首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphatidylinositol 3-phosphate (PI(3)P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) are essential for rapid SNARE-dependent fusion of yeast vacuoles and other organelles. These phosphoinositides also regulate the fusion of reconstituted proteoliposomes. The reconstituted reaction allows separate analysis of phosphoinositide-responsive subreactions: fusion with SNAREs alone, with the addition of the HOPS tethering factor, and with the further addition of the SNARE complex disassembly chaperones Sec17p and Sec18p. Using assays of membrane tethering, trans-SNARE pairing, and lipid mixing, we found that PI(3)P and PI(4,5)P(2) have distinct functions that are asymmetric with respect to R-SNARE (Nyv1p) and the 3Q-SNAREs (Vam3p, Vti1p, and Vam7p). Fusion reactions with the Q-SNAREs and R-SNARE on separate membranes showed that PI(3)P has two distinct functions. PI(3)P on Q-SNARE proteoliposomes promoted Vam7p binding and association with the other two Q-SNAREs. PI(3)P on R-SNARE proteoliposomes was recognized by the PX domain of Vam7p on Q-SNARE proteoliposomes to promote tethering, although this function could be supplanted by the tethering activity of HOPS. PI(4,5)P(2) stimulated fusion when it was on R-SNARE proteoliposomes, apposed to Q-SNARE proteoliposomes bearing PI(3)P. These functions are essential for the phosphoinositide-dependent synergy between HOPS and Sec17p/Sec18p in promoting rapid fusion.  相似文献   

2.
Regulated membrane fusion requires organelle tethering, enrichment of selected proteins and lipids at the fusion site, bilayer distortion, and lipid rearrangement. Yeast vacuole homotypic fusion requires regulatory lipids (ergosterol, diacylglycerol, and phosphoinositides), the Rab family GTPase Ypt7p, the multisubunit Ypt7p-effector complex HOPS (homotypic fusion and vacuole protein sorting), and four SNAREs. One SNARE, Vam7p, has an N-terminal PX domain which binds to phosphatidylinositol 3-phosphate (PI(3)P) and to HOPS and a C-terminal SNARE domain but no apolar membrane anchor. We have exploited an in vitro reaction of vacuole fusion to analyze the functions of each domain, removing the PX domain or mutating it to abolish its PI(3)P affinity. Lowering the PI(3)P affinity of the PX domain, or even deleting the PX domain, affects the fusion K(m) for Vam7p but not the maximal fusion rate. Fusion driven by the SNARE domain alone is strikingly enhanced by the PLC inhibitor U73122 through enhanced binding of Vam7p SNARE domain to vacuoles, and the further addition of Plc1p blocks this U73122 effect. The PX domain, through its affinities for phosphoinositides and HOPS, is thus exclusively required for enhancing the targeting of Vam7p rather than for execution of the Vam7p functions in HOPS.SNARE complex assembly and fusion.  相似文献   

3.
Vacuole inheritance in yeast involves the formation of tubular and vesicular “segregation structures” which migrate into the bud and fuse there to establish the daughter cell vacuole. Vacuole fusion has been reconstituted in vitro and may be used as a model for an NSF-dependent reaction of priming, docking, and fusion. We have developed biochemical and microscopic assays for the docking step of in vitro vacuole fusion and characterized its requirements. The vacuoles must be primed for docking by the action of Sec17p (α-SNAP) and Sec18p (NSF). Priming is necessary for both fusion partners. It produces a labile state which requires rapid docking in order to lead productively to fusion. In addition to Sec17p/Sec18p, docking requires the activity of the Ras-like GTPase Ypt7p. Unlike Sec17p/Sec18p, which must act before docking, Ypt7p is directly involved in the docking process itself.  相似文献   

