首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Uxmal and Tulum are two important Mayan sites in the Yucatan peninsula. The buildings are mainly composed of limestone and grey/black discoloration is seen on exposed walls and copious greenish biofilms on inner walls. The principal microorganisms detected on interior walls at both Uxmal and Tulum were cyanobacteria; heterotrophic bacteria and filamentous fungi were also present. A dark‐pigmented mitosporic fungus and Bacillus cereus, both isolated from Uxmal, were shown to be acidogenic in laboratory cultures. Cyanobacteria belonging to rock‐degrading genera Synechocystis and Gloeocapsa were identified at both sites. Surface analysis previously showed that calcium ions were present in the biofilms on buildings at Uxmal and Tulum, suggesting the deposition of biosolubilized stone. Apart from their potential to degrade the substrate, the coccoid cyanobacteria supply organic nutrients for bacteria and fungi, which can produce organic acids, further increasing stone degradation.  相似文献   

2.
We studied periphytic algal biofilms that formed in the sedimentation basins (SBs) of a water treatment plant (WTP) in South Korea. The submerged cement wall of the basin was heavily coated by mats of algal filaments, which resembled a small sheet of carpet. These biofilms were more common in the dry season (spring and autumn), than the rainy season (summer) and winter. Oscillatoria and Phormidium (Cyanobacteria) were predominant in the biofilm of the SB walls, where the water was stagnant. Lyngbya (Cyanobacteria) and Oedogonium (Chlorophyta) were dominant on the walls of overflow weirs and troughs of the SB, where there was a substantial current. As the biofilm matured, the assemblages were detached from the walls and floated as “scum” on the water, causing contamination. Many factors control the development of cyanobacterial biofilms on the walls of WTPs, including the nutrient levels of the raw water, and interstitial or pore water of biofilm assemblages, temperature, and irradiance. We isolated and grew unialgal cultures of the five most important cyanobacteria of the WTP biofilm. Oscillatoria splendida strongly produced the musty odor from the cultures. We suggest implementation of antifouling strategies to reduce the formation of biofilm on the wall and contamination of water supplies.  相似文献   

3.
The aim of the study was to establish an in vitro model of Staphylococcus epidermidis biofilms on polyvinyl chloride (PVC) material, and to investigate bacterial biofilm formation and its structure using the combined approach of confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM). Staphylococcus epidermidis bacteria (stain RP62A) were incubated with PVC pieces in Tris buffered saline to form biofilms. Biofilm formation was examined at 6, 12, 18, 24, 30, and 48 h. Thicknesses of these biofilms and the number, and percentage of viable cells in biofilms were measured. CT scan images of biofilms were obtained using CLSM and environmental SEM. The results of this study showed that Staphylococcus epidermidis biofilm is a highly organized multi-cellular structure. The biofilm is constituted of large number of viable and dead bacterial cells. Bacterial biofilm formation on the surface of PVC material was found to be a dynamic process with maximal thickness being attained at 12–18 h. These biofilms became mature by 24 h. There was significant difference in the percentage of viable cells along with interior, middle, and outer layers of biofilms (P < 0.05). Staphylococcus epidermidis biofilm is sophisticated in structure and the combination method involving CLSM and SEM was ideal for investigation of biofilms on PVC material.  相似文献   

4.
Paper machine biofilms formed in situ on stainless steel surfaces were studied. A robust flow cell was fitted to side stream (1.8 m s−1) of the spray water circuit of a paper machine. This on-site tool allowed for assessing the efficacy of antifoulants and the adequacy of steel polishing under mill conditions. A rapid fluorescence-based assay was developed to quantify the biomass of shallow biofilms on machine steel. The fluorescence matched the ATP content measured for the same biofilms. Electrolytic polishing reduced the tendency of biofouling of 500 grit surface steel. Biofilm grew under machine conditions as clusters on the steels, showing uniformly coccoid, filaments or short rods; only one cell type in each cluster. The biofilm clusters excluded latex beads of 0.02 μm with hydrophilic or with hydrophobic surfaces from penetrating more than three to four layers of cells. Under the high hydraulic flow at the machine (1.8 m s−1), the biofilm grew in 7 days 6–10 μm thick. The high flow rate guided the shape of the biofilm clusters emerging after the primary attachment of cells. Adhered individual bacteria were the platform on steel to which solids such as paper machine fines then accumulated. Journal of Industrial Microbiology & Biotechnology (2002) 28, 268–279 DOI: 10.1038/sj/jim/7000242 Received 04 October 2001/ Accepted in revised form 14 January 2002  相似文献   

