient, as expected if the Ca2+ transient is due to influx of Ca2+. Consequently, no Ca2+] signal was observed in cells transfected with the Ca2+ impermeable ECaC mutant, D542A, in which an aspartate in the pore region was neutralized.3. Increasing [Ca2+]i by dialyzing the cell with pipette solutions containing various Ca2+] concentrations, all buffered with 10 mM BAPTA, inhibited currents through ECaC carried by either Na+ or Ca2+] ions. Half maximal inhibition of Ca(2+)currents in the absence of monovalent cations occurred at 67 nM (n between 6 and 8), whereas Na+ currents in the absence of Ca2+] and Mg2+ were inhibited with an IC50 of 89 nM (n between 6 and 10). Currents through ECaC in the presence of 1 mM Ca2+ and Na+, which are mainly carried by Ca2+, are inhibited by [Ca2]i with an IC50of 82 nM (n between 6 and 8). Monovalent cation currents through the Ca2+impermeable D542A ECaC mutant were also inhibited by an elevation of [Ca2]i (IC50 = 123 nM, n between 7 and 18). 4. The sensitivity of ECaC currents in inside-out patches for [Ca2]i was slightly shifted to higher concentrations as compared with whole cell measurements. Half-maximal inhibition occurred at 169 nM if Na+ was the charge carrier (n between 4 and 11) and 228 nM at 1 mM [Ca2]e (n between 4 and 8).5. Recovery from inhibition upon washout of extracellular Ca2+ (whole-cell configuration) or removal of Ca2+ from the inner side of the channel (inside-out patches) was slow in both conditions. Half-maximal recovery was reached after 96 +/- 34 s (n= 15) in whole-cell mode and after 135 +/- 23 s (n = 17) in inside-out patches.6. We conclude that influx of Ca2+ through ECaC and [Ca2]i induce feedback inhibition of ECaC currents, which is controlled by the concentration of Ca2+ in a micro domain near the inner mouth of the channel. Slow recovery seems to depend on dissociation of Ca( 2+ from an internal Ca2+ binding site at ECaC.  相似文献   

3.
Regulatory effects of extracellular magnesium ions ([Mg2+]o) on intracellular free ionized calcium ([Ca2+]i) were studied in cultured vascular smooth muscle cells (VSMCs) from rat aorta by use of the fluorescent indicator fura-2 and digital imaging microscopy. With normal Mg2+ (1.2 mM)-containing incubation media, [Ca2+]i in VSMCs was 93.6 +/- 7.93 nM with a heterogeneous cellular distribution. Lowering [Mg2+]o to 0 mM or 0.3 mM (the lowest physiological range) resulted in 5.8-fold (579.5 +/- 39.99 nM) and 3.5-fold (348.0 +/- 31.52 nM) increments of [Ca2+]i, respectively, without influencing the cellular distribution of [Ca2+]i. Surprisingly, [Mg2+]o withdrawal induced changes of cell geometry in many VSMCs, i.e., the cells rounded up. However, elevation of [Mg2+]o up to 4.8 mM only induced slight decrements of [Ca2+]i (mean = 72.0 +/- 4.55 nM). The large increment of [Ca2+]i induced by [Mg2+]o withdrawal was totally inhibited when [Ca2+]o was removed. The data suggest that: (1) [Mg2+]o regulates the level of [Ca2+]i in rat aortic smooth muscle cells, and (2) [Mg2+] acts as an important regulatory ion by modulating cell shapes in cultured VSMc and their metabolism to control vascular contractile activities.  相似文献   

