首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
N- and O-linked oligosaccharides on pro-opiomelanocortin both bear the unique terminal sequence SO(4)-4-GalNAcβ1,4GlcNAcβ. We previously demonstrated that protein-specific transfer of GalNAc to N-linked oligosaccharides on glycoprotein substrates is dependent on the presence of both an oligosaccharide acceptor and a peptide recognition motif consisting of a cluster of basic amino acids. We characterized how two β1,4-N-acetylgalactosaminyltransferases, β4GalNAc-T3 and β4GalNAc-T4, require the presence of both the peptide recognition motif and the N-linked oligosaccharide acceptors to transfer GalNAc in β1,4-linkage to GlcNAc in vivo and in vitro. We now show that β4GalNAc-T3 and β4GalNAc-T4 are able to utilize the same peptide motif to selectively add GalNAc to β1,6-linked GlcNAc in core 2 O-linked oligosaccharide structures to form Galβ1,3(GalNAcβ1,4GlcNAcβ1,6)GalNAcαSer/Thr. The β1,4-linked GalNAc can be further modified with 4-linked sulfate by either GalNAc-4-sulfotransferase 1 (GalNAc-4-ST1) (CHST8) or GalNAc-4-ST2 (CHST9) or with α2,6-linked N-acetylneuraminic acid by α2,6-sialyltransferase 1 (ST6Gal1), thus generating a family of unique GalNAcβ1,4GlcNAcβ (LacdiNAc)-containing structures on specific glycoproteins.  相似文献   

5.
6.
7.
The glycoprotein hormones lutropin (LH) and thyrotropin and a limited number of additional glycoproteins bear carbohydrate structures terminating with the unique sequence SO(4)-4-GalNAcbeta1,4GlcNAcbeta that has been conserved in the glycoprotein hormones of all vertebrate species. Synthesis of these structures is mediated by a protein-specific beta1,4GalNAc-transferase and a GalNAc-4-sulphotransferase (GalNAc-4-ST1). GalNAc-4-ST1 is a member of a family of sulphotransferases that includes HNK-1 sulphotransferase, chondroitin-4-sulphotransferases-1-3 and dermatan-4-sulphotransferase-1. With the exception of HNK-1-ST, these sulphotransferases add sulphate to the C-4 hydroxy group of either terminal or non-terminal beta1,4-linked GalNAc. GalNAc-4-ST1 is most highly expressed in pituitary, cerebellum and other regions of the brain. The terminal GalNAcSO(4) on LH is recognized by the cysteine-rich domain of the mannose/GalNAc-4-SO(4) receptor located in hepatic endothelial cells. Each cysteine-rich domain binds a single terminal GalNAc-4-SO(4), and the receptor must form non-covalently associated homodimers in order to simultaneously engage two GalNAc-4-SO(4) moieties on separate oligosaccharides with sufficient affinity to form stable complexes. The receptor mediates the clearance of LH from the blood. This clearance, in conjunction with the stimulated release of hormone from dense core granules in pituitary gonadotroph cells, is required to produce the episodic rise and fall in LH levels needed for optimal oestrogen production during the implantation of embryos in the uterus.  相似文献   

8.
Sorting protein-related receptor (SorLA/LR11) is a highly conserved mosaic receptor that is expressed by cells in a number of different tissues including principal cells of the collecting ducts in the kidney and neurons in the central and peripheral nervous systems. SorLA/LR11 has features that indicate it serves as a sorting receptor shuttling between the plasma membrane, endosomes, and the Golgi. We have found that a fraction of SorLA/LR11 that is synthesized in the kidney and the brain bears N-linked oligosaccharides that are modified with terminal beta1,4-linked GalNAc-4-SO(4). Oligosaccharides located in the vacuolar sorting (Vps) 10p domain (Vps10p domain) are modified with beta1,4-linked GalNAc when the Vps10p domain is expressed in cells along with either of two recently cloned protein-specific beta1,4GalNAc-transferases, GalNAcTIII and GalNAcTIV. Either of two sequences with basic amino acids located within the Vps10p domain is able to mediate recognition by these beta1,4GalNAc-transferases. The highly specific modification of oligosaccharides in the Vps10p domain of SorLA/LR11 with terminal GalNAc-4-SO(4) suggests that this unusual modification may modulate the interaction of SorLA/LR11 with proteins and influence their trafficking.  相似文献   