5.
Three coccoid and two filamentous cyanobacterial strains were isolated from phototrophic biofilms exposed to intense solar radiation on lithic surfaces of the Parasurameswar Temple and Khandagiri caves, located in Orissa State, India. Based on to their morphological features, the three coccoid strains were assigned to the genera Gloeocapsosis and Gloeocapsa, while the two filamentous strains were assigned to the genera Leptolyngbya and Plectonema. Eleven to 12 neutral and acidic sugars were detected in the slime secreted by the five strains. The secretions showed a high affinity for bivalent metal cations, suggesting their ability to actively contribute to weakening the mineral substrata. The secretion of protective pigments in the polysaccharide layers, namely mycosporine amino acid-like substances (MAAs) and scytonemins, under exposure to UV radiation showed how the acclimation response contributes to the persistence of cyanobacteria on exposed lithoid surfaces in tropical areas.  相似文献   

6.
Discoloring biofilms from Cambodian temples Angkor Wat, Preah Khan, and the Bayon and West Prasat in Angkor Thom contained a microbial community dominated by coccoid cyanobacteria. Molecular analysis identified Chroococcidiopsis as major colonizer, but low similarity values (<95%) suggested a similar genus or species not present in the databases. In only two of the six sites sampled were filamentous cyanobacteria, Microcoleus, Leptolyngbya, and Scytonema, found; the first two detected by sequencing of 16S rRNA gene library clones from samples of a moist green biofilm on internal walls in Preah Khan, where Lyngbya (possibly synonymous with Microcoleus) was seen by direct microscopy as major colonizer. Scytonema was detected also by microscopy on an internal wall in the Bayon. This suggests that filamentous cyanobacteria are more prevalent in internal (high moisture) areas. Heterotrophic bacteria were found in all samples. DNA sequencing of bands from DGGE gels identified Proteobacteria (Stenotrophomonas maltophilia and Methylobacterium radiotolerans) and Firmicutes (Bacillus sp., Bacillus niacini, Bacillus sporothermodurans, Lysinibacillus fusiformis, Paenibacillus sp., Paenibacillus panacisoli, and Paenibacillus zanthoxyli). Some of these bacteria produce organic acids, potentially degrading stone. Actinobacteria, mainly streptomycetes, were present in most samples; algae and fungi were rare. A dark-pigmented filamentous fungus was detected in internal and external Preah Khan samples, while the alga Trentepohlia was found only in samples taken from external, pink-stained stone at Preah Khan. Results show that these microbial biofilms are mature communities whose major constituents are resistant to dehydration and high levels of irradiation and can be involved in deterioration of sandstone. Such analyses are important prerequisites to the application of control strategies.  相似文献   

7.
Whereas the transfer of Listeria from surfaces to foods and vice versa has been well documented, little is known about the mechanism of bacterial transfer. The objective of this work is to gain a better understanding of the forces involved in listerial biofilms adhesion using atomic force microscopy (AFM). L. monocytogenes Scott A was grown as biofilms on stainless steel surfaces by inoculating stainless steel coupons with Listeria and incubating the coupons for 48 h at 32 °C with a diluted 1:20 tryptic soy broth. After growth, biofilms were equilibrated over saturated salt solutions at a constant relative humidity (%RH) before measurement of adhesion forces using AFM. The effects of contact time, loading force, and biofilm relative humidity (%RH) suggested that neither contact time, loading force nor biofilm %RH had a significant effect on biofilm adhesiveness at a cellular level (P > 0.05). In a second set of experiments, the influence of material type on biofilm adhesiveness was evaluated using two different colloidal probes (SiO2 and polyethylene). Results showed that the maximum pull-off force and retraction work needed to retract the cantilever for glass (−85.42 nN and 1.610−15 J, respectively) were significantly lower than those of polyethylene (−113.38 nN and 2.7 × 10–15 J, respectively; P < 0.001). The results of this study suggest that Listeria biofilms adhere more strongly to hydrophobic surfaces than hydrophilic surfaces when measured at a cellular level. These results provide important insights that could lead to new ways to remediate and avoid listerial biofilm formation in the food industry.  相似文献   

