首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction mechanism of acetylcholine hydrolysis by acetylcholinesterase, including both acylation and deacylation stages from the enzyme-substrate (ES) to the enzyme-product (EP) molecular complexes, is examined by using an ab initio type quantum mechanical – molecular mechanical (QM/MM) approach. The density functional theory PBE0/aug-6–31+G* method for a fairly large quantum part trapped inside the native protein environment, and the AMBER force field parameters in the molecular mechanical part are employed in computations. All reaction steps, including the formation of the first tetrahedral intermediate (TI1), the acylenzyme (EA) complex, the second tetrahedral intermediate (TI2), and the EP complex, are modeled at the same theoretical level. In agreement with the experimental rate constants, the estimated activation energy barrier of the deacylation stage is slightly higher than that for the acylation phase. The critical role of the non-triad Glu202 amino acid residue in orienting lytic water molecule and in stabilizing the second tetrahedral intermediate at the deacylation stage of the enzymatic process is demonstrated. Figure The computed energy diagram for the reaction path from the enzyme – substrate complex (ES) to the enzyme-product complex (EP).  相似文献   

2.
A general proof is derived that entropy production can be maximized with respect to rate constants in any enzymatic transition. This result is used to test the assumption that biological evolution of enzyme is accompanied with an increase of entropy production in its internal transitions and that such increase can serve to quantify the progress of enzyme evolution. The state of maximum entropy production would correspond to fully evolved enzyme. As an example the internal transition ES?EP in a generalized reversible Michaelis-Menten three state scheme is analyzed. A good agreement is found among experimentally determined values of the forward rate constant in internal transitions ES→EP for three types of β-Lactamase enzymes and their optimal values predicted by the maximum entropy production principle, which agrees with earlier observations that β-Lactamase enzymes are nearly fully evolved. The optimization of rate constants as the consequence of basic physical principle, which is the subject of this paper, is a completely different concept from a) net metabolic flux maximization or b) entropy production minimization (in the static head state), both also proposed to be tightly connected to biological evolution.  相似文献   

3.
The hydrolysis of substrates (maltoheptaose, maltopentaose, and maltotetraose) catalyzed by soybean beta-amylase [EC 3.2.1.2] at pH 5.4 and 25 degrees C was followed by monitoring small changes in the quenching of fluorescence due to tryptophan residues by the stopped-flow method. By analysis of whole time course, the dissociation constants, KdS, of enzyme-substrate and enzyme-product complexes were reasonably evaluated; and the difference in fluorescence intensities per mol between the enzyme-complex (ES or EP) and the free enzyme, delta F, was determined. The molecular activity, k0, was also determined by a new method of half time analysis. The KdS and k0 values are in good agreement with our kinetic data reported previously. The delta Fs of substrates were of smaller magnitude than those of products (G2 and G3), which means that the higher the binding affinity of the ligand is, the smaller the delta F value is. This indicates that at least two tryptophan residues must be located in the active site if the enzyme is rigid, or that if there is only one, the active site must undergo a structural change caused by the binding of ligand.  相似文献   

4.
The activity of mutant enzymes can be analyzed quantitatively by structure-activity relationships in a manner analogous to Br?nsted or Hammett plots for simple organic reactions. The slopes of such plots, the beta values, indicate for the enzymatic reactions the fraction of the overall binding energy used in stabilizing particular complexes. In particular, information can be derived about the interactions between the enzyme and the transition state. The activities of many mutant tyrosyl-tRNA synthetases fit well simple linear free energy relationships. The formation of enzyme-bound tyrosyl adenylate (E.Tyr-AMP) from enzyme-bound tyrosine and ATP (E.Tyr-ATP) results in an increase in binding energy between the enzyme and the side chain of tyrosine and the ribose ring of ATP. Linear free energy plots of enzymes mutated in these positions give the fraction of the binding energy change that occurs on formation of the transition state for the chemical reaction and the various complexes. It is shown that groups that specifically stabilize the transition state of the reaction are characterized by beta values much greater than 1. This is found for residues that bind the gamma-phosphate of ATP (Thr-40 and His-45) and have previously been postulated to be involved in transition-state stabilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The theoretical and experimental analysis of a reversible association-dissociation equilibrium between different proteins (mixed association) is described. The experiments were performed with glutamate dehydrogenases from beef and rat liver. These enzymes are different, especially with respect to their association behavior. The association constant of rat liver glutamate dehydrogenase has been determined by light-scattering measurements. Its value (1.3 x 10(-4) M(-1)) is much lower than that of the beef liver enzyme, but the difference in the free association energy is only 30%. Association between these two enzymes is observed, also employing light-scattering experiments. Theoretical curves for mixed associating systems have been calculated and by comparison with these curves the mixed association constant could be determined. Since the free association energy of the mixed association is very near to the arithmetic mean between the values for the pure enzymes, the association interactions appear to be additive. The model of an open association with a virial coefficient is also true for the rat enzyme and the mixed association. The ultracentrifuge data are also explained by the same model and yield a similar value for the mixed association constant. Differences in the enzyme kinetics are small, but a somewhat reduced lifetime of the ternary complexes with the coenzymes and with subs-rates or GTP can be concluded for the rat liver enzyme. The circular dichroism measurements indicate no significant difference in the dissociation constants of the nucleotides, but the different amplitudes of the ellipticity indicate small differences in the electrical environment of the active center.  相似文献   