9.
10.
11.
We have previously cloned chondroitin-4-sulfotransferase (C4ST) cDNA from mouse brain. In this paper, we report cloning and characterization of GalNAc 4-sulfotransferase (GalNAc4ST), which transfers sulfate to position 4 of the nonreducing terminal GalNAc residue. The obtained cDNA contains a single open reading frame that predicts a type II transmembrane protein composed of 424 amino acid residues. Identity of the amino acid sequence between GalNAc4ST and human C4ST was 30%. When the cDNA was transfected in COS-7 cells, sulfotransferase activity toward carbonic anhydrase VI was overexpressed but no sulfotransferase activity toward chondroitin or desulfated dermatan sulfate was increased over the control. Sulfation of carbonic anhydrase VI by the recombinant GalNAc4ST occurred at position 4 of the GalNAc residue of N-linked oligosaccharides. The recombinant GalNAc4ST transferred sulfate to position 4 of GalNAc residue of p-nitrophenyl GalNAc, indicating that this sulfotransferase transfers sulfate to position 4 at the nonreducing terminal GalNAc residue. Dot blot analysis showed that the message of GalNAc4ST was expressed strongly in the human pituitary, suggesting that the cloned GalNAc4ST may be involved in the synthesis of the nonreducing terminal GalNAc 4-sulfate residues found in the N-linked oligosaccharides of pituitary glycoprotein hormones.  相似文献   

12.
Tenascin-R (TN-R) is a member of the tenascin family of multidomain matrix glycoproteins that is expressed exclusively in the central nervous system by oligodendrocytes and small neurons during postnatal development and in the adult. TN-R contributes to the regulation of axon extension and regeneration, neurite formation and synaptogenesis, and neuronal growth and migration. TN-R can be modified with three distinct sulfated oligosaccharide structures: HNK-1 (SO(4)-3-GlcUAbeta1,3Galbeta1,4GlcNAc), GalNAc-4-SO(4), and chondroitin sulfate. We have determined that TN-R expressed in dendrite-rich regions of the rat cerebellum, hippocampus, and cerebral cortex is one of the major matrix glycoproteins that bears N-linked carbohydrates terminating with beta1,4-linked GalNAc-4-SO(4). The syntheses of these unique sulfated structures on TN-R are differentially regulated. Levels of HNK-1 on TN-R rise and fall in parallel to the levels of TN-R during postnatal development of the cerebellum. In contrast, levels of GalNAc-4-SO(4) are regulated independently from those of TN-R, rising late in cerebellar development and continuing into adulthood. As a result, the pattern of TN-R modification with distinct sulfated carbohydrate structures changes dramatically over the course of postnatal cerebellar development in the rat. Because TN-R interacts with a number of different matrix components and, depending on the circumstances, can either activate or inhibit neurite outgrowth, the highly regulated addition of these unique sulfated structures may modulate the adhesive properties of TN-R over the course of development and during synapse maintenance. In addition, the 160-kDa form of TN-R is particularly enriched for terminal GalNAc-4-SO(4) later in development and in the adult, suggesting additional levels of regulation.  相似文献   