4.
Transient stretch of cardiac muscle during a twitch contraction may dissociate Ca2+ from myofilaments into the cytosol at the moment of quick release of the muscle. We studied the effect of stretch and quick release of trabeculae on changes in intracellular Ca2+ ([Ca2+]i) during triggered propagated contractions (TPCs). Trabeculae were dissected from the right ventricle of 9 rat hearts. [Ca2+]i was measured using electrophoretically injected fura-2. Force was measured using a silicon strain gauge and sarcomere length was measured using laser diffraction techniques. Reproducible TPCs (n = 13) were induced by trains of electrical stimuli (378 +/- 19 ms interval) for 7.5 s at [Ca2+]o of 2.0 mM (27.9 +/- 0.2 degrees C). The latency of the TPC force and the underlying increase in [Ca2+]i was calculated from the time (TimeF) between the last stimulus and the peak of TPC force (PeakF), or the time (TimeCa) between the last stimulus and the peak of the increase in [Ca2+]i during the TPCs (PeakCa). As a result of a 10% increase in muscle length for 150-200 ms during the last stimulated twitches, TimeF and TimeCa decreased and PeakF and PeakCa increased significantly (n = 13). In addition, transient stretch sometimes induced a twitch contraction subsequent to the accelerated TPC and its underlying increase in [Ca2+]i. These results suggest that Ca2+ binding and dissociation from the myofilaments by the stretch and quick release of muscle may modulate the TPC force and the underlying increases in [Ca2+]i and play an important role in the induction of arrhythmias.  相似文献   

5.
Dual wavelength microfluorometry was used to characterize the changes in cytosolic free Ca2+ concentration [( Ca2+]i) in individual cultured rat aortic vascular smooth muscle cells (VSMC). Angiotensin II (ANG II) at 10(-8) M induced a transient rise in [Ca2+]i from 43 +/- 2 to 245 +/- 23 nM, lasting for approximately 60 s (n = 42). In half of the population, discrete oscillations in [Ca2+]i of smaller amplitude occurred after the initial [Ca2+]i peak, with a period of 58 +/- 8 s and a maximum height of 132 +/- 24 nM. A similar oscillatory pattern was observed with arginine vasopressin (AVP). The oscillations depended upon the presence of extracellular Ca2+. Cytosolic free Na+ concentration ([Na+]i) in VSMC was also measured using the fluorescent Na+ probe sodium-binding benzofuran isophthalate. ANG II induced a gradual and sustained elevation of [Na+]i, from 24.0 +/- 6.2 to 36 +/- 9.7 mM. In response to AVP, [Na+]i rose to 41.0 +/- 11.6 mM. Video imaging of individual VSMC, with on-line ratio calibration of [Ca2+]i, revealed an inhomogeneous distribution of Ca2+ within the cell. [Ca2+] in the nucleus was invariably lower than in the cytoplasm in resting cells. In the cytoplasm, there were small regions in which [Ca2+] was elevated, or "hot spots." In Ca(2+)-containing medium, the initial rise in [Ca2+]i triggered by ANG II and AVP appeared to emanate from the hot spots and to spread evenly throughout the cytoplasm. Between [Ca2+]i oscillations, Ca2+ retreated back to the original hot spots. This study demonstrates the cellular and subcellular heterogeneity of [Ca2+]i both in resting VSMC and during stimulation by ANG II and AVP and reports the direct measurement of [Na+]i in VSMC. The results suggest an action of Ca2+ in both the initial and sustained phases of the response in VSMC and a link between changes in [Ca2+]i and [Na+]i.  相似文献   

6.
To determine features of the steady state [Ca2+]-tension relationship in intact heart, we measured steady force and intracellular [Ca2+] ([Ca2+]i) in tetanized ferret papillary muscles. [Ca2+]i was estimated from the luminescence emitted by muscles that had been microinjected with aequorin, a Ca2+-sensitive, bioluminescent protein. We found that by raising extracellular [Ca2+] and/or by exposing muscles to the Ca2+ channel agonist Bay K 8644, tension development could be varied from rest to an apparently saturating level, at which increases in [Ca2+]i produced no further rise in force. 95% of maximal Ca2+-activated force was reached at a [Ca2+]i of 0.85 +/- 0.06 microM (mean +/- SEM; n = 7), which suggests that the sensitivity of the myofilaments to [Ca2+]i is far greater than anticipated from studies of skinned heart preparations (or from previous studies using Ca2+-sensitive microelectrodes in intact heart). Our finding that maximal force was reached by approximately 1 microM also allowed us to calculate that the steady state [Ca2+]i-tension relationship, as it might be observed in intact muscle, should be steep (Hill coefficient of greater than 4), which is consistent with the Hill coefficient estimated from the entire [Ca2+]i-tension relationship derived from families of variably activated tetani (6.08 +/- 0.68; n = 7). Finally, with regard to whether steady state measurements can be applied directly toward understanding physiological contractions, we found that the relation between steady force and [Ca2+]i obtained during tetani was steeper than that between peak force and peak [Ca2+]i observed during physiological twitches.  相似文献   