8.
Candida parapsilosis is yeast capable of forming biofilms on medical devices. Novel approaches for the prevention and eradication of the biofilms are desired. This study investigated the anticandidal activity of sixteen essential oils on planktonic and biofilm cultures of C. parapsilosis complex. We used molecular tools, enumeration of colony-forming units, the colourimetric MTT assay, scanning electron microscopy (SEM) and a chequerboard assay coupled with software analyses to evaluate the growth kinetics, architecture, inhibition and reduction in biofilms formed from environmental isolates of the Candida parapsilosis complex; further, we also evaluated whether essential oils would interact synergistically with amphotericin B to increase their anticandidal activities. Of the environmental C. parapsilosis isolates examined, C. parapsilosis and C. orthopsilosis were identified. Biofilm growth on polystyrene substrates peaked within 48 h, after which growth remained relatively stable up to 72 h, when it began to decline. Details of the architectural analysis assessed by SEM showed that C. parapsilosis complex formed less complex biofilms compared with C. albicans biofilms. The most active essential oil was cinnamon oil (CO), which showed anticandidal activity against C. orthopsilosis and C. parapsilosis in both suspension (minimum inhibitory concentration—MIC—250 and 500 μg/ml) and biofilm (minimum biofilm reduction concentration—MBRC—1,000 and 2,000 μg/ml) cultures. CO also inhibited biofilm formation (MBIC) at concentrations above 250 μg/ml for both species tested. However, synergism with amphotericin B was not observed. Thus, CO is a natural anticandidal agent that can be effectively utilised for the control of the yeasts tested.  相似文献   

9.
In the present study a closed incubator, designed for biofilm growth on artificial substrata, was used to grow three isolates of biofilm-forming heterocytous cyanobacteria using an artificial wastewater secondary effluent as the culture medium. We evaluated biofilm efficiency in removing phosphorus, by simulating biofilm-based tertiary wastewater treatment and coupled this process with biodiesel production from the developed biomass. The three strains were able to grow in the synthetic medium and remove phosphorus in percentages, between 6 and 43%, which varied between strains and also among each strain according to the biofilm growth phase. Calothrix sp. biofilm turned out to be a good candidate for tertiary treatment, showing phosphorus reducing capacity (during the exponential biofilm growth) at the regulatory level for the treated effluent water being discharged into natural water systems.

Besides phosphorus removal, the three cyanobacterial biofilms produced high quality lipids, whose profile showed promising chemical stability and combustion behavior. Further integration of the proposed processes could include the integration of oil extracted from these cyanobacterial biofilms with microalgal oil known for high monounsaturated fatty acids content, in order to enhance biodiesel cold flow characteristics.  相似文献   

10.
Acidic biofilms present on cave walls in the sulfidic region of the Frasassi Gorge, Italy, were investigated to determine their microbial composition and their potential role in cave formation and ecosystem functioning. All biofilm samples examined had pH values &lt; 1.0. Scanning electron microscopy of the biofilms revealed the presence of various filaments and rods associated in large clusters with mineral crystals. Qualitative energy-dispersive x-ray analysis was used to determine that the crystals present on the cave walls, associated with the microbial biofilm, were composed of calcium and barium sulfate. Ribosomal RNA-based methods to determine the microbial composition of these biofilms revealed the presence of at least two strains of potential acidophilic, sulfur-oxidizing bacteria, belonging to the genera Thiobacillus and Sulfobacillus. An acid-producing strain of Thiobacillus sp. also was obtained in pure culture. Stable isotope ratio analysis of carbon and nitrogen showed that the wall biofilms are isotopically light, suggesting that in situ chemoautotrophic activity plays an important role in this subsurface ecosystem.  相似文献   