6.
New heterocyclic analogs of estrone are reported that inhibit estradiol 17 beta-dehydrogenase (E2-17 beta DH) from human placenta. The inhibitors are efficiently synthesized in two steps from estrone (or its 3-O-methyl ether), giving fully characterized analogs with pyrazole or isoxazole fused to the 16,17-position on the D ring. Dixon plots of enzyme kinetic data show the heterocyclic steroids are competitive inhibitors of E2-17 beta DH. Correlating molecular structures of the inhibitors with their Ki-values yields a pattern suggesting intermolecular hydrogen bonding stabilizes the [(pyrazole)inhibitor-E2-17 beta DH] complexes. A free energy difference of 2.74 Kcal/mol calculated from Ki-value differences between hydrogen bonded (4.08 microM) and non-bonded (425 microM) [inhibitor-E2-17 beta DH] complexes is in the range for intermolecular hydrogen bonding. We conclude that specific intermolecular hydrogen bonds stabilize [hydroxysteroid-enzyme] complexes, thereby making important contributions to the affinity between hydroxysteroids and steroid-specific enzymes of steroidogenesis.  相似文献   

7.
Temperature jump and stopped flow methods were used to study at pH 7.0 the temperature dependence of elementary steps of the reactions of lysozyme with the beta(1 yields 4)-linked trimer, tetramer, and hexamer of N-acetylglucosamine. The steady state rate of cleavage of the hexasaccharide was determined as a function of temperature (5 degrees-40 degrees) and pH(2 to 8) in H-2O solution and as a function of pD(2.5 to 9.5) at 40 degrees in D-2O solution. The apparent enthalpies of the two ionizations of apparent pK 3.8 and 6.7 observed in measurements of k are 0 to 2 kcal/mol. The energy of activation determined for the pH optimum is 21.5 kcal/mol. The solvent deuterium isotope effect measured for k at the pH (pD) optimum is 1.5 And reflects isotope effects on pre-equilibrium steps and on the rate-determining step. Transfer from H-2O to D-2O solution produces 0.2 to 0.4 kcal/mol more negative free energies of saccharide binding and no changes in the enthalpies of binding. Pre-steady state, steady state, and equilibrium measurements indicate a pathway for the reaction of lysozyme with hexasaccharide. The results define for this mechanism the complete free energy profile and an essentially complete enthalpy profile. Three of the five observable ES complexes are present at nearly equal concentrations. The free energies of the transition states are within a range of 3 kcal. The enthalpies of productive enzyme-substrate complexes are about 5 kcal/mol greater than the enthalpies of nonproductive complexes. Changes in tryptophan fluorescence were observed for each elementary step, and changes in pK of Glu-35 for the isomerizations of nonproductive and productive complexes. The signal changes during formation of nonproductive complexes are the same for the oligosaccharides (ClcNAc)3 to (GlcNAc)6. The changes for productive complexes are similar but not identical with saccharides (GlcNAc)4 to (GlcNAc)6. Correlations of the present data with previous crystallographic and solution measurements indicate the structures of productive and nonproductive ES complexes and suggest that full interaction of the substrate with the enzyme active site is established in the rate-determining step.  相似文献   