7.
Oxygen-free radicals are thought to be a major cause of beta-cell dysfunction in diabetic animals induced by alloxan or streptozotocin. We evaluated the effect of H2O2 on cytosolic Ca2+ concentration ([Ca2+]i) and the activity of ATP-sensitive potassium (K+ATP) channels in isolated rat pancreatic beta-cells using microfluorometry and patch clamp techniques. Exposure to 0.1 mM H2O2 in the presence of 2.8 mM glucose increased [Ca2+]i from 114.3+/-15.4 nM to 531.1+/-71.9 nM (n=6) and also increased frequency of K+ATP channel openings. The intensity of NAD(P)H autofluorescence was conversely reduced, suggesting that H2O2 inhibited the cellular metabolism. These three types of cellular parameters were reversed to the control level on washout of H2O2, followed by a transient increase in [Ca2+]i, the transient inhibition of K+ATP channels associated with action currents and increase of the NAD(P)H intensity with an overshoot. In the absence of external Ca2+, 0.1 mM H2O2 increased [Ca2+]i from 88.8+/-7.2 nM to 134.6+/-8.3 nM. Magnitude of [Ca2+]i increase induced by 0.1 mM H2O2 was decreased after treatment of cells with 0.5 mM thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ pump (45.8+/-4.9 nM vs 15.0+/-4.8 nM). Small increase in [Ca2+]i in response to an increase of external Ca2+ from zero to 2 mM was further facilitated by 0.1 mM H2O2 (330.5+/-122.7 nM). We concluded that H2O2 not only activates K+ATP channels in association with metabolic inhibition, but also increases partly the Ca2+ permeability of the thapsigargin-sensitive intracellular stores and of the plasma membrane in pancreatic beta-cells.  相似文献   

8.
Single cell [Ca2+], studies were performed in chicken and rat osteoclasts loaded with fura-2 and exposed to a variety of treatments. Under resting conditions, basal [Ca2+]i, was 79.2 +/- 47.3 and 84.3 +/- 65.7 nM (averages +/- S.D.; n = 141 and 126) in the osteoclasts of the two species, respectively. Basal [Ca2+]i was stable in all rat and in approximately 80% of chicken osteoclasts. In the remaining 20%, spontaneous, irregular [Ca2+], fluctuations were observed (amplitude range: 50-200 nm over basal values). Increase of [Ca2+]o over the concentration of the Krebs-Ringer incubation medium (2 mM) induced rises of [Ca2+] in almost all cells investigated. [Ca2+] rises were already appreciable with 0.5 mM [Ca2+]o additions and reached high values with 4 mM additions: 390 +/- 113 and 364 +/- 214 nM [Ca2+], in rat and chicken osteoclasts, respectively (n = 122 and 101). Qualitatively, the responses to [Ca2+]o additions consisted of discrete [Ca2+]i transients, biphasic (an initial spike followed by a plateau), or monophasic (either the spike or the plateau). In a few chicken osteoclasts, the [Ca2+]i increase occurring after [Ca2+]o addition consisted of multiple, irregular fluctuations, similar to those observed in 20% of these cells under resting conditions. In individual osteoclasts subsequently exposed to multiple [Ca2+]o increase pulses, the type of the [Ca2+]i transient (mono- or biphasic) was maintained, and the size was dependent on the magnitude of the [Ca2+]o additions. Effects similar to those of [Ca2+]o were induced by the addition of Cd2+ or Ba2+ (but not La3+ or Mg2+) into the medium. The Cd2+ effect was maintained in part even in a Ca2+-free medium. Of various hormones and factors, parathormone, 1,25-dihydroxyvitamin D3, and prostaglandin E2 were inactive. In contrast, calcitonin was active in rat osteoclasts (which express numerous receptors). [Ca2+]i increases were small (19 +/- 17.9 nM; n = 21) when the hormone was administered alone; they were synergistic (severalfold potentiation) when the hormone was administered before or after [Ca2+]o. The [Ca2+]i effects of calcitonin were mimicked by 8Br-cAMP (31 +/- 26 nM; n = 12) when the nucleotide was administered alone; marked synergism when it was administered in combination with [Ca2+]o. This paper demonstrates for the first time that changes of [Ca2+]i are induced in osteoclasts by treatments with [Ca2+]o and calcitonin and can therefore be involved in intracellular mediation of the physiological effects of these two extracellular signals.  相似文献   