11.
Phlegrean Fields is a large volcanic area situated southwest of Naples (Italy), including both cave and thermoacidic habitats. These extreme environments host the genus Cyanidium; the species C. chilense represents a common phototrophic microorganism living in anthropogenic caves. With a view to provide a comprehensive characterization for a correct taxonomic classification, morpho‐ultrastructural investigations of C. chilense from Sybil's cave (Phlegren Fields) was herein carried out and compared with the thermoacidophilic C. caldarium. The biofilm was also analyzed to define the role of C. chilense in the establishment of a biofilm within cave environments. Despite the peculiar ecological and molecular divergences, C. chilense and C. caldarium shared all the main diacritic features, suggesting morphological convergence within the genus; cytological identity was found among C. chilense strains geographically distant and adapted to different substrates, such as the porous yellow tuff of Sybil cave, and calcyte, magnesite and basaltic rocks from other caves. C. chilense is generally dominant in all biofilms, developing monospecific islets, developing both superficially or between fungal hyphae and coccoid cyanobacteria. Extracellular polymeric substances (EPS) were recorded in C. chilense biofilms from Sybil cave, confirming the role of EPS in facilitating cells adhesion to the surface, creating a cohesive network of interconnecting biofilm cells.  相似文献   

12.
Abstract

The objective of this work was to develop a subgingival biofilm model using a stirred bioreactor. Discs of bovine teeth were adapted to a stirred bioreactor filled with a culture medium containing bacterial species associated with periodontal health or disease. After anaerobic incubation, the biofilms growing on the substratum surfaces were collected and analyzed. The mean number of Colony-forming Units (CFUs) varied, but with no difference between 3 and 7?days of biofilm formation (p?>?0.05). Scanning Electron Microscopy (SEM) analysis showed a uniform biofilm layer covering the cement layer of the root surface containing bacteria with diverse morphology. In checkerboard DNA-DNA hybridization, bacterial species were identified in both biofilms. In conclusion, a subgingival biofilm model was developed using a stirred bioreactor, allowing the in vitro reproduction of complex microbial communities. This is an advanced model that may be useful to mimic complex clinical periodontal biofilms.  相似文献   

13.
Cyanobacterial populations detected on buildings by traditional methods are mainly filamentous, whereas direct microscopy shows that they are principally coccoid morphotypes that often cannot be isolated in culture, but may grow on artificial media when the spatial biofilm relationships are maintained. The polyphasic strategy described here was to select morphologically distinct colonies from rehydrated biofilms for direct DNA amplification, allowing uncultured organisms to be sequenced and their morphology to be characterized by microscopy. DNA data banks currently contain many entries for cyanobacteria of unrecorded morphology, which does not facilitate identification, although genetic variability in a population may be assessed. The sequence homologies of the present biofilm organisms (EMBL accession numbers AJ619681 to 619690) with those in DNA databanks were low, indicating differences between xerophytic cyanobacteria on walls and aquatic species comprising the majority in the databases. Further development of databases for the populations found in this environment, subject to temperature extremes, repeated desiccation and high UV and salt levels, is required.  相似文献   

14.
Cyanobacterial populations detected on buildings by traditional methods are mainly filamentous, whereas direct microscopy shows that they are principally coccoid morphotypes that often cannot be isolated in culture, but may grow on artificial media when the spatial biofilm relationships are maintained. The polyphasic strategy described here was to select morphologically distinct colonies from rehydrated biofilms for direct DNA amplification, allowing uncultured organisms to be sequenced and their morphology to be characterized by microscopy. DNA data banks currently contain many entries for cyanobacteria of unrecorded morphology, which does not facilitate identification, although genetic variability in a population may be assessed. The sequence homologies of the present biofilm organisms (EMBL accession numbers AJ619681 to 619690) with those in DNA databanks were low, indicating differences between xerophytic cyanobacteria on walls and aquatic species comprising the majority in the databases. Further development of databases for the populations found in this environment, subject to temperature extremes, repeated desiccation and high UV and salt levels, is required.  相似文献   