4.
Homotypic vacuole fusion occurs in ordered stages of priming, docking, and fusion. Priming, which prepares vacuoles for productive association, requires Sec17p (the yeast homolog of alpha-SNAP), Sec18p (the yeast NSF, an ATP-driven chaperone), and ATP. Sec17p is initially an integral part of the cis-SNARE complex together with vacuolar SNARE proteins and Sec18p (NSF). Previous studies have shown that Sec17p is rapidly released from the vacuole membrane during priming as the cis-SNARE complex is disassembled, but the order and causal relationship of these subreactions has not been known. We now report that the addition of excess recombinant his(6)-Sec17p to primed vacuoles can block subsequent docking. This inhibition is reversible by Sec18p, but the reaction cannot proceed to the tethering and trans-SNARE pairing steps of docking while the Sec17p block is in place. Once docking has occurred, excess Sec17p does not inhibit membrane fusion per se. Incubation of cells with thermosensitive Sec17-1p at nonpermissive temperature causes SNARE complex disassembly. These data suggest that Sec17p can stabilize vacuolar cis-SNARE complexes and that the release of Sec17p by Sec18p and ATP allows disassembly of this complex and activates its components for docking.  相似文献   

5.
The vacuolar protein sorting (VPS) pathway of Saccharomyces cerevisiae mediates transport of vacuolar protein precursors from the late Golgi to the lysosome-like vacuole. Sorting of some vacuolar proteins occurs via a prevacuolar endosomal compartment and mutations in a subset of VPS genes (the class D VPS genes) interfere with the Golgi-to-endosome transport step. Several of the encoded proteins, including Pep12p/Vps6p (an endosomal target (t) SNARE) and Vps45p (a Sec1p homologue), bind each other directly [1]. Another of these proteins, Vac1p/Pep7p/Vps19p, associates with Pep12p and binds phosphatidylinositol 3-phosphate (PI(3)P), the product of the Vps34 phosphatidylinositol 3-kinase (PI 3-kinase) [1] [2]. Here, we demonstrate that Vac1p genetically and physically interacts with the activated, GTP-bound form of Vps21p, a Rab GTPase that functions in Golgi-to-endosome transport, and with Vps45p. These results implicate Vac1p as an effector of Vps21p and as a novel Sec1p-family-binding protein. We suggest that Vac1p functions as a multivalent adaptor protein that ensures the high fidelity of vesicle docking and fusion by integrating both phosphoinositide (Vps34p) and GTPase (Vps21p) signals, which are essential for Pep12p- and Vps45p-dependent targeting of Golgi-derived vesicles to the prevacuolar endosome.  相似文献   

6.
Ca2+ transients trigger many SNARE-dependent membrane fusion events. The homotypic fusion of yeast vacuoles occurs after a release of lumenal Ca2+. Here, we show that trans-SNARE interactions promote the release of Ca2+ from the vacuole lumen. Ypt7p-GTP, the Sec1p/Munc18-protein Vps33p, and Rho GTPases, all of which function during docking, are required for Ca2+ release. Inhibitors of SNARE function prevent Ca2+ release. Recombinant Vam7p, a soluble Q-SNARE, stimulates Ca2+ release. Vacuoles lacking either of two complementary SNAREs, Vam3p or Nyv1p, fail to release Ca2+ upon tethering. Mixing these two vacuole populations together allows Vam3p and Nyv1p to interact in trans and rescues Ca2+ release. Sec17/18p promote sustained Ca2+ release by recycling SNAREs (and perhaps other limiting factors), but are not required at the release step itself. We conclude that trans-SNARE assembly events during docking promote Ca2+ release from the vacuole lumen.  相似文献   