8.
We have calculated the stability of decoy structures of several proteins (from the CASP3 models and the Park and Levitt decoy set) relative to the native structures. The calculations were performed with the force field-consistent ES/IS method, in which an implicit solvent (IS) model is used to calculate the average solvation free energy for snapshots from explicit simulations (ESs). The conformational free energy is obtained by adding the internal energy of the solute from the ESs and an entropic term estimated from the covariance positional fluctuation matrix. The set of atomic Born radii and the cavity-surface free energy coefficient used in the implicit model has been optimized to be consistent with the all-atom force field used in the ESs (cedar/gromos with simple point charge (SPC) water model). The decoys are found to have a consistently higher free energy than that of the native structure; the gap between the native structure and the best decoy varies between 10 and 15 kcal/mole, on the order of the free energy difference that typically separates the native state of a protein from the unfolded state. The correlation between the free energy and the extent to which the decoy structures differ from the native (as root mean square deviation) is very weak; hence, the free energy is not an accurate measure for ranking the structurally most native-like structures from among a set of models. Analysis of the energy components shows that stability is attained as a result of three major driving forces: (1) minimum size of the protein-water surface interface; (2) minimum total electrostatic energy, which includes solvent polarization; and (3) minimum protein packing energy. The detailed fit required to optimize the last term may underlie difficulties encountered in recovering the native fold from an approximate decoy or model structure.  相似文献   

9.
Abstract

Molecular dynamics simulations of DNA-netropsin complexes in water were performed using the thermodynamic cycle-perturbation method to calculate the free energy difference between complexes with an adenine-containing binding site and corresponding complexes where adenines are replaced by 2,6-diaminopurines (dap). The calculations predict a free energy difference of 3.7±0.9 kcal/mol (at 300K) in favour of netropsin binding to an (AATT)2 DNA sequence compared to a (dapdapTT)2 sequence.  相似文献   

10.
The conformational states of side chains of catalytic Asp residues in active sites of HIV-1 protease and rhizopuspepsin in the potential field of free enzymes were studied by using theoretical conformational analysis. Structural factors that stabilize the conformation of these residues in free enzymes were revealed. Methods of molecular mechanics were used to estimate the stabilization energy of the Met46-Phe53 labile fragments of HIV-1 protease in the potential field of their nearest surrounding amino acid residues for the conformations characteristic of the free protein and similar to that of the protein in enzyme-inhibitor complexes. In solution, the conformational state of the fragments of the free enzyme was concluded to be similar to that observed in the enzyme complex with the ligand and different from that determined by X-ray diffraction analysis. This difference was ascribed to the effect of crystal packing.  相似文献   

11.
A general approach to the determination of relative stability of any pair of con-formational states of biological macromolecules or their complexes (in particular, to the determination of relative stability of native and disordered states of the macromolecule) has been suggested. For determining the free energy difference of the two states under the conditions when one of them is considerably more advantageous than the other, it is necessary for the macromolecule to be influenced by the transforming agent which levels free energies of both the conformational states, and to determine the external parameter derivative of the free energy difference in the region of the conformational transition induced by the change in this parameter. If the character of the dependence of this derivative on the external parameter (temperature, solvent composition, etc.) is known, then this allows the determination of the free energy difference of the two states under the conditions considered, even including conditions far from the transition region. The value of the derivative of the free energy difference in the transition region in many cases can be measured directly (in particular, when using calorimetry), while in cases when a direct measurement of the derivative is impossible, it can often he estimated experimentally from the steepness of the conformational transition. The methods of this estimation and also a possible character of the change of the considered derivative during variation of the external parameter are considered for the case when the transforming agent is one of the components of the solvent and, consequently, the derivative of the free energy difference is equal to the difference of number of molecules of this component hound with the macromolecule in two conformational states.  相似文献   