9.
The effects of thapsigargin on intracellular Ca2+ concentration ([Ca2+]i) and progesterone production were determined in granulosa cells from the two largest preovulatory follicles of laying hens. [Ca2+]i was measured in cells loaded with the Ca(2+)-responsive fluorescent dye Fura-2. Thapsigargin stimulated a 4.6 +/- 0.2-fold increase in [Ca2+]i from a resting level of 55 +/- 6 nM up to 233 +/- 23 nM (n = 8) in 100% of the cells tested (n = 86). However, two different response patterns were observed. Dependent on the cell populations, a maximally effective concentration of thapsigargin (100 nM) stimulated either a rapid (within 16 +/- 2 s) transient increase in [Ca2+]i or a slowly (99 +/- 20 s) developing and sustained increase in [Ca2+]i. Both [Ca2+]i responses were concentration (0.001-1 microM)-dependent with an EC50 around 40 nM. The transient [Ca2+]i response occurred in the absence of extracellular Ca2+ and was unaffected by pretreating the cells with the Ca2+ channel blockers methoxyverapamil (50 microM) or lanthanum (1 mM). The plateau phase of the sustained [Ca2+]i response returned to resting level in the absence of extracellular Ca2+, but remained elevated in the presence of methoxyverapamil (50 microM) or lanthanum (1 mM). Despite its ability to cause transient or prolonged increases in [Ca2+]i, thapsigargin (0.001-1 microM) did not affect basal or luteinizing hormone-stimulated progesterone production by chicken granulosa cells.  相似文献   

10.
The role for intracellular Ca2+ in modulating activity of the Na+/H+ exchanger was studied in cultured vascular smooth muscle cells. Na+/H+ exchange was activated by four distinct stimuli: 1) phorbol 12-myristate 13-acetate, 2) thrombin, 3) cell shrinkage, and 4) intracellular acid loading. [Ca2+]i was independently varied between 40 and 200 nM by varying the bathing Ca2+ from 10 nM to 5.0 mM. Thrombin-induced intracellular Ca2+ transients were blocked with bis(2-amino-5-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester (MAPTAM). In the absence of stimulators of Na+/H+ exchange, varying [Ca2+]i above or below the basal level of 140 nM did not activate Na+/H+ exchange spontaneously. However, varying [Ca2+]i did affect stimulus-induced activation of Na+/H+ exchange. Activation of the exchanger by phorbol 12-myristate 13-acetate was blunted by reduced intracellular Ca2+ (half-maximal activity at 50-90 nM [Ca2+]i), consistent with a Ca2+ requirement for protein kinase C (Ca2+/phospholipid-dependent enzyme). Activation of the exchanger by thrombin in protein kinase C-depleted cells was also sensitive to reduced intracellular Ca2+ (half-maximal activity at 90-140 nM [Ca2+]i) and was increased 40% by raising [Ca2+]i to 200 nM. Activation of the exchanger by cell shrinkage or intracellular acid loads was not significantly affected over the range of [Ca2+]i tested. Thus, altered [Ca2+]i does not itself affect Na+/H+ exchange activity in vascular smooth muscle but instead modulates activation of the transporter by particular stimuli.  相似文献   