13.
A limited number of glycoproteins including luteinizing hormone and carbonic anhydrase-VI (CA6) bear N-linked oligosaccharides that are modified with beta1,4-linked N-acetylgalactosamine (GalNAc). The selective addition of GalNAc to these glycoproteins requires that the beta1,4-N-acetylgalactosaminyltransferase (betaGT) recognize both the oligosaccharide acceptor and a peptide recognition determinant on the substrate glycoprotein. We report here that two recently cloned betaGTs, betaGT3 and betaGT4, that are able to transfer GalNAc to GlcNAc in beta1,4-linkage display the necessary glycoprotein specificity in vivo. Both betaGTs transfer GalNAc to N-linked oligosaccharides on the luteinizing hormone alpha subunit and CA6 but not to those on transferrin (Trf). A single peptide recognition determinant encoded in the carboxyl-terminal 19-amino acid sequence of bovine CA6 mediates transfer of GalNAc to each of its two N-linked oligosaccharides. The addition of this 19-amino acid sequence to the carboxyl terminus of Trf confers full acceptor activity onto Trf for both betaGT3 and betaGT4 in vivo. The complete 19-amino acid sequence is required for optimal GalNAc addition in vivo, indicating that the peptide sequence is both necessary and sufficient for recognition by betaGT3 and betaGT4.  相似文献   

14.
Recently, it has been shown that a deficiency in ChGn-1 (chondroitin N-acetylgalactosaminyltransferase-1) reduced the numbers of CS (chondroitin sulfate) chains, leading to skeletal dysplasias in mice. Although these results indicate that ChGn-1 regulates the number of CS chains, the mechanism mediating this regulation is not clear. ChGn-1 is thought to initiate CS biosynthesis by transferring the first GalNAc (N-acetylgalactosamine) to the tetrasaccharide in the protein linkage region of CS. However, in vitro chondroitin polymerization does not occur on the non-reducing terminal GalNAc-linkage pentasaccharide structure. In the present study we show that several different heteromeric enzyme complexes composed of different combinations of four chondroitin synthase family members synthesized more CS chains when a GalNAc-linkage pentasaccharide structure with a non-reducing terminal 4-O-sulfation was the CS acceptor. In addition, C4ST-2 (chondroitin 4-O-sulfotransferase-2) efficiently transferred sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 4 of non-reducing terminal GalNAc-linkage residues, and the number of CS chains was regulated by the expression levels of C4ST-2 and of ChGn-1. Taken together, the results of the present study indicate that C4ST-2 plays a key role in regulating levels of CS synthesized via ChGn-1.  相似文献   

15.
Bone marrow-derived mast cells (BMMCs) contain chondroitin sulfate (CS)-E comprised of GlcA-GalNAc(4SO4) units and GlcA-GalNAc(4,6-SO4) units. GalNAc 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate to position 6 of GalNAc(4SO4) residues of CS. On the basis of the specificity of GalNAc4S-6ST, it is thought that CS-E is synthesized in BMMC through the sequential sulfation by chondroitin 4-sulfotransferase (C4ST)-1 and GalNAc4S-6ST. In this paper, we investigated whether GalNAc4S-6ST and C4ST-1 are actually expressed in BMMCs in which CS-E is actively synthesized. As the bone marrow cells differentiate to BMMCs, level of C4ST-1 and GalNAc4S-6ST messages increased, whereas chondroitin 6-sulfotransferase (C6ST)-1 message decreased. In the extract of BMMCs, activity of GalNAc4S-6ST and C4ST but not C6ST were detected. The recombinant mouse GalNAc4S-6ST transferred sulfate to both nonreducing terminal and internal GalNAc(4SO4) residues; the activity toward nonreducing terminal GalNAc(4SO4) was increased with increasing pH. When CS-E synthesized by BMMCs was metabolically labeled with 35SO4 in the presence of bafilomycin A, chloroquine or NH4Cl, the proportion of the nonreducing terminal GalNAc(4,6-SO4) was increased compared with the control, suggesting that GalNAc4S-6ST in BMMC may elaborate CS-E in the intracellular compartment with relatively low pH where sulfation of the internal GalNAc(4SO4) by GalNAc4S-6ST preferentially occurs.  相似文献   