12.
Recognition by the T-cell receptor (TCR) of immunogenic peptides presented by class I major histocompatibility complexes (MHCs) is the determining event in the specific cellular immune response against virus-infected cells or tumor cells. It is of great interest, therefore, to elucidate the molecular principles upon which the selectivity of a TCR is based. These principles can in turn be used to design therapeutic approaches, such as peptide-based immunotherapies of cancer. In this study, free energy simulation methods are used to analyze the binding free energy difference of a particular TCR (A6) for a wild-type peptide (Tax) and a mutant peptide (Tax P6A), both presented in HLA A2. The computed free energy difference is 2.9 kcal/mol, in good agreement with the experimental value. This makes possible the use of the simulation results for obtaining an understanding of the origin of the free energy difference which was not available from the experimental results. A free energy component analysis makes possible the decomposition of the free energy difference between the binding of the wild-type and mutant peptide into its components. Of particular interest is the fact that better solvation of the mutant peptide when bound to the MHC molecule is an important contribution to the greater affinity of the TCR for the latter. The results make possible identification of the residues of the TCR which are important for the selectivity. This provides an understanding of the molecular principles that govern the recognition. The possibility of using free energy simulations in designing peptide derivatives for cancer immunotherapy is briefly discussed.  相似文献   

13.
Ovules of sunflower tubular florets were observed histologically by serial sectioning and clearing to study the correlation between flower morphology and developmental stage. On the basis of these data, florets with visible stigma and receptive "curling" surfaces were chosen for embryo sac (ES) isolation. In such florets, ~20% of the ovules were unfertilized; fertilized zygote-stage ES (~75% of ovules) or ES containing two-celled proembryo occurred in the remaining ovules. ES were dissected manually using needles under a stereomicroscope or were treated with enzymes for 4–5 h after manual isolation. The viability of ES isolated without enzymes was more than 90% as assessed by fluorescein diacetate staining, and decreased to ~3% after 72 h of culture. The use of enzymes during isolation resulted in diminished ES viability, suggesting that removal of the protective layers of ovular cells may be part of the problem. Another factor affecting ES viability is medium osmolality. Living ES were then cultured in vitro. On liquid medium containing 9% sucrose, globular embryos developed in ~10% of zygote-stage ES, but further growth of the embryos was abnormal and callus was produced. Transfer of embryo-derived callus to solid Murashige-Skoog medium supplemented with 1-naphtaleneacetic acid and kinetin resulted in organogenesis. When ES were co-cultured with androgenetic microspores and microspore-derived embryos of Brassica napus, ~11% of the ES showed growth and development. Embryological study of the cultured ES revealed outgrowth of endothelium.  相似文献   

14.
The closely related zinc metalloendopeptidases EC 3.4.24.15 (EP24.15) and EC 3.4.24.16 (EP24.16) cleave many common substrates, including bradykinin (BK). As such, there are few substrate-based inhibitors which are sufficiently selective to distinguish their activities. We have used BK analogues with either alanine or beta-amino acid (containing an additional carbon within the peptide backbone) substitutions to elucidate subtle differences in substrate specificity between the enzymes. The cleavage of the analogues by recombinant EP24.15 and EP24.16 was assessed, as well as their ability to inhibit the two enzymes. Alanine-substituted analogues were generally better substrates than BK itself, although differences between the peptidases were observed. Similarly, substitution of the four N-terminal residues with beta-glycine enhanced cleavage in some cases, but not others. beta-Glycine substitution at or near the scissile bond (Phe5-Ser6) completely prevented cleavage by either enzyme: interestingly, these analogues still acted as inhibitors, although with very different affinities for the two enzymes. Also of interest, beta-Gly8-BK was neither a substrate nor an inhibitor of EP24.15, yet could still interact with EP24.16. Finally, while both enzymes could be similarly inhibited by the D-stereoisomer of beta-C3-Phe5-BK (IC50 approximately 20 microM, compared to 8 microM for BK), EP24.16 was relatively insensitive to the L-isomer (IC50 12 approximately microM for EP24.15, >40 microM for EP24.16). These studies indicate subtle differences in substrate specificity between EP24.15 and EP24.16, and suggest that beta-amino acid analogues may be useful as templates for the design of selective inhibitors.  相似文献   

