首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously characterized with monoclonal antibodies (MAbs) seven unique epitopes on the two envelope glycoproteins of Venezuelan equine encephalomyelitis (VEE) virus vaccine strain TC-83. The epitopes important in protection from VEE virus infection were determined in passive antibody transfer studies, with virulent VEE (Trinidad donkey) virus as the challenge virus. Selected high-avidity MAbs to the three major protective epitopes (E2c, E1b, and E1d) were assayed for in vitro complement activity. All three fixed murine complement to high titer. Limited pepsin digestion of the anti-E2c in the presence of cysteine resulted in a rapid decrease and complete loss of complement-fixing ability by 2 h, but the majority of mice, except at the lowest dilution of MAb, were protected until the Fc termini were cleaved at 3 h. Anti-E2c F(ab')2 would neutralize VEE (Trinidad donkey) virus more efficiently than either Fab' or Fab; none of the fragments would fix complement or was effective in passive protection. C5-deficient mice and mice depleted of C3 with cobra venom factor were still protected from VEE (Trinidad donkey) virus challenge after passive transfer of either anti-E2c or anti-E1b MAb. The results show that the anti-E2c MAb mediates neutralization through bivalent binding at a critical site on the virion and that Fc effector functions, other than complement, are necessary for protection. Although the ability of the anti-E2c MAb to fix complement was associated with its ability to protect in vivo, no direct cause-and-effect relationship was found. Since the epitope defined by the anti-E1d antibody is found on the cell membrane, but is not expressed on the infectious virion, protection in mice was most likely mediated at the cellular level, possibly by inhibition of the final stages of virion maturation.  相似文献   

2.
Virus-neutralizing monoclonal antibodies specific for 13 different genetically defined epitopes of glycoproteins gC, gB, and gD of herpes simplex virus type 1, strain KOS-321, were compared for their ability to provide passive immunity to DBA-2 mice challenged intracranially. Protection was highly specific, since individual monoclonal antibodies failed to protect against infection with monoclonal antibody-resistant (mar) mutants altered in the single epitope recognized by the injected antibody. The dose-response kinetics of passive immunity paralleled the in vitro neutralization titers for each antibody. No correlation was observed between immune protection and antibody isotype or complement-dependent in vitro neutralization titers. This suggests that virus neutralization was not the protective mechanism. In general, antibodies reactive with epitopes of gC were protective at the lowest antibody doses, antibodies specific for gB were less efficient in providing immunity, and antibodies against gD were the least effective. mar mutants with single epitope changes in gC and multiple epitope changes in gB showed highly reduced pathogenicity, requiring up to 5 X 10(6) PFU to kill 50% of infected animals. These findings indicated that antigenic variation affects virus growth and spread in the central nervous system. Thus, mutations which affect antigenic structure also can alter virus pathogenicity. The alteration of these epitopes does not, however, appreciably reduce the development of resistance to infection. Infection of mice with these mutants or inoculation of mice with UV-inactivated, mutant-infected cells before challenge rendered the animals resistant to infection with wild-type herpes simplex virus type 1.  相似文献   

3.
We have identified and characterized eight antigenic epitopes on the 53,000 dalton envelope (E) glycoprotein of Saint Louis encephalitis (SLE) virus by using monoclonal antibodies. One of these epitopes (E-1c) encoded for the type-specific biologic functions of hemagglutination (HA) and neutralization (N). Injection of 50 ng of anti-E-1c antibody protected the majority of mice from peripheral challenge with 100 i.p. LD50 of SLE virus. Similar levels of protection with antibodies specific for other epitopes usually required greater than or equal to 1000-fold additional antibody. Attempts to block N or protection at the E-1c antigenic domain by using antibody to several other SLE epitopes that strongly competed for the E-1c site were unsuccessful. Enhancement of protection was observed with mixtures of the more cross-reactive antibodies. The E-1c antibody was also effective in abrogating SLE virus replication until neural invasion occurred. On the basis of these findings, the topologic arrangement and function of the eight SLE E glycoprotein epitopes on the virion spike is proposed.  相似文献   