11.
Calcium homeostasis was studied following a depolarization-induced transient increase in [Ca2+]i in single cells of the clonal pituitary cell line of corticotropes, AtT-20 cells. The KCl-induced increase in [Ca2+]i was blocked in (i) extracellular calcium-deficient solutions, (ii) external cobalt (2.0 mM), (iii) cadmium (200 microM), and (iv) nifedipine (2.0 microM). The mean increase in [Ca2+]i in single cells in the presence of an uncoupler of mitochondrial function [carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone, FCCP, 1 microM] was 54 +/- 13 nM (n = 9). The increase in [Ca2+]i produced by FCCP was greater either during or following a KCl-induced [Ca2+]i load. However, FCCP did not significantly alter the clearance of calcium during a KCl-induced rise in [Ca2+]i. Fifty percent of the cells responded to caffeine (10 mM) with an increase in [Ca2+]i (191 +/- 24 nM; n = 21) above resting levels; this effect was blocked by ryanodine (10 microM). Thapsigargin (2 microM) and 2,5 di(-t-butyl)-1,4 hydroquinone (BuBHQ, 10 microM) produced increases in [Ca2+]i (47 +/- 11 nM, n = 6 and 22 +/- 4 nM, n = 8, respectively) that increased cell excitability. These results support a role for mitochondria and sarco-endoplasmic reticulum calcium stores in cytosolic [Ca2+]i regulation; however, none of these organelles are primarily responsible for the return of [Ca2+]i to resting levels following this KCl-induced [Ca2+]i load.  相似文献   

12.
Heat shock caused significant changes in intracellular pH (pHi) and intracellular free calcium concentration [( Ca2+]i) which occurred rapidly after temperature elevation. pHi fell from a resting level value at 25 degrees C of 7.38 +/- 0.02 (mean +/- standard error of the mean, n = 15) to 6.91 +/- 0.11 (n = 7) at 35 degrees C. The resting level value of [Ca2+]i in single Drosophila melanogaster larval salivary gland cells was 198 +/- 31 nM (n = 4). It increased approximately 10-fold, to 1,870 +/- 770 nM (n = 4), during a heat shock. When salivary glands were incubated in calcium-free, ethylene glycol-bis(beta-aminoethyl ether)-N,N',N'-tetraacetic acid (EGTA)-buffered medium, the resting level value of [Ca2+]i was reduced to 80 +/- 7 nM (n = 3), and heat shock resulted in a fourfold increase in [Ca2+]i to 353 +/- 90 nM (n = 3). The intracellular free-ion concentrations of Na+, K+, Cl-, and Mg2+ were 9.6 +/- 0.8, 101.9 +/- 1.7, 36 +/- 1.5, and 2.4 +/- 0.2 mM, respectively, and remained essentially unchanged during a heat shock. Procedures were devised to mimic or block the effects of heat shock on pHi and [Ca2+]i and to assess their role in the induction of heat shock proteins. We report here that the changes in [Ca2+]i and pHi which occur during heat shock are not sufficient, nor are they required, for a complete induction of the heat shock response.  相似文献   

13.
We have utilized multinuclear NMR spectroscopy to examine the relationship between cytosolic free Ca2+ ([Ca2+]in), free Mg2+ ([Mg2+]in) and intracellular Na+ ([Na+]in) levels of the intact thoracic aorta and primary hypertension using the Wistar-Kyoto and Sprague-Dawley rats as controls and the spontaneously hypertensive rat as a model for genetic hypertension. Cytosolic free [Ca2+] was measured using 19F NMR of the intracellular Ca2+ indicator 5,5'-difluoro-1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, free [Mg2+] using the 31P resonances of intracellular ATP, and intracellular [Na+] by 23Na NMR in combination with the extracellular shift reagent dysprosium tripolyphosphate. We have found that both the [Na+]in and [Ca2+]in levels were significantly increased in the hypertensive animals relative to normotensive controls (p less than 0.01). Mean systolic blood pressures (using tail cuff method) of control and hypertensive rats were 123 +/- 8 mm Hg (mean +/- 2 S.E., n = 7) and 159 +/- 6 mm Hg (mean +/- 2 S.E., n = 7), respectively. [Na+]in and [Ca2+]in were 21.9 +/- 6.4 mM (mean +/- 2 S.E., n = 7) and 277 +/- 28 nM (mean +/- 2 S.E., n = 5) for the spontaneously hypertensive rats versus 10.1 +/- 1.8 mM (mean +/- 2 S.E., n = 7) and 151 +/- 26 nM (mean +/- 2 S.E., n = 5) for control rats, respectively. A slight difference observed between intracellular free Mg2+ levels in hypertensives (180 +/- 38 microM, mean +/- 2 S.E., n = 4) and controls (246 +/- 76 microM, mean +/- 2 S.E., n = 4) was not statistically significant (p greater than 0.1). These data indicate alterations in the cell membrane ion transport function of the aortic smooth muscle in primary hypertension.  相似文献   