7.
Vacuole fusion requires a coordinated cascade of priming, docking, and fusion. SNARE proteins have been implicated in the fusion itself, although their precise role in the cascade remains unclear. We now report that the vacuolar SNAP-23 homologue Vam7p is a mobile element of the SNARE complex, which moves from an initial association with the cis-SNARE complex via a soluble intermediate to the docking site. Soluble Vam7p is specifically recruited to vacuoles and can rescue a fusion reaction poisoned with antibodies to Vam7p. Both the recombinant Vam7p PX domain and a FYVE domain construct of human Hrs block the recruitment of Vam7p and vacuole fusion, demonstrating that phosphatidylinositol 3-phosphate is a primary receptor of Vam7p on vacuoles. We propose that the Vam7p cycle is linked to the availability of a lipid domain on yeast vacuoles, which is essential for coordinating the fusion reaction prior to and beyond docking.  相似文献   

8.
Vacuole homotypic fusion requires a group of regulatory lipids that includes diacylglycerol, a fusogenic lipid that is produced through multiple metabolic pathways including the dephosphorylation of phosphatidic acid (PA). Here we examined the relationship between membrane fusion and PA phosphatase activity. Pah1p is the single yeast homologue of the Lipin family of PA phosphatases. Deletion of PAH1 was sufficient to cause marked vacuole fragmentation and abolish vacuole fusion. The function of Pah1p solely depended on its phosphatase activity as complementation studies showed that wild type Pah1p restored fusion, whereas the phosphatase dead mutant Pah1p(D398E) had no effect. We discovered that the lack of PA phosphatase activity blocked fusion by inhibiting the binding of SNAREs to Sec18p, an N-ethylmaleimide-sensitive factor homologue responsible for priming inactive cis-SNARE complexes. In addition, pah1Δ vacuoles were devoid of the late endosome/vacuolar Rab Ypt7p, the phosphatidylinositol 3-kinase Vps34p, and Vps39p, a subunit of the HOPS (homotypic fusion and vacuole protein sorting) tethering complex, all of which are required for vacuole fusion. The lack of Vps34p resulted in the absence of phosphatidylinositol 3-phosphate, a lipid required for SNARE activity and vacuole fusion. These findings demonstrate that Pah1p and PA phosphatase activity are critical for vacuole homeostasis and fusion.  相似文献   

9.
Kato M  Wickner W 《The EMBO journal》2001,20(15):4035-4040
In vitro homotypic fusion of yeast vacuoles occurs in three stages: priming, the Sec18 (NSF)-mediated changes that precede vacuole association; docking, the Ypt7 and SNARE-mediated pairing of vacuoles; and fusion, mediated by calmodulin/V0/t-SNARE interactions. Defects in catalysts of each stage result in fragmented (unfused) vacuoles. Strains with deletions in any of ERG genes 3-6, lacking normal ergosterol biosynthesis, have fragmented vacuoles. The ergosterol ligands filipin, nystatin and amphotericin B block the in vitro fusion of vacuoles from wild-type cells. Each of these inhibitors acts at the priming stage to inhibit Sec17p release from vacuoles. A reversible delay in Sec18p action prevents vacuoles from acquiring resistance to any of these three drugs, confirming that their action is on the normal fusion pathway. Ergosterol or cholesterol delivery to wild-type vacuoles stimulates their in vitro fusion, and the in vitro fusion of ergDelta vacuoles requires added sterol. The need for ergosterol for vacuole priming underscores the role of lipids in organizing the membrane elements of this complex reaction.  相似文献   