4.
Bovine leukemia virus (BLV), a transactivating lymphotropic retrovirus, is the etiologic agent of enzootic lymphosarcoma or leukemia in cattle. Sera from BLV-infected animals possess high BLV-neutralizing antibody titres. The availability of the recombinant BLV receptor candidate, BLVRcp1, allowed us to determine a mechanism of virus neutralization by polyclonal sera and monoclonal antibodies (MAbs). Bovine sera from animals naturally infected with BLV blocked gp51 binding to recombinant BLVRcp1. In contrast, virus-neutralizing MAbs specific for gp51 F, G, and H epitopes did not prevent gp51-receptor attachment. Furthermore, gp51 neutralization epitopes F, G, and H were accessible to antibodies following gp51 attachment to BLVRcp1. This finding implies that virus neutralization by MAbs to defined BLV gp51 epitopes can occur subsequent to virus engagement of the receptor while polyclonal sera can specifically block virus attachment to the receptor. In conclusion, these data suggest that cell infection by BLV is a multistep process requiring receptor binding (inhibited by polyclonal sera) followed by a second, postbinding event(s) at the cell membrane (inhibited by anti-gp51 MAbs).  相似文献   

5.
Monospecific (MSp-) antisera against E1 and E2 glycoproteins of western equine encephalitis (WEE) virus were prepared and examined for binding activities to whole virions, hemagglutination-inhibition (HI), neutralization (NT) and protection. Both anti-E1 and anti-E2 MSp-Abs protected mice against WEE virus challenge. A competition experiment with monoclonal antibodies showed that these MSp-antisera appear to lack the antibody population for some epitopes involved in viral neutralization.  相似文献   

6.
Visna virus undergoes antigenic drift during persistent infection in sheep and thus eludes neutralizing antibodies directed against its major envelope glycoprotein, gp135. Antigenic variants contain point mutations in the 3' end of the genome, presumably within the envelope glycoprotein gene. To localize the changes in the viral proteins of antigenic mutants, we isolated 35 monoclonal antibodies (MAbs) against the envelope glycoprotein gp135 or the major core protein p27 of visna virus. The MAbs defined five partially overlapping epitopes on gp135. We used the MAbs and polyclonal immune sera directed against visna virus, gp135, or p27 in enzyme-linked immunosorbent assays to compare visna virus (strain 1514) with antigenic mutants (LV1-1 to LV1-6) previously isolated from a single sheep persistently infected with plaque-purified strain 1514. Polyclonal immune sera and anti-core p27 MAbs failed to distinguish antigenic differences among the viruses. By contrast, the anti-gp135 MAbs detected changes in all five epitopes of the envelope glycoprotein. Three gp135 epitopes, prominently exposed on strain 1514, were lost or obscured on the mutants; two covert gp135 epitopes, poorly exposed on strain 1514, were reciprocally revealed on the mutants. Even virus LV1-2, which is indistinguishable from parental strain 1514 by serum neutralization tests and which differs from it by only two unique oligonucleotides on RNase-T1 fingerprinting, displayed global changes in gp135. Our data suggest that visna virus variants may emerge more frequently during persistent infection than can be detected by serological tests involving the use of polyclonal immune sera, and the extent of phenotypic changes in their envelope glycoproteins may be greater than predicted by the small number of genetic changes previously observed. We suggest that topographical rearrangements in the three-dimensional structure of gp135 may magnify the primary amino acid sequence changes caused by point mutations in the env gene. This may complicate strategies to construct lentiviral vaccines by using the envelope glycoprotein.  相似文献   