15.
To obtain a clearer understanding of the forces involved in transition state stabilization by Escherichia coli cytidine deaminase, we investigated the thermodynamic changes that accompany substrate binding in the ground state and transition state for substrate hydrolysis. Viscosity studies indicate that the action of cytidine deaminase is not diffusion-limited. Thus, K(m) appears to be a true dissociation constant, and k(cat) describes the chemical reaction of the ES complex, not product release. Enzyme-substrate association is accompanied by a loss of entropy and a somewhat greater release of enthalpy. As the ES complex proceeds to the transition state (ES), there is little further change in entropy, but heat is taken up that almost matches the heat that was released with ES formation. As a result, k(cat)/K(m) (describing the overall conversion of the free substrate to ES is almost invariant with changing temperature. The free energy barrier for the enzyme-catalyzed reaction (k(cat)/K(m)) is much lower than that for the spontaneous reaction (k(non)) (DeltaDeltaG = -21.8 kcal/mol at 25 degrees C). This difference, which also describes the virtual binding affinity of the enzyme for the activated substrate in the transition state (S), is almost entirely enthalpic in origin (DeltaDeltaH = -20.2 kcal/mol), compatible with the formation of hydrogen bonds that stabilize the ES complex. Thus, the transition state affinity of cytidine deaminase increases rapidly with decreasing temperature. When a hydrogen bond between Glu-91 and the 3'-hydroxyl moiety of cytidine is disrupted by truncation of either group, k(cat)/K(m) and transition state affinity are each reduced by a factor of 10(4). This effect of mutation is entirely enthalpic in origin (DeltaDeltaH approximately 7.9 kcal/mol), somewhat offset by a favorable change in the entropy of transition state binding. This increase in entropy is attributed to a loss of constraints on the relative motions of the activated substrate within the ES complex. In an Appendix, some objections to the conventional scheme for transition state binding are discussed.  相似文献   

16.
Experimentally observed sequence-selective binding of metal ion to DNA oligonucleotides have been compared with variations of electrostatic potential (EP) along the helix. Calculations of EP have been performed for three atomic models of the oligonucleotide duplex [d(CGCGAATTCGCG)2] using several variants of EP calculations, including a solution of non-linear Poisson-Boltzmann equation (NPBE). N7 atom of guanine adjacent to adenine base was identified as a region with the most negative electrostatic potential in the major groove. The EP value for the Me ion binding site surpasses the value for N7 of other guanines by 10-26% depending on particular duplex conformation. Qualitatively, the sequence dependent variations of EP near guanine N7 atoms are in agreement with the sequence-selective behavior of Mn(II) and Zn(II) ions as revealed by NMR experiments. But the difference in EP between the two most negative regions near guanine N7 atoms does not exceed 1.25 kT/e. Simple model suggests that metal ions are capable to form ion-hydrate complexes with G-Pu steps of DNA duplex. These complexes are formed via one Me...G and five Me...water coordination bonds with water molecules hydrogen bonded to two adjacent purine bases in the same chain. We suppose that such a stereospecific structural possibility is the main factor which control the sequence-selectivity in the metal ion binding. A combination of both mechanisms allows to explain sequence specific Mn(II) and Zn(II) binding to a set of oligonucleotides.  相似文献   