10.
Phosphatidylinositol phosphate kinases (PIPKs) have important roles in the production of various phosphoinositides. For type I PIP5Ks (PIP5KI), a broad substrate specificity is known. They phosphorylate phosphatidylinositol 4-phosphate most effectively but also phosphorylate phosphatidylinositol (PI), phosphatidylinositol 3-phosphate, and phosphatidylinositol (3,4)-bisphosphate (PI(3, 4)P(2)), resulting in the production of phosphatidylinositol (4, 5)-bisphosphate (PI(4,5)P(2)), phosphatidylinositol 3-phosphate, phosphatidylinositol (3,4)-bisphosphate (PI(3,4)P(2)), phosphatidylinositol (3,5)-bisphosphate (PI(3,5)P(2)), and phosphatidylinositol (3,4,5)-trisphosphate. We show here that PIP5KIs have also protein kinase activities. When each isozyme of PIP5KI (PIP5KIalpha, -beta, and -gamma) was subjected to in vitro kinase assay, autophosphorylation occurred. The lipid kinase-negative mutant of PIP5KIalpha (K138A) lost the protein kinase activity, suggesting the same catalytic mechanism for the lipid and the protein kinase activities. PIP5KIbeta expressed in Escherichia coli also retains this protein kinase activity, thus confirming that no co-immunoprecipitated protein kinase is involved. In addition, the autophosphorylation of PIP5KI is markedly enhanced by the addition of PI. No other phosphoinositides such as phosphatidylinositol phosphate, phosphatidylinositol bisphosphate, or phosphatidylinositol trisphosphate have such an effect. We also found that the PI-dependent autophosphorylation strongly suppresses the lipid kinase activity of PIP5KI. The lipid kinase activity of PIP5KI was decreased to one-tenth upon PI-dependent autophosphorylation. All these results indicate that the lipid kinase activity of PIP5KI that acts predominantly for PI(4,5)P(2) synthesis is regulated by PI-dependent autophosphorylation in vivo.  相似文献   

11.
Phosphoinositide signaling lipids are essential for several cellular processes. The requirement for a phosphoinositide is conventionally studied by depleting the corresponding lipid kinase. However, there are very few reports on the impact of elevating phosphoinositides. That phosphoinositides are dynamically elevated in response to stimuli suggests that, in addition to being required, phosphoinositides drive downstream pathways. To test this hypothesis, we elevated the levels of phosphatidylinositol-3-phosphate (PI3P) by generating hyperactive alleles of the yeast phosphatidylinositol 3-kinase, Vps34. We find that hyperactive Vps34 drives certain pathways, including phosphatidylinositol-3,5-bisphosphate synthesis and retrograde transport from the vacuole. This demonstrates that PI3P is rate limiting in some pathways. Interestingly, hyperactive Vps34 does not affect endosomal sorting complexes required for transport (ESCRT) function. Thus, elevating PI3P does not always increase the rate of PI3P-dependent pathways. Elevating PI3P can also delay a pathway. Elevating PI3P slowed late steps in autophagy, in part by delaying the disassembly of autophagy proteins from mature autophagosomes as well as delaying fusion of autophagosomes with the vacuole. This latter defect is likely due to a more general defect in vacuole fusion, as assessed by changes in vacuole morphology. These studies suggest that stimulus-induced elevation of phosphoinositides provides a way for these stimuli to selectively regulate downstream processes.  相似文献   

12.
Yeast vacuoles undergo fission and homotypic fusion, yielding one to three vacuoles per cell at steady state. Defects in vacuole fusion result in vacuole fragmentation. We have screened 4828 yeast strains, each with a deletion of a nonessential gene, for vacuole morphology defects. Fragmented vacuoles were found in strains deleted for genes encoding known fusion catalysts as well as 19 enzymes of lipid metabolism, 4 SNAREs, 12 GTPases and GTPase effectors, 9 additional known vacuole protein-sorting genes, 16 protein kinases, 2 phosphatases, 11 cytoskeletal proteins, and 28 genes of unknown function. Vacuole fusion and vacuole protein sorting are catalyzed by distinct, but overlapping, sets of proteins. Novel pathways of vacuole priming and docking emerged from this deletion screen. These include ergosterol biosynthesis, phosphatidylinositol (4,5)-bisphosphate turnover, and signaling from Rho GTPases to actin remodeling. These pathways are supported by the sensitivity of the late stages of vacuole fusion to inhibitors of phospholipase C, calcium channels, and actin remodeling. Using databases of yeast protein interactions, we found that many nonessential genes identified in our deletion screen interact with essential genes that are directly involved in vacuole fusion. Our screen reveals regulatory pathways of vacuole docking and provides a genomic basis for studies of this reaction.  相似文献   