7.
J P Moore  Y Cao  D D Ho    R A Koup 《Journal of virology》1994,68(8):5142-5155
We have studied the development of the antibody response to the surface glycoprotein gp120 of human immunodeficiency virus type 1 in three individuals who presented with primary human immunodeficiency virus type 1 infection syndrome. Serum anti-gp120 antibodies were first detected 4 to 23 days after presentation, after p24 antigen and infectious-virus titers in the peripheral blood had declined manyfold from their highest values. Whether anti-gp120 antibodies present at undetectable levels are involved in clearance of viremia remains unresolved. Among the earliest detectable anti-gp120 antibodies were those to conformationally sensitive epitopes; these antibodies were able to block the binding of gp120 monomers to soluble CD4 or to a human monoclonal antibody to a discontinuous epitope overlapping the CD4-binding site. Some of these antibodies were type specific to a degree, in that they were more effective at blocking ligand binding to autologous gp120 than to heterologous gp120. However, the appearance of these antibodies did not correlate with that of antibodies able to neutralize the autologous virus in vitro by a peripheral blood mononuclear cell-based assay. Antibodies to the V3 loop were detected at about the same time as, or slightly later than, those to the CD4-binding site. There was a weak correlation between the presence of antibodies to the V3 loop and autologous virus-neutralizing activity in two of three individuals studied. However, serum from the third individual contained V3 antibodies but lacked the ability to neutralize the autologous virus in vitro, even immediately after seroconversion. Thus, no simple, universal correlate of autologous virus-neutralizing activity in a peripheral blood mononuclear cell-based assay is apparent from in vitro assays that rely on detecting antibody interactions with monomeric gp120 or fragments thereof.  相似文献   

8.
We have examined the exposure and conservation of antigenic epitopes on the surface envelope glycoproteins (gp120 and gp41) of 26 intact, native, primary human immunodeficiency virus type 1 (HIV-1) group M virions of clades A to H. For this, 47 monoclonal antibodies (MAbs) derived from HIV-1-infected patients were used which were directed at epitopes of gp120 (specifically V2, C2, V3, the CD4-binding domain [CD4bd], and C5) and epitopes of gp41 (clusters I and II). Of the five regions within gp120 examined, MAbs bound best to epitopes in the V3 and C5 regions. Only moderate to weak binding was observed by most MAbs to epitopes in the V2, C2, and CD4bd regions. Two anti-gp41 cluster I MAbs targeted to a region near the tip of the hydrophilic immunodominant domain bound strongly to >90% of isolates tested. On the other hand, binding of anti-gp41 cluster II MAbs was poor to moderate at best. Binding was dependent on conformational as well as linear structures on the envelope proteins of the virions. Further studies of neutralization demonstrated that MAbs that bound to virions did not always neutralize but all MAbs that neutralized bound to the homologous virus. This study demonstrates that epitopes in the V3 and C5 regions of gp120 and in the cluster I region of gp41 are well exposed on the surface of intact, native, primary HIV-1 isolates and that cross-reactive epitopes in these regions are shared by many viruses from clades A to H. However, only a limited number of MAbs to these epitopes on the surface of HIV-1 isolates can neutralize primary isolates.  相似文献   

9.
Ten human monoclonal antibodies derived from peripheral B cells of a patient with human T-cell lymphotropic virus (HTLV)-associated myelopathy are described. One monoclonal antibody recognized a linear epitope within the carboxy-terminal 43 amino acids of HTLV gp21, and two monoclonal antibodies recognized linear epitopes within HTLV type 1 (HTLV-1) gp46. The remaining seven monoclonal antibodies recognized denaturation-sensitive epitopes within HTLV-1 gp46 that were expressed on the surfaces of infected cells. Two of these antibodies also bound to viable HTLV-2 infected cells and immunoprecipitated HTLV-2 gp46. Virus neutralization was determined by syncytium inhibition assays. Eight monoclonal antibodies, including all seven that recognized denaturation-sensitive epitopes within HTLV-1 gp46, possessed significant virus neutralization activity. By competitive inhibition analysis it was determined that these antibodies recognized at least four distinct conformational epitopes within HTLV-1 gp46. These findings indicate the importance of conformational epitopes within HTLV-1 gp46 in mediating a neutralizing antibody response to HTLV infection.  相似文献   