17.
13C nuclear magnetic resonance spectra have been obtained for complexes of [2-13C]methotrexate and [2-13C]trimethoprim with wild-type dihydrofolate reductase (DHFR) from Escherichia coli and with two mutant enzymes in which aspartic acid-27 is replaced by asparagine and by serine, respectively. In both the wild-type and mutated enzymes, exchange between the free inhibitor and the enzyme-complexed inhibitor is slow on the NMR time scale; hence, despite the considerably increased dissociation constants for binary complexes with the enzymes, the dissociation rate remains small relative to the frequency separation of the resonances. In all cases but one, the pKa of an inhibitor that is complexed to enzyme differs greatly from that of the free inhibitor. However, while the pKa of both inhibitors in complexes with the wild-type enzyme is elevated to above 10, the pKa of the inhibitors complexed with the Asn-27 and Ser-27 enzymes is lowered to a value below 4. Exact determinations of bound pKa values are limited by the solubility of the enzyme and the dissociation constants of the complexes. The single exception to these general conclusions is the ternary complex of the Ser-27 DHFR with trimethoprim and NADPH. In this complex, both free and enzyme-complexed trimethoprim exhibit similar pKa values (approximately equal to 7.6). However, both the exchange between free and enzyme-complexed inhibitor and the protonation of the enzyme-complexed inhibitor are slow in the NMR time scale, so that the spectra reveal three resonances corresponding to free inhibitor, to protonated enzyme-complexed inhibitor, and to unprotonated enzyme-complexed inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Net rate constants that define the steady-state rate through a sequence of steps and the corresponding effective energy barriers for two (PO3-)-transfer steps in the phosphoglucomutase reaction were compared as a function of metal ion, M, where M = Mg2+ and Cd2+. These steps involve the reaction of either the 1-phosphate or the 6-phosphate of glucose 1,6-bisphosphate (Glc-P2) bound to the dephosphoenzyme (ED) to produce the phosphoenzyme (EP) and the free monophosphates, glucose 1-phosphate (Glc-1-P) or glucose 6-phosphate (Glc-6-P): EP.M + Glc-1-P----ED.M.Glc-P2----EP.M.Glc-6-P6. Before this comparison was made, net rate constants for the Cd2+ enzyme, obtained at high enzyme concentration via 31P NMR saturation-transfer studies [Post, C. B., Ray, W. J., Jr., & Gorenstein, D. G. (1989) Biochemistry (preceding paper in this issue)], were appropriately scaled by using the observed constants to calculate both the expected isotope-transfer rate at equilibrium and the steady-state rate under initial velocity conditions and comparing the calculated values with those measured in dilute solution. For the Mg2+ enzyme, narrow limits on possible values of the corresponding net rate constants were imposed on the basis of initial velocity rate constants for the forward and reverse directions plus values for the equilibrium distribution of central complexes, since direct measurement is not feasible. The effective energy barriers for both the Mg2+ and Cd2+ enzymes, calculated from the respective net rate constants, together with previously values for the equilibrium distribution of complexes in both enzymic systems [Ray, W. J., Jr., & Long, J. W. (1976) Biochemistry 15, 4018-4025], show that the 100-fold decrease in the kappa cat for the Cd2+ relative to the Mg2+ enzyme is caused by two factors: the increased stability of the intermediate bisphosphate complex and the decreased ability to cope with the phosphate ester involving the 1-hydroxyl group of the glucose ring. In fact, it is unlikely that the efficiency of (PO3-) transfer to the 6-hydroxyl group of bound Glc-1-P (thermodynamically favorable direction) is reduced by more than an order of magnitude in the Cd2+ enzyme. By contrast, the efficiency of the Li+ enzyme in the same (PO3-)-transfer step is less than 4 x 10(-8) that of the Mg2+ enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
D A Pearlman  P A Kollman 《Biopolymers》1990,29(8-9):1193-1209
We have examined the free energy effects of 5-methylation of cytosine on the B in equilibrium Z conformational equilibrium in DNA. Free energy differences were calculated using the free energy perturbation approach, which uses an easily derived equation from classical statistical mechanics to relate the free energy difference between two states to the ensemble average of the potential energy difference between the states. Calculations were carried both in explicit solvent and (for comparison) in vacuo. The free energy values obtained for the explicit solvent systems are total free energies, with contributions from all parts of the system (solvent + solute), and so are relevant to the B in equilibrium Z transitions observed under real (physiological) conditions. We calculate that in solution, methylation makes the B in equilibrium Z transition more favorable by about -0.4 kcal/mole base pair (bp) in free energy. This value compares well with approximate experimentally derived values of about -0.3 kcal/mole-bp. We also discuss a method for determining the free energy difference between conformational states poorly maintained by a potential energy model. Finally, the effects of methylation on the melting temperature of DNA are examined.  相似文献   

20.
It has been recently reported that prolactin (PRL) plays an important role in immune system regulation. In this study we investigated the activity of three natural drugs with immunomodulatory activity: Echinacea purpurea (EP), Hypericum perforatum (HP) and Eleutherococcus senticosus (ES) on PRL production. Male rats were orally treated with two different doses (30 and 100 mg/kg) of extract of these drugs for 3 or 15 days. A 3-day treatment was not able to modify PRL serum levels, whereas a 15-day treatment with EP and HP at the higher dose significantly inhibits PRL production. A treatment with ES was always ineffective. A possible mechanism for this effect could be that both HP and EP extracts display a direct dopaminergic activity, although an involvement of the GABA-ergic system cannot be excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号