首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The bacterial heat shock locus ATPase HslU is an AAA(+) protein that has structures known in many nucleotide-free and -bound states. Nucleotide is required for the formation of the biologically active HslU hexameric assembly. The hexameric HslU ATPase binds the dodecameric HslV peptidase and forms an ATP-dependent HslVU protease. RESULTS: We have characterized four distinct HslU conformational states, going sequentially from open to closed: the empty, SO(4), ATP, and ADP states. The nucleotide binds at a cleft formed by an alpha/beta domain and an alpha-helical domain in HslU. The four HslU states differ by a rotation of the alpha-helical domain. This classification leads to a correction of nucleotide identity in one structure and reveals the ATP hydrolysis-dependent structural changes in the HslVU complex, including a ring rotation and a conformational change of the HslU C terminus. This leads to an amended protein unfolding-coupled translocation mechanism. CONCLUSIONS: The observed nucleotide-dependent conformational changes in HslU and their governing principles provide a framework for the mechanistic understanding of other AAA(+) proteins.  相似文献   

2.
Here we show that Dictyostelium discoideum dynamin A is a fast GTPase, binds to negatively charged lipids, and self-assembles into rings and helices in a nucleotide-dependent manner, similar to human dynamin-1. Chemical modification of two cysteine residues, positioned in the middle domain and GTPase effector domain (GED), leads to altered assembly properties and the stabilization of a highly regular ring complex. Single particle analysis of this dynamin A* ring complex led to a three-dimensional map, which shows that the nucleotide-free complex consists of two layers with 11-fold symmetry. Our results reveal the molecular organization of the complex and indicate the importance of the middle domain and GED for the assembly of dynamin family proteins. Nucleotide-dependent changes observed with the unmodified and modified protein support a mechanochemical action of dynamin, in which tightening and stretching of a helix contribute to membrane fission.  相似文献   

3.
ATP-binding cassette (ABC) transporters mediate the movement of molecules across cell membranes in both prokaryotes and eukaryotes. In ABC transporters, solute translocation occurs after ATP is either bound or hydrolyzed at the intracellular nucleotide-binding domains (NBDs). Molecular dynamics (MD) simulations have been employed to study the interactions of nucleotide with NBD. The results of extended (approximately 20 ns) MD simulations of HisP (total simulation time approximately 80 ns), the NBD of the histidine transporter HisQMP2J from Salmonella typhimurium, are presented. Analysis of the MD trajectories reveals conformational changes within HisP that are dependent on the presence of ATP in the binding pocket of the protein, and are sensitive to the presence/absence of Mg ions bound to the ATP. These changes are predominantly confined to the alpha-helical subdomain of HisP. Specifically there is a rotation of three alpha-helices within the subdomain, and a movement of the signature sequence toward the bound nucleotide. In addition, there is considerable conformational flexibility in a conserved glutamine-containing loop, which is situated at the interface between the alpha-helical subdomain and the F1-like subdomain. These results support the mechanism for ATP-induced conformational transitions derived from the crystal structures of other NBDs.  相似文献   

4.
Activators of sigma(54)-RNA polymerase holoenzyme couple ATP hydrolysis to formation of an open promoter complex. DctD(Delta1-142), a truncated and constitutively active form of the sigma(54)-dependent activator DctD from Sinorhizobium meliloti, displayed an altered DNase I footprint at its binding site located upstream of the dctA promoter in the presence of ATP. The altered footprint was not observed for a mutant protein with a substitution at or near the putative arginine finger, a conserved arginine residue thought to contact the nucleotide. These data suggest that structural changes in DctD(Delta1-142) during ATP hydrolysis can be detected by alterations in the DNase I footprint of the protein and may be communicated by interactions between bound nucleotide and the arginine finger. In addition, kinetic data for changes in fluorescence energy transfer upon binding of 2'(3')-O-(N-methylanthraniloyl)-ATP (Mant-ATP) to DctD(Delta1-142) and DctD suggested that these proteins undergo multiple conformational changes following ATP binding.  相似文献   

5.
Structural details of initiator proteins for DNA replication have provided clues to the molecular events in this process. EM reconstructions of the Drosophila melanogaster origin recognition complex (ORC) reveal nucleotide-dependent conformational changes in the core of the complex. All five AAA+ domains in ORC contain a conserved structural element that, in DnaA, promotes formation of a right-handed helix, indicating that helical AAA+ substructures may be a feature of all initiators. A DnaA helical pentamer can be docked into ORC, and the location of Orc5 uniquely positions this core. The results suggest that ATP-dependent conformational changes observed in ORC derive from reorientation of the AAA+ domains. By analogy to the DNA-wrapping activity of DnaA, we posit that ORC together with Cdc6 prepares origin DNA for helicase loading through mechanisms related to the established pathway of prokaryotes.  相似文献   