10.
Insertion of 48 amino acid long sequence of envelope protein gp51 of bovine leukemia virus (BLV), located from position 56 till 103 of mature protein, into Pro144 position of hepatitis B core antigen (HBcAg) leads to the formation of chimeric capsids. These capsids preserve morphology of intact HBcAg but expose on their outer surface BLV epitopes which are localised in the inserted gp51 fragment and responsible for the recognition of chimeras by monoclonal anti-gp51 antibodies MAK14. The anti-genicity of gp51 epitopes within chimeric capsids is not disturbed after shortening of C terminal part of inserted gp51 fragment by deletion of amino acids 73-103. The resulting chimeras show the same capsid-forming ability as well as HBcAg and gp51 antigenic properties.  相似文献   

11.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein interacts with the viral receptor (CD4) and with the gp41 transmembrane envelope glycoprotein. To study the interaction of the gp120 and gp41 envelope glycoproteins, we compared the abilities of anti-gp120 monoclonal antibodies to bind soluble gp120 and a soluble glycoprotein, sgp140, that contains gp120 and gp41 exterior domains. The occlusion or alteration of a subset of gp120 epitopes on the latter molecule allowed the definition of a gp41 "footprint" on the gp120 antibody competition map. The occlusion of these epitopes on the sgp140 glycoprotein was decreased by the binding of soluble CD4. The gp120 epitopes implicated in the interaction with the gp41 ectodomain were disrupted by deletions of the first (C1) and fifth (C5) conserved gp120 regions. These deletions did not affect the integrity of the discontinuous binding sites for CD4 and neutralizing monoclonal antibodies. Thus, the gp41 interface on the HIV-1 gp120 glycoprotein, which elicits nonneutralizing antibodies, can be removed while retaining immunologically desirable gp120 structures.  相似文献   

12.
In order to define neutralization regions on the envelope antigen of human T-cell leukemia virus type I (HTLV-I), we have generated a number of new anti-envelope gp46 monoclonal antibodies from rats and mice. Epitopes recognized by new monoclonal antibodies which could neutralize HTLV-I in syncytium and transformation inhibition assays were localized to sequences in gp46 from amino acids 186 to 193, 190 to 195, 191 to 195, 191 to 196, and 194 to 199. Ovalbumin-conjugated synthetic gp46 peptides containing these neutralization epitopes, pep190-199 (a synthetic gp46 peptide containing amino acids 190 to 199) and pep180-204, but not pep185-194 or pep194-203, could give rise to HTLV-I-neutralizing antibody responses in rabbits. These immune or nonimmune rabbits were then challenged with HTLV-I by intravenous inoculation with 5 x 10(7) live HTLV-I-producing ILT-8M2 cells. By a PCR assay, it was revealed that HTLV-I provirus was detected in peripheral blood lymphocytes from nonimmune and pep288-312-immunized rabbits, whereas the provirus was not detected in peripheral blood lymphocytes from pep190-199- and pep180-204-immunized rabbits over an extended period. These results suggest that the induction of anti-gp46 neutralizing antibody responses by immunization with synthetic peptides has the potential to protect animals against HTLV-I infection in vivo.  相似文献   

13.
Monoclonal antibodies specific for herpes simplex virus type 1 (HSV-1) glycoproteins were used to demonstrate that HSV undergoes mutagen-induced and spontaneous antigenic variation. Hybridomas were produced by polyethylene glycol-mediated fusion of P3-X63-Ag8.653 myeloma cells with spleen cells from BALB/c mice infected with HSV-1 (strain KOS). Hybrid clones were screened for production of HSV-specific neutralizing antibody. The glycoprotein specificities of the antibodies were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of immunoprecipitates of radiolabeled infected-cell extracts. Seven hybridomas producing antibodies specific for gC, one for gB, and one for gD were characterized. All antibodies neutralized HSV-1 but not HSV-2. Two antibodies, one specific for gB and one specific for gC, were used to select viral variants resistant to neutralization by monoclonal antibody plus complement. Selections were made from untreated and bromodeoxyuridine- and nitrosoguanidine-mutagenized stocks of a plaque-purified isolate of strain KOS. After neutralization with monoclonal antibody plus complement, surviving virus was plaque purified by plating at limiting dilution and tested for resistance to neutralization with the selecting antibody. The frequency of neutralization-resistant antigenic variants selected with monoclonal antibody ranged from 4 X 10(-4) in nonmutagenized stocks to 1 X 10(-2) in mutagenized stocks. Four gC and four gB antigenic variants were isolated. Two variants resistant to neutralization by gC-specific antibodies failed to express gC, accounting for their resistant phenotype. The two other gC antigenic variants and the four gB variants expressed antigenically altered glycoproteins and were designated monoclonal-antibody-resistant, mar, mutants. The two mar C mutants were tested for resistance to neutralization with a panel of seven gC-specific monoclonal antibodies. The resulting patterns of resistance provided evidence for at least two antigenic sites on glycoprotein gC.  相似文献   