16.
Yamaguchi T  Ohtake S  Kimata K  Habuchi O 《Glycobiology》2007,17(12):1365-1376
N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate to position 6 of GalNAc(4SO(4)) residues in chondroitin sulfate (CS). We previously purified squid GalNAc4S-6ST and cloned a cDNA encoding the partial sequence of squid GalNAc4S-6ST. In this paper, we cloned squid GalNAc4S-6ST cDNA containing a full open reading frame and characterized the recombinant squid GalNAc4S-6ST. The cDNA predicts a Type II transmembrane protein composed of 425 amino acid residues. The recombinant squid GalNAc4S-6ST transferred sulfate preferentially to the internal GalNAc(4SO(4)) residues of chondroitin sulfate A (CS-A); nevertheless, the nonreducing terminal GalNAc(4SO(4)) could be sulfated efficiently when the GalNAc(4SO(4)) residue was included in the unique nonreducing terminal structure, GalNAc(4SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)), which was previously found in CS-A. Shark cartilage chondroitin sulfate C (CS-C) and chondroitin sulfate D (CS-D), poor acceptors for human GalNAc4S-6ST, served as the good acceptors for the recombinant squid GalNAc4S-6ST. Analysis of the sulfated products formed from CS-C and CS-D revealed that GalNAc(4SO(4)) residues included in a tetrasaccharide sequence, GlcA-GalNAc(4SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)), were sulfated efficiently by squid GalNAc4S-6ST, and the E-D hybrid tetrasaccharide sequence, GlcA-GalNAc(4,6-SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)) was generated in the resulting sulfated glycosaminoglycans. These observations indicate that the recombinant squid GalNAc4S-6ST is a useful enzyme for preparing a unique chondroitin sulfate containing the E-D hybrid tetrasaccharide structure.  相似文献   

17.
N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 6 of N-acetylgalactosamine 4-sulfate (GalNAc(4SO(4))) in chondroitin sulfate and dermatan sulfate. We have previously purified the enzyme to apparent homogeneity from the squid cartilage. We report here cloning and characterization of human GalNAc4S-6ST. The strategy for identification of human GalNAc4S-6ST consisted of: 1) determination of the amino acid sequences of peptides derived from the purified squid GalNAc4S-6ST, 2) amplification of squid DNA by polymerase chain reaction, and 3) homology search using the amino acid sequence deduced from the squid DNA. The human GalNAc4S-6ST cDNA contains a single open reading frame that predicts a type II transmembrane protein composed of 561 amino acid residues. The recombinant protein expressed from the human GalNAc4S-6ST cDNA transferred sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 6 of the nonreducing terminal and internal GalNAc(4SO(4)) residues contained in chondroitin sulfate A and dermatan sulfate. When a trisaccharide and a pentasaccharide having sulfate groups at position 4 of N-acetylgalactosamine residues were used as acceptors, only nonreducing terminal GalNAc(4SO(4)) residues were sulfated. The nucleotide sequence of the human GalNAc4S-6ST cDNA was nearly identical to the sequence of human B cell recombination activating gene-associated gene.  相似文献   

18.
We have identified a human chondroitin synthase from the HUGE (human unidentified gene-encoded large proteins) protein data base by screening with two keywords: "one transmembrane domain" and "galactosyltransferase family." The identified protein consists of 802 amino acids with a type II transmembrane protein topology. The protein showed weak homology to the beta1,3-galactosyltransferase family on the amino-terminal side and to the beta1,4-galactosyltransferase family on the carboxyl-terminal side. The expression of a soluble recombinant form of the protein in COS-1 cells produced an active enzyme, which transferred not only the glucuronic acid (GlcUA) from UDP-[(14)C]GlcUA but also N-acetylgalactosamine (GalNAc) from UDP-[(3)H]GalNAc to the polymer chondroitin. Identification of the reaction products demonstrated that the enzyme was chondroitin synthase, with both beta1,3-GlcUA transferase and beta1,4-GalNAc transferase activities. The coding region of the chondroitin synthase was divided into three discrete exons and localized to chromosome 15. Northern blot analysis revealed that the chondroitin synthase gene exhibited ubiquitous but markedly differential expression in the human tissues examined. Thus, we demonstrated that analogous to human heparan sulfate polymerases, the single polypeptide chondroitin synthase possesses two glycosyltransferase activities required for chain polymerization.  相似文献   

19.
4-O-Sulfation of GalNAc is a high frequency modification of chondroitin sulfate and dermatan sulfate (DS), and three major GalNAc 4-O-sulfotransferases including dermatan 4-O-sulfotransferase-1 (D4ST-1) and chondroitin 4-O-sulfotransferases-1 and -2 (C4ST-1 and -2) have been identified. 4-O-Sulfation of GalNAc during DS biosynthesis had long been postulated to be a prerequisite for iduronic acid (IdoUA) formation by C5-epimerization of GlcUA. This hypothesis has recently been argued based on enzymological studies using microsomes that C5-epimerization precedes 4-O-sulfation, which was further supported by the specificity of the cloned D4ST-1 with predominant preference for IdoUA-GalNAc flanked by GlcUA-GalNAc over IdoUA-GalNAc flanked by IdoUA-GalNAc in exhaustively desulfated dermatan. Whereas the counterproposal explains the initial reactions, apparently it cannot rationalize the synthetic mechanism of IdoUA-GalNAc(4-O-sulfate)-rich clusters typical of mature DS chains. In this study, we examined detailed specificities of the three recombinant human 4-O-sulfotransferases using partially desulfated DS as an acceptor. Enzymatic analysis of the transferase reaction products showed that D4ST-1 far more efficiently transferred sulfate to GalNAc residues in -IdoUA-Gal-NAc-IdoUA-than in -GlcUA-GalNAc-GlcUA-sequences. In contrast, C4ST-1 showed the opposite preference, and C4ST-2 used GalNAc residues in both sequences to comparable degrees, being consistent with its phylogenetic relations to D4ST-1 and C4ST-1. Structural analysis of the oligosaccharides, which were isolated after chondroitinase AC-I digestion of the 35S-labeled transferase reaction products, revealed for the first time that D4ST-1, as compared with C4ST-1 and C4ST-2, most efficiently utilized GalNAc residues located not only in the sequence -IdoUA-GalNAc-IdoUA- but also in -GlcUA-Gal-NAc-IdoUA- and -IdoUA-GalNAc-GlcUA-. The isolated oligosaccharide structures also suggest that 4-O-sulfation promotes subsequent 4-O-sulfation of GalNAc in the neighboring disaccharide unit.  相似文献   

20.
We have identified a novel galactose 3-O-sulfotransferase, termed Gal3ST-4, by analysis of an expression sequence tag using the amino acid sequence of human cerebroside 3'-sulfotransferase (Gal3ST-1). The isolated cDNA contains a single open reading frame coding for a protein of 486 amino acids with a type II transmembrane topology. The amino acid sequence of Gal3ST-4 revealed 33%, 39%, and 30% identity to human Gal3ST-1, Gal beta 1-->3/4GlcNAc:-->3'-sulfotransferase (Gal3ST-2) and Gal beta 1-->4GlcNAc:-->3'-sulfotransferase (Gal3ST-3), respectively. The Gal3ST-4 gene comprised at least four exons and was located on human chromosome 7q22. Expression of Gal3ST-4 in COS-7 cells produced a sulfotransferase activity that catalyzes the transfer of [(35)S]sulfate to the C-3' position of Gal beta 1-->3GalNAc alpha 1-O-Bn. Gal3ST-4 recognizes Gal beta 1-->3GalNAc and Gal beta 1-->3(GlcNAc beta 1-->6)GalNAc as good substrates, but not Gal beta 1-->3GalNAc(OH) or Gal beta 1-->3/4GlcNAc. Asialofetuin is also a good substrate, and the sulfation was found exclusively in O-linked glycans that consist of the Gal beta 1-->3GalNAc moiety, suggesting that the enzyme is specific for O-linked glycans. Northern blot analysis revealed that 2.5-kilobase mRNA for the enzyme is expressed extensively in various tissues. These results suggest that Gal3ST-4 is the fourth member of a Gal:-->3-sulfotransferase family and that the four members, Gal3ST-1, Gal3ST-2, Gal3ST-3, and Gal3ST-4, are responsible for sulfation of different acceptor substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号