14.
The effects of the thyroid status on the cytosolic free Ca2+ concentration ([Ca2+]i) in single cardiomyocytes were studied at rest and during contraction. The mean resting [Ca2+]i increased significantly from the hypothyroid (45 +/- 4 nM) through the euthyroid (69 +/- 12 nM) to the hyperthyroid condition (80 +/- 11 nM) at extracellular Ca2+ concentrations ([Ca2+]o) up to 2.5 mM. At [Ca2+]o above 2.5 mM the differences in [Ca2+]i between the groups became less. The amplitude of the Ca2+ transients became higher in all groups with increasing [Ca2+]o (1, 2.5 and 5 mM), and was highest at all [Ca2+]o in hyperthyroid myocytes. The beta-agonist isoprenaline elevated peak [Ca2+]i during contraction and increased the rate of the decay of the Ca2+ transients to a greater extent in hypothyroid myocytes than in hyperthyroid myocytes. Depolarization with high [K+]o induced a large but transient [Ca2+]i overshoot in hypothyroid myocytes, but not in hyperthyroid myocytes, before a new elevated steady-state [Ca2+]i was reached, which was not different between the groups. When isoprenaline was added to K+ o-depolarized myocytes after a steady state was reached, a significantly larger extra increase in [Ca2+]i was measured in the hypothyroid group (28%) compared with the hyperthyroid group (8%). It is concluded that in cardiac tissue exposed to increasing amounts of thyroid hormones (1) [Ca2+]i increases at rest and during contraction in cardiomyocytes and (2) interventions which favour Ca2+ entry into the cytosol [( Ca2+]o elevation, high [K+]o, beta-agonists) tend to have less impact on Ca2+ homoeostasis.  相似文献   

15.
The effect of halothane on the regulation of blood platelet free cytosolic calcium was investigated in Quin-2-loaded cells from patients susceptible to Malignant Hyperthermia (MH) and healthy controls, respectively. The resting level of free cytosolic calcium was slightly, but statistically significantly, enhanced in platelets from patients (90 +/- 10 nM vs 110 +/- 35 nM). Halothane induced a dose-dependent, rapid Ca2+ release from intracellular stores both in normal and in MH derived cells, but the resulting increase in cytosolic calcium was significantly higher in the latter (2 mM halothane: [Ca2+]i = 117 +/- 12 nM vs 218 +/- 117 nM; 4 mM halothane: 225 +/- 35 nM vs. 417 +/- 201 nM). Whereas in platelets from healthy donors a complete reversibility of the halothane effect could be observed within 30-45 min, the cytosolic Ca2+ transients in platelets from patients were different from those in normals either in a higher initial peak or in a diminished decline velocity or in both. The basal Ca2+ permeability of the platelet plasma membrane was very low. Generally, halothane caused a dose-dependent increase in Ca2+ permeability. However, the influx of external calcium was significantly higher in platelets from patients than in controls (2 mM halothane: delta [Ca2+]i = 69 +/- 12 nM vs 135 +/- 63 nM; 4 mM halothane: 127 +/- 33 nM vs. 258 +/- 111 nM). Combining the results, the suggestion can be made that susceptibility to MH is characterized by a generalized membrane defect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The mechanisms by which glyburide and tolbutamide signal insulin secretion were examined using a beta cell line (Hamster insulin-secreting tumor (HIT) cells). Insulin secretion was measured in static incubations, free cytosolic Ca2+ concentration ([Ca2+]i) was monitored in quin 2-loaded cells, and cAMP quantitated by radioimmunoassay. Insulin secretory dose-response curves utilizing static incubations fit a single binding site model and established that glyburide (ED50 = 112 +/- 18 nM) is a more potent secretagogue than tolbutamide (ED50 = 15 +/- 3 microM). Basal HIT cell [Ca2+]i was 76 +/- 7 nM (mean +/- S.E., n = 141) and increased in a dose-dependent manner with both glyburide and tolbutamide with ED50 values of 525 +/- 75 nM and 67 +/- 9 microM, respectively. The less active tolbutamide metabolite, carboxytolbutamide, had no effect on [Ca2+]i or insulin secretion. Chelation of extracellular Ca2+ with 4 mM EGTA completely inhibited the sulfonylurea-induced changes in [Ca2+]i and insulin release and established that the rise in [Ca2+]i came from an extracellular Ca2+ pool. The Ca2+ channel blocker, verapamil, inhibited glyburide- or tolbutamide-stimulated insulin release and the rise in [Ca2+]i at similar concentrations with IC50 values of 3 and 2.5 microM, respectively. At all concentrations tested, the sulfonylureas did not alter HIT cell cAMP content. These findings provide direct experimental evidence that glyburide and tolbutamide allow extracellular Ca2+ to enter the beta cell through verapamil-sensitive, voltage-dependent Ca2+ channels, causing a rise in [Ca2+]i which is the second messenger that stimulates insulin release.  相似文献   