14.
In vivo passage of a simian-human immunodeficiency virus (SHIV-89.6) generated a virus, SHIV-89.6P, that exhibited increased resistance to some neutralizing antibodies (G. B. Karlsson et al., J. Exp. Med. 188:1159-1171, 1998). Here we examine the range of human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies to which the passaged virus became resistant and identify envelope glycoprotein determinants of antibody resistance. Compared with the envelope glycoproteins derived from the parental SHIV-89.6, the envelope glycoproteins of the passaged virus were resistant to antibodies directed against the gp120 V3 variable loop and the CD4 binding site. By contrast, both viral envelope glycoproteins were equally sensitive to neutralization by two antibodies, 2G12 and 2F5, that recognize poorly immunogenic structures on gp120 and gp41, respectively. Changes in the V2 and V3 variable loops of gp120 were necessary and sufficient for full resistance to the IgG1b12 antibody, which is directed against the CD4 binding site. Changes in the V3 loop specified complete resistance to a V3 loop-directed antibody, while changes in the V1/V2 loops conferred partial resistance to this antibody. The epitopes of the neutralizing antibodies were not disrupted by the resistance-associated changes. These results indicate that in vivo selection occurs for HIV-1 envelope glycoproteins with variable loop conformations that restrict the access of antibodies to immunogenic neutralization epitopes.  相似文献   

15.
Expression vectors based on DNA or plus-stranded RNA viruses are being developed as vaccine carriers directed against various pathogens. Less is known about the use of negative-stranded RNA viruses, whose genomes have been refractory to direct genetic manipulation. Using a recently described reverse genetics method, we investigated whether influenza virus is able to present antigenic structures from other infectious agents. We engineered a chimeric influenza virus which expresses a 12-amino-acid peptide derived from the V3 loop of gp120 of human immunodeficiency virus type 1 (HIV-1) MN. This peptide was inserted into the loop of antigenic site B of the influenza A/WSN/33 virus hemagglutinin (HA). The resulting chimeric virus was recognized by specific anti-V3 peptide antibodies and a human anti-gp120 monoclonal antibody in both hemagglutination inhibition and neutralization assays. Mice immunized with the chimeric influenza virus produced anti-HIV antibodies which were able to bind to synthetic V3 peptide, to precipitate gp120, and to neutralize MN virus in human T-cell culture system. In addition, the chimeric virus was also capable of inducing cytotoxic T cells which specifically recognize the HIV sequence. These results suggest that influenza virus can be used as an expression vector for inducing both B- and T-cell-mediated immunity against other infectious agents.  相似文献   

16.
Varicella-zoster virus (VZV) codes for approximately eight glycosylated polypeptides in infected cell cultures and in virions. To determine the number of serologically distinct glycoprotein gene products encoded by VZV, we have developed murine monoclonal antibodies to purified virions. Of 10 monoclonal antibodies which can immunoprecipitate intracellular VZV antigens and virion glycoproteins, 1 (termed gA) reacted with gp105, 1 (termed gB) reacted with gp115 (intracellular only), gp62, and gp57, and 8 (termed gC) reacted with gp92, gp83, gp52, and gp45. The anti-gA monoclonal antibody neutralized VZV infectivity in the absence of complement. All eight anti-gC monoclonal antibodies neutralized only in the presence of complement. An anti-gB monoclonal antibody obtained from another laboratory also neutralizes in the absence of complement. Since the above reactivities account for all major detectable VZV glycoprotein species, the data strongly suggest that VZV has three major glycoprotein genes which encode glycosylated polypeptides with neutralization epitopes.  相似文献   