13.
The SAC1 gene product has been implicated in the regulation of actin cytoskeleton, secretion from the Golgi, and microsomal ATP transport; yet its function is unknown. Within SAC1 is an evolutionarily conserved 300-amino acid region, designated a SAC1-like domain, that is also present at the amino termini of the inositol polyphosphate 5-phosphatases, mammalian synaptojanin, and certain yeast INP5 gene products. Here we report that SAC1-like domains have intrinsic enzymatic activity that defines a new class of polyphosphoinositide phosphatase (PPIPase). Purified recombinant SAC1-like domains convert yeast lipids phosphatidylinositol (PI) 3-phosphate, PI 4-phosphate, and PI 3,5-bisphosphate to PI, whereas PI 4,5-bisphosphate is not a substrate. Yeast lacking Sac1p exhibit 10-, 2.5-, and 2-fold increases in the cellular levels of PI 4-phosphate, PI 3,5-bisphosphate, and PI 3-phosphate, respectively. The 5-phosphatase domains of synaptojanin, Inp52p, and Inp53p are also catalytic, thus representing the first examples of an inositol signaling protein with two distinct lipid phosphatase active sites within a single polypeptide chain. Together, our data provide a long sought mechanism as to how defects in Sac1p overcome certain actin mutants and bypass the requirement for yeast phosphatidylinositol/phosphatidylcholine transfer protein, Sec14p. We demonstrate that PPIPase activity is a key regulator of membrane trafficking and actin cytoskeleton organization and suggest signaling roles for phosphoinositides other than PI 4,5-bisphosphate in these processes. Additionally, the tethering of PPIPase and 5-phosphatase activities indicate a novel mechanism by which concerted phosphoinositide hydrolysis participates in membrane trafficking.  相似文献   

14.
Once thought of as simply an oily barrier that maintains cellular integrity, lipids are now known to play an active role in a large variety of cellular processes. Phosphoinositides are of particular interest because of their remarkable ability to affect many signaling pathways. Ion channels and transporters are an important target of phosphoinositide signaling, but identification of the specific phosphoinositides involved has proven elusive. TRPV1 is a good example; although phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P(2)) can potently regulate its activation, we show that phosphatidylinositol (4)-phosphate (PI(4)P) and phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P(3)) can as well. To determine the identity of the endogenous phosphoinositide regulating TRPV1, we applied recombinant pleckstrin homology domains to inside-out excised patches. Although a PI(4,5)P(2)-specific pleckstrin homology domain inhibited TRPV1, a PI(3,4,5)P(3)-specific pleckstrin homology domain had no effect. Simultaneous confocal imaging and electrophysiological recording of whole cells expressing a rapamycin-inducible lipid phosphatase also demonstrates that depletion of PI(4,5)P(2) inhibits capsaicin-activated TRPV1 current; the PI(4)P generated by the phosphatases was not sufficient to support TRPV1 function. We conclude that PI(4,5)P(2), and not other phosphoinositides or other lipids, is the endogenous phosphoinositide regulating TRPV1 channels.  相似文献   

15.
For decades, phosphatidylinositol 4-phosphate (PtdIns4P) was considered primarily as a precursor in the synthesis of phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P2). More recently, specific functions for PtdIns4P itself have been identified, particularly in the regulation of intracellular membrane trafficking. PI4K2A/PI4KIIα (phosphatidylinositol 4-kinase type 2 α), one of the 4 enzymes that catalyze PtdIns4P production in mammalian cells, promotes vesicle formation from the trans-Golgi network (TGN) and endosomes. We recently identified a novel function for PI4K2A-derived PtdIns4P, as a facilitator of autophagosome-lysosome (A-L) fusion. We further showed that that this function requires the presence of the autophagic adaptor protein GABARAP (GABA[A] receptor-associated protein), which binds to PI4K2A and recruits it to autophagosomes. The mechanism whereby GABARAP-PI4K2A-PtdIns4P promotes A-L fusion remains to be defined. Based on other examples of phosphoinositide involvement in membrane trafficking, we speculate that it acts by recruiting elements of the membrane docking and fusion machinery.  相似文献   