17.
Peritoneal cells from thioglycollate-stimulated mice were allowed to adhere to coverglasses for 2 h to give a dense monolayer of adherent cells greater than 95% of which were macrophages. After incubation with the tetra-acetoxymethyl ester of quin2, coverglasses were rinsed with Ca2+-free saline, oriented at a 45 degree angle in square cuvettes containing a magnetically driven stir bar, and analyzed for changes in quin2 fluorescence in a spectrofluorimeter. Such fluorescence, taken as an indication of intracellular calcium ion concentration ([Ca2+]i), increased as exogenous calcium ion concentration ([Ca2+]o) was raised to 1 mM. At [Ca2+]o approximately equal to 10 microM, [Ca2+]i = 72 +/- 14 nM (n = 26); at [Ca2+]o = 1 mM, [Ca2+]i = 140-220 nM, levels not increased by N, N, N', N'-tetrakis (2-pyridylmethyl) ethylenediamine, a membrane-permeant chelator of heavy metals than can quench quin2. Addition of mouse alpha + beta fibroblast interferon, lipopolysaccharide, thrombin, collagen, vasopressin, ADP, compound 48/80, or U46619 did not change [Ca2+]i. However, addition of platelet activating factor (PAF) (2-20 ng/ml) raised [Ca2+]i by 480 nM within 1 min if [Ca2+]o = 1 mM. In the presence of 5 mM EGTA, PAF raised [Ca2+]i by 25 nM. This suggests that PAF causes influx of exogenous Ca2+, as well as releasing some Ca2+ from intracellular stores. Consistent with these results, when PAF was added to 1 mM Ca2+ in the presence of 100 microM Cd2+ or Mn2+ to block Ca2+ influx, [Ca2+]i increased by only intermediate amounts; at the times of such dampened peak response, [Ca2+]i could be raised within 1 min to normal PAF-stimulated levels by chelation of the exogenous heavy metals with diethylenetriaminepentaacetic acid. Normal PAF responses were observed in the presence of indomethacin. The lowest dose of PAF observed to raise [Ca2+]i was 0.1 ng/ml. Response of [Ca2+]i to 2-20 ng/ml PAF was transient, and second applications had no effect. The PAF response also was seen in cell suspensions. These results suggest that an increase in [Ca2+]i may be an early event in PAF activation of macrophages.  相似文献   