15.
Microbial colonization of petroleum industry systems takes place through the formation of biofilms, and can result in biodeterioration of the metal surfaces. In a previous study, two oil reservoir Bacillus strains (Bacillus licheniformis T6-5 and Bacillus firmus H2O-1) were shown to produce antimicrobial substances (AMS) active against different Bacillus strains and a consortium of sulfate-reducing bacteria (SRB) on solid medium. However, neither their ability to form biofilms nor the effect of the AMS on biofilm formation was adequately addressed. Therefore, here, we report that three Bacillus strains (Bacillus pumilus LF4—used as an indicator strain, B. licheniformis T6-5, and B. firmus H2O-1), and an oil reservoir SRB consortium (T6lab) were grown as biofilms on glass surfaces. The AMS produced by strains T6-5 and H2O-1 prevented the formation of B. pumilus LF4 biofilm and also eliminated pre-established LF4 biofilm. In addition, the presence of AMS produced by H2O-1 reduced the viability and attachment of the SRB consortium biofilm by an order of magnitude. Our results suggest that the AMS produced by Bacillus strains T6-5 and H2O-1 may have a potential for pipeline-cleaning technologies to inhibit biofilm formation and consequently reduce biocorrosion.  相似文献   

16.
Laboratory simulation of fossilization of cyanobacterial cells in the high-carbonate medium in the presence of calcium was carried out for the haloalkaliphilic natronophilic cyanobacterium ‘Euhalothece natronophila’ Z-M001. This organism was isolated from the Magadi soda lake, where the bioherms consisting of mineralized coccoid cyanobacteria were found in the Quaternary sediments. The structural and chemical heterogeneity of the minerals produced during this process was established, with calcium carbonate and trona being the main products. The differences in the process of cyanobacterial cell carbonatization in soda lakes and marine or freshwater systems were determined. Initial precipitation of calcium carbonate was shown to occur due to a chemical reaction not involving cyanobacteria. At the subsequent stages, amorphous CaCO3 is sorbed and crystallized on the surface of some of the cells within a cyanobacterial population, resulting in formation of a shell-like mineral layer. The cells embedded in trona in the same system were shown to undergo deformation and destruction. In both cases the mineralized cells were shown to lose their photosynthetic activity.  相似文献   

17.
Bacterial biofilm formation causes serious problems in various fields of medical, clinical, and industrial settings. Antibiotics and biocide treatments are typical methods used to remove bacterial biofilms, but biofilms are difficult to remove effectively from surfaces due to their increased resistance. An alternative approach to treatment with antimicrobial agents is using biofilm inhibitors that regulate biofilm development without inhibiting bacterial growth. In the present study, we found that linoleic acid (LA), a plant unsaturated fatty acid, inhibits biofilm formation under static and continuous conditions without inhibiting the growth of Pseudomonas aeruginosa. LA also influenced the bacterial motility, extracellular polymeric substance production, and biofilm dispersion by decreasing the intracellular cyclic diguanylate concentration through increased phosphodiesterase activity. Furthermore, quantitative gene expression analysis demonstrated that LA induced the expression of genes associated with diffusible signaling factor‐mediated quorum sensing that can inhibit or induce the dispersion of P. aeruginosa biofilms. These results suggest that LA is functionally and structurally similar to a P. aeruginosa diffusible signaling factor (cis‐2‐decenoic acid) and, in turn, act as an agonist molecule in biofilm dispersion.  相似文献   