16.
M-channels are voltage-gated potassium channels that regulate cell excitability. They are heterotetrameric assemblies of Kv7.2 and Kv7.3 subunits. Their opening requires the presence of the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)). However, the specificity of PI(4,5)P(2) as a binding and activating ligand is unknown. Here, we tested the ability of different phosphoinositides and lipid phosphates to activate or bind to M-channel proteins. Activation of functional channels was measured in membrane patches isolated from cells coexpressing Kv7.2 and Kv7.3 subunits. Channels were activated to similar extents (maximum open probability of ~0.8 at 0 mV) by 0.1-300 μM dioctanoyl homologs of the three endogenous phosphoinositides, PI(4)P, PI(4,5)P(2), and PI(3,4,5)P(3), with sensitivity increasing with increasing numbers of phosphates. Non-acylated inositol phosphates had no effect up to 100 μM. Channels were also activated with increasing efficacy by 1-300 μM concentrations of the monoacyl monophosphates fingolimod phosphate, sphingosine 1-phosphate, and lysophosphatidic acid but not by phosphate-free fingolimod or sphingosine or by phosphate-masked phosphatidylcholine or phosphatidylglycerol. An overlay assay confirmed that a fusion protein containing the full-length C terminus of Kv7.2 could bind to a broad range of phosphoinositides and phospholipids. A mutated Kv7.2 C-terminal construct with reduced sensitivity to PI(4,5)P showed significantly less binding to most polyphosphoinositides. We concluded that M-channels bind to, and are activated by, a wide range of lipid phosphates, with a minimum requirement for an acyl chain and a phosphate headgroup. In this, they more closely resemble inwardly rectifying Kir6.2 potassium channels than the more PI(4,5)P(2)-specific Kir2 channels. Notwithstanding, the data also support the view that the main endogenous activator of M-channels is PI(4,5)P(2).  相似文献   

17.
Phosphoinositide interconversion in thrombin-stimulated human platelets   总被引:26,自引:0,他引:26  
Stimulation of platelets and other secretory cells by agonists results in the degradation of phosphoinositides by phospholipase C. Kinetic studies suggest that hydrolysis of phosphatidylinositol 4,5-diphosphate (PI-4,5-P2) is an initial event in this process. Platelets contain much larger amounts of phosphatidylinositol (PI) than PI-4,5-P2, and approximately 50% of total phosphoinositides are degraded upon stimulation. We have investigated whether degradation of PI occurs by direct phospholipase C hydrolysis or by phosphorylation to PI-4,5-P2 followed by phospholipase C action on the latter compound. When platelets are incubated for 3 min with 32Pi prior to stimulation, the phosphoinositides are labeled to different specific activities. Under these nonequilibrium conditions, the time course of change in specific activity reflects turnover. The rise in specific activity of phosphatidylinositol 4-phosphate (PI-4-P) is similar in stimulated and unstimulated cells, indicating that there is little increase in the conversion of PI to PI-4-P during thrombin stimulation. In addition, the specific activity of the 4-phosphate in PI-4-P during thrombin stimulation is less than both the 5-phosphate of PI-4,5-P2 and the phosphate group of phosphatidic acid, indicating that the 4-phosphate moiety is not labeled to equilibrium with ATP. This finding is inconsistent with a rapid flux of PI via PI-4-P to PI-4,5-P2 during thrombin stimulation, in which case the 4-phosphate would be at maximum specific activity. We, therefore, conclude that the bulk of PI breakdown that occurs in thrombin-stimulated platelets occurs via direct phospholipase C hydrolysis of PI.  相似文献   