17.
Sindbis virus variants evidencing a complex and bidirectional tendency toward spontaneous antigenic change were isolated and characterized. Variants were selected on the basis of their escape from neutralization by individual monoclonal antibodies to either of the two envelope glycoproteins, E2 and E1. Multisite variants, including one altered in three neutralization sites, were obtained by selecting mutants consecutively in the presence of different neutralizing monoclonal antibodies. Two phenotypic revertants, each of which reacquired prototype antigenicity, were back-selected on the basis of their reactivity with a neutralizing monoclonal antibody. An incidental oligonucleotide marker distinguished these and the variant from which they arose from parental Sindbis virus and other mutants, thereby confirming that the revertants were true progeny of the antigenic variant. Prototype Sindbis virus and variants derived from it were compared on the basis of their reactivities with each of a panel of monoclonal antibodies; patterns revealed a minimum of five independently mutable Sindbis virus neutralization epitopes, segregating as three antigenic sites (two E2 and one E1).  相似文献   

18.
K Ikuta  S Ueda  S Kato    K Hirai 《Journal of virology》1984,49(3):1014-1017
By use of monoclonal antibodies cross-reactive with Marek's disease virus and herpesvirus of turkeys, three glycoproteins (for Marek's disease virus, gp115/110, gp63, and gp50; for herpesvirus of turkeys, gp115, gp62 and gp52) related to virus neutralization were identified. Immunization of chickens or rabbits with these glycoproteins purified by affinity chromatography resulted in production of neutralizing antibodies.  相似文献   

19.
Mice immunized with recombinant vaccinia virus (VACC) expressing Venezuelan equine encephalitis (VEE) virus capsid protein and glycoproteins E1 and E2 or with attenuated VEE TC-83 virus vaccine developed VEE-specific neutralizing antibody and survived intraperitoneal challenge with virulent VEE virus strains including Trinidad donkey (subtype 1AB), P676 (subtype 1C), 3880 (subtype 1D), and Everglades (subtype 2). However, unlike immunization with TC-83 virus, immunization with the recombinant VACC/VEE virus did not protect mice from intranasal challenge with VEE Trinidad donkey virus. These results suggest that recombinant VACC/VEE virus is a vaccine candidate for equines and humans at risk of mosquito-transmitted VEE disease but not for laboratory workers at risk of accidental exposure to aerosol infection with VEE virus.  相似文献   

20.
We examined the antigenic structure of human hepatitis A virus (HAV) by characterizing a series of 21 murine monoclonal-antibody-resistant neutralization escape mutants derived from the HM175 virus strain. The escape phenotype of each mutant was associated with reduced antibody binding in radioimmunofocus assays. Neutralization escape mutations were identified at the Asp-70 and Gln-74 residues of the capsid protein VP3, as well as at Ser-102, Val-171, Ala-176, and Lys-221 of VP1. With the exception of the Lys-221 mutants, substantial cross-resistance was evident among escape mutants tested against a panel of 22 neutralizing monoclonal antibodies, suggesting that the involved residues contribute to epitopes composing a single antigenic site. As mutations at one or more of these residues conferred resistance to 20 of 22 murine antibodies, this site appears to be immunodominant in the mouse. However, multiple mutants selected independently against any one monoclonal antibody had mutations at only one or, at the most, two amino acid residues within the capsid proteins, confirming that there are multiple epitopes within this antigenic site and suggesting that single-amino-acid residues contributing to these epitopes may play key roles in the binding of individual antibodies. A second, potentially independent antigenic site was identified by three escape mutants with different substitutions at Lys-221 of VP1. These mutants were resistant only to antibody H7C27, while H7C27 effectively neutralized all other escape mutants. These data support the existence of an immunodominant neutralization site in the antigenic structure of hepatitis A virus which involves residues of VP3 and VP1 and a second, potentially independent site involving residue 221 of VP1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号