18.
The impact of storm-flow on river biofilm architecture was investigated using transmission (TEM) and scanning (SEM) electron microscopy. TEM resin substrata were colonized under light-grown (LG) or dark-grown (DG) conditions for 33 weeks in the Clywedog River, North Wales, prior to exposure to ambient-flow (approx. 60 cm·s?1) or storm-flow (approx. 235 cm·s?1+ river sediment) in a laboratory flume. Line transect methodology was used to quantify information from TEM ultrathin sections of LG material. In the LG ambient-flow biofilm, bacteria were more abundant directly adjacent to the substratum and were noticeably denser directly under the adnate diatom Cocconeis. Higher in the biofilm, the bacteria were loosely dispersed in the matrix between other cells. Cyanobacteria occurred most frequently as single cells but were also found in large “palisade” formations adjacent to the substratum. Significant horizontal and vertical nearest-neighbor associations were noted for both bacteria and cyanobacteria. Cells of Cocconeis were common adjacent to the substratum, providing shelter to, and often elevated upon, an “organic pad” of bacteria, cyanobacteria, and densely staining exopolysaccharide. Cyanobacteria and Cocconeis were resistant to removal by storm-flow, but Cocconeis frustules were sometimes damaged. Bacteria in the LG storm-flow samples were less common adjacent to the substratum and were sometimes more dispersed higher in the biofilm than in ambient-flow samples. We suggest that storm-flow hydrodynamic forces may redistribute bacteria adjacent to the substratum into higher areas of the biofilm. In addition, bacteria and the exopolysaccharide matrix were sometimes removed down to the substratum by storm-flow, unless beneath Cocconeis. The DG biofilm consisted almost entirely of bacteria. Storm-flow only removed surface growth from DG biofilms, and SEM revealed peritrich stalk abrasion and “blow-down.” Pre-disturbance biofilm architecture appears to influence the form of destruction. We suggest that the “microcosms” of Cocconeis and their underlying cells not only serve as an inoculum to recolonize the surface when conditions permit but enhance immigration by interrupting flow patterns across the surface.  相似文献   

19.
Abstract

Cyanobacteria promote marine biofouling with significant impacts. A qualitative proteomic analysis, by LC-MS/MS, of planktonic and biofilm cells from two cyanobacteria was performed. Biofilms were formed on glass and perspex at two relevant hydrodynamic conditions for marine environments (average shear rates of 4?s?1 and 40?s?1). For both strains and surfaces, biofilm development was higher at 4?s?1. Biofilm development of Nodosilinea sp. LEGE 06145 was substantially higher than Nodosilinea sp. LEGE 06119, but no significant differences were found between surfaces. Overall, 377 and 301 different proteins were identified for Nodosilinea sp. LEGE 06145 and Nodosilinea sp. LEGE 06119. Differences in protein composition were more noticeable in biofilms formed under different hydrodynamic conditions than in those formed on different surfaces. Ribosomal and photosynthetic proteins were identified in most conditions. The characterization performed gives new insights into how shear rate and surface affect the planktonic to biofilm transition, from a structural and proteomics perspective.  相似文献   

20.
Abstract To investigate growth of heterotrophic biofilm bacteria, a model biofilm reactor was developed to simulate a drinking water distribution system. Controlled addition of three different carbon sources (amino acids, carbohydrates, and humics) at three different concentrations (500, 1,000, and 2,000 ppb carbon) in the presence and absence of chlorine were used in separate experiments. An additional experiment was run with a 1:1:2 mixture of the above carbon sources. Biofilm and effluent total and culturable cells in addition to total and dissolved organic carbon were measured in order to estimate specific growth rates (SGRs), observed yields, population densities, and bacterial carbon production rates. Bacterial carbon production rates (μg C/L day) were extremely high in the control biofilm communities (range = 295–1,738). Both growth rate and yield decreased with increasing carbon concentrations. Therefore, biofilm growth rates were zero-order with respect to the carbon concentrations used in these experiments. There was no correlation between growth rate and carbon concentration, but there was a significant negative correlation between growth rate and biofilm cell density (r=−0.637, p= 0.001 control and r=−0.57, p= 0.021 chlorinated biofilms). Growth efficiency was highest at the lowest carbon concentration (range = 12–4.5%, amino acids and humics respectively). Doubling times ranged from 2.3–15.4 days in the control biofilms and 1–12.3 days in the chlorinated biofilms. Growth rates were significantly higher in the presence of chlorine for the carbohydrates, humics, and mixed carbon sources (p= 0.004, < 0.0005, 0.013, respectively). The concept of r/K selection theory was used to explain the results with respect to specific growth rates and yields. Humic removal by the biofilm bacteria (78% and 56% for the control and chlorinated biofilms, respectively) was higher than previously reported literature values for planktonic bacteria. A number of control experiments indicated that filtration of drinking water was as effective as chlorination in controlling bacterial biofilm growth. Received: 26 March 1999; Accepted: 3 August 1999; Online Publication: 15 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号