18.
Vam2p/Vps41p is known to be required for transport vesicles with vacuolar cargo to bud from the Golgi. Like other VAM-encoded proteins, which are needed for homotypic vacuole fusion, we now report that Vam2p and its associated protein Vam6p/Vps39p are needed on each vacuole partner for homotypic fusion. In vitro vacuole fusion occurs in successive steps of priming, docking, and membrane fusion. While priming does not require Vam2p or Vam6p, the functions of these two proteins cannot be fulfilled until priming has occurred, and each is required for the docking reaction which culminates in trans-SNARE pairing. Consistent with their dual function in Golgi vesicle budding and homotypic fusion of vacuoles, approximately half of the Vam2p and Vam6p of the cell are recovered from cell lysates with purified vacuoles.  相似文献   

19.
Homotypic fusion of yeast vacuoles requires a regulated sequence of events. During priming, Sec18p disassembles cis-SNARE complexes. The HOPS complex, which is initially associated with the cis-SNARE complex, then mediates tethering. Finally, SNAREs assemble into trans-complexes before the membranes fuse. The t-SNARE of the vacuole, Vam3p, plays a central role in the coordination of these processes. We deleted the N-terminal region of Vam3p to analyze the role of this domain in membrane fusion. The truncated protein (Vam3 Delta N) is sorted normally to the vacuole and is functional, because the vacuolar morphology is unaltered in this strain. However, in vitro vacuole fusion is strongly reduced due to the following reasons: Assembly, as well as disassembly of the cis-SNARE complex is more efficient on Vam3 Delta N vacuoles; however, the HOPS complex is not associated well with the Vam3 Delta N cis-complex. Thus, primed SNAREs from Vam3 Delta N vacuoles cannot participate efficiently in the reaction because trans-SNARE pairing is substantially reduced. We conclude that the N-terminus of Vam3p is required for coordination of priming and docking during homotypic vacuole fusion.  相似文献   

20.
Sheep seminal vesicles contain two immunologically distinct phospholipase C (PLC) enzymes that can hydrolyze phosphatidylinositol (PI) (Hofmann, S.L., and Majerus, P.W. (1982) J. Biol. Chem. 257, 6461-6469). One of these enzymes (PLC-I) has been purified to homogeneity; the second (PLC-II) has been purified 2600-fold from a crude extract of seminal vesicles. In the present study we have compared the ability of these purified enzymes to hydrolyze PI, phosphatidylinositol 4-phosphate (PI-4-P), and phosphatidylinositol 4,5-diphosphate (PI-4,5-P2). Using radiolabeled substrates in small unilamellar phospholipid vesicles of defined composition, the two enzymes were found to hydrolyze all three of the phosphoinositides. Hydrolysis of all three phosphoinositides by both enzymes was stimulated by Ca2+; however, in the presence of EGTA only the polyphosphoinositides were hydrolyzed. The two enzymes displayed substrate affinities in the order PI greater than PI-4-P greater than PI-4,5-P2, and maximum hydrolysis rates in the order PI-4,5-P2 greater than PI-4-P greater than PI. When present in the same vesicles, PI and the polyphosphoinositides competed for a limiting amount of either enzyme. Inclusion of phosphatidylcholine into vesicles containing the phosphoinositides resulted in greater inhibition of PI hydrolysis than polyphosphoinositide hydrolysis. When all three phosphoinositides were present in vesicles mimicking the cytoplasmic leaflet of cell membranes, there was preferential hydrolysis of the polyphosphoinositides over PI. We conclude that a single phospholipase C can account for the hydrolysis of all three phosphoinositides seen during agonist-induced stimulation of secretory cells. The cytoplasmic Ca2+ concentration and phospholipid composition of the membrane, however, may influence the relative rate of hydrolysis of the three phosphoinositides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号