18.
In many cells, inhibition of sarcoplasmic reticulum (SR) Ca2+-ATPase activity induces a steady-state increase in cytosolic calcium concentration ([Ca2+]i) that is sustained by calcium influx. The goal was to characterize the response to inhibition of SR Ca2+-ATPase activity in bovine airway smooth muscle cells. Cells were dispersed from bovine trachealis and loaded with fura 2-AM (0.5 microM) for imaging of single cells. Cyclopiazonic acid (CPA; 5 microM) inhibited refilling of both caffeine- and carbachol-sensitive calcium stores. In the presence of extracellular calcium, CPA caused a transient increase in [Ca2+]i from 166 +/- 11 to 671 +/- 100 nM, and then [Ca2+]i decreased to a sustained level (CPA plateau; 236 +/- 19 nM) significantly above basal. The CPA plateau spontaneously declined toward basal levels after 10 min and was attenuated by discharging intracellular calcium stores. When CPA was applied during sustained stimulation with caffeine or carbachol, decreases in [Ca2+]i were observed. We concluded that the CPA plateau depended on the presence of SR calcium and that SR Ca2+-ATPase activity contributed to sustained increases in [Ca2+]i during stimulation with caffeine and, to a lesser extent, carbachol.  相似文献   

19.
The control of force by [Ca2+] was investigated in rat cardiac trabeculae loaded with fura-2 salt. At sarcomere lengths of 2.1-2.3 microns, the steady state force-[Ca2+]i relationship during tetanization in the presence of ryanodine was half maximally activated at a [Ca2+]i of 0.65 +/- 0.19 microM with a Hill coefficient of 5.2 +/- 1.2 (mean +/- SD, n = 9), and the maximal stress produced at saturating [Ca2+]i equalled 121 +/- 35 mN/mm2 (n = 9). The dependence of steady state force on [Ca2+]i was identical in muscles tetanized in the presence of the Ca(2+)-ATPase inhibitor cyclopiazonic acid (CPA). The force-[Ca2+]i relationship during the relaxation of twitches in the presence of CPA coincided exactly to that measured at steady state during tetani, suggesting that CPA slows the decay rate of [Ca2+]i sufficiently to allow the force to come into a steady state with the [Ca2+]i. In contrast, the relationship of force to [Ca2+]i during the relaxation phase of control twitches was shifted leftward relative to the steady state relationship, establishing that relaxation is limited by the contractile system itself, not by Ca2+ removal from the cytosol. Under control conditions the force-[Ca2+]i relationship, quantified at the time of peak twitch force (i.e., dF/dt = 0), coincided fairly well with steady state measurements in some trabeculae (i.e., three of seven). However, the force-[Ca2+]i relationship at peak force did not correspond to the steady state measurements after the application of 5 mM 2,3-butanedione monoxime (BDM) (to accelerate cross-bridge kinetics) or 100 microM CPA (to slow the relaxation of the [Ca2+]i transient). Therefore, we conclude that the relationship of force to [Ca2+]i during physiological twitch contractions cannot be used to predict the steady state relationship.  相似文献   

20.
Rapid shortening of active cardiac muscle [quick release (QR)] dissociates Ca2+ from myofilaments. We studied, using muscle stretches and QR, whether Ca2+ dissociation affects triggered propagated contractions (TPCs) and Ca2+ waves. The intracellular Ca2+ concentration was measured by a SIT camera in right ventricular trabeculae dissected from rat hearts loaded with fura 2 salt, force was measured by a silicon strain gauge, and sarcomere length was measured by laser diffraction while a servomotor controlled muscle length. TPCs (n = 27) were induced at 28 degrees C by stimulus trains (7.5 s at 2.65 +/- 0.13 Hz) at an extracellular Ca2+ concentration ([Ca2+]o) = 2.0 mM or with 10 microM Gd3+ at [Ca2+]o = 5.2 +/- 0.73 mM. QR during twitch relaxation after a 10% stretch for 100-200 ms reduced both the time between the last stimulus and the peak TPC (PeakTPC) and the time between the last stimulus and peak Ca2+ wave (PeakCW) and increased PeakTPC and PeakCW (n = 13) as well as the propagation velocity (Vprop; n = 8). Active force during stretch also increased Vprop (r = 0.84, n = 12, P < 0.01), but Gd3+ had no effect (n = 5). These results suggest that Ca2+ dissociation by QR during relaxation accelerates the initiation and propagation of Ca2+ waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号