6.
J Mendel-Hartvig  R A Capaldi 《Biochemistry》1991,30(45):10987-10991
The rate of trypsin cleavage of the epsilon subunit of Escherichia coli F1F0 (ECF1F0) is shown to be ligand-dependent as measured by Western analysis using monoclonal antibodies. The cleavage of the epsilon subunit was rapid in the presence of ADP alone, ATP + EDTA, or AMP-PNP + Mg2+, but slow when Pi was added along with ADP + Mg2+ or when ATP + Mg2+ was added to generate ADP + Pi (+Mg2+) in the catalytic site. Trypsin treatment of ECF1Fo was also shown to increase enzymic activity on a time scale corresponding to that of the cleavage of the epsilon subunit, indicating that the epsilon subunit inhibits ATPase activity in ECF1Fo. The ligand-dependent conformational changes in the epsilon subunit were also examined in cross-linking experiments using the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide (EDC). In the presence of ATP + Mg2+ or ADP + Pi + Mg2+, the epsilon subunit cross-linked product was much reduced. Prior reaction of ECF1Fo with dicyclohexylcarbodiimide (DCCD), under conditions in which only the Fo part was modified, blocked the conformational changes induced by ligand binding. When the enzyme complex was reacted with DCCD in ATP + EDTA, the cleavage of the epsilon subunit was rapid and yield of cross-linking of beta to epsilon subunit low, whether trypsin cleavage was conducted in ATP + EDTA or ATP + Mg2+. When enzyme was reacted with DCCD in ATP + Mg2+, cleavage of the epsilon subunit was slow and yield of cross-linking of beta to epsilon high, under all nucleotide conditions for proteolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
SKD1/VPS4B belongs to the adenosine triphosphatases associated with diverse cellular activities (AAA) family and regulates multivesicular body (MVB) biogenesis. SKD1 changes its oligomeric state during the ATPase cycle and subsequently releases endosomal sorting complex required for transport (ESCRT) complexes from endosomes during the formation of MVBs. In this study, we describe domain motions in monomeric SKD1 on ATP and ADP binding. Nucleotides bind between the alpha/beta and the alpha-helical domains of SKD1, inducing a approximately 20 degrees domain rotation and closure of the binding site, which are similar to the changes observed in the AAA+ ATPase, HslU. Gel filtration and small-angle X-ray scattering experiments showed that the ATP-bound form of SKD1 oligomerizes in solution, whereas ADP-bound and apo forms of SKD1 exist as monomers, even though the conformations of the ADP- and ATP-bound forms are nearly identical. Nucleotide-bound SKD1 structures are compatible with a hexameric ring arrangement reminiscent of the AAA ATPase p97 D1 ring. In the hexameric ring model of SKD1, Arg290 from a neighboring molecule binds to the gamma-phosphate of ATP, which promotes oligomerization of the ATP-bound form. ATP hydrolysis would eliminate this interaction and subsequent nucleotide release causes the domains to rotate, which together lead to the disassembly of the SKD1 oligomer.  相似文献   

9.
H S Shpetner  R B Vallee 《Cell》1989,59(3):421-432
We report that calf brain microtubules prepared without nucleotide contain, in addition to kinesin and dynein, a polypeptide of 100 kd that could be dissociated by nucleotide. The protein was selectively extracted from microtubules using a combination of GTP and AMP-PNP. The extract contained microtubule-stimulated (6-fold) MgATPase activity that partitioned into two components upon further purification: the 100 kd polypeptide and a soluble activating fraction. The 100 kd protein induced microtubules to form hexagonally packed bundles containing periodic cross bridges spaced 13 nm apart. In the presence of ATP and the activating fraction, bundles fragmented, elongated, and exhibited other behavior indicative of sliding between microtubules. These findings indicate that the 100 kd protein is part of a novel mechanochemical enzyme, which we term "dynamin", that may mediate microtubule sliding in vivo.  相似文献   

10.
11.
Phytochrome was examined by immunochemical and spectroscopic techniques to detect differences between the protein moieties of red- and far red-absorbing phytochrome (Pr and Pfr). No differences in the reaction of Pr and Pfr with phytochrome antibody were discernible on Ouchterlony double diffusion plates. However, the microcomplement fixation assay showed a greater degree of antibody reaction with Pfr than with Pr, indicating some difference in the surface characteristics of the two forms. Circular dichroism spectroscopy between 300 and 200 nanometers revealed differences between Pr and Pfr which may reflect differences in the protein conformation. The circular dichroism spectrum of Pr showed a negative band at 285 nanometers which was not present in the spectrum of Pfr, and the large negative circular dichroism band at 222 nanometers with Pfr, associated with the α-helical content, was shifted 2 nanometers to shorter wave length with Pr although there was no change of magnitude of this band. The absorbancy of Pr and Pfr is very nearly the same in the 280 nanometer spectral region, but sensitive difference spectra between Pr and Pfr did reveal spectra which were similar to solvent perturbation spectra obtained by others with different proteins. In total, the experiments indicate that there are conformational differences between the protein moieties of Pr and Pfr but that these differences are rather slight from a standpoint of gross structure.  相似文献   

12.
Large-scale conformational changes in proteins that happen often on biological time scales may be relatively rare events on the molecular dynamics time scale. We have implemented an approach to targeted molecular dynamics called end-point targeted molecular dynamics that transforms proteins between two specified conformational states through the use of nonharmonic “soft” restraints. A key feature of the method is that the protein is free to discover its own conformational pathway through the plethora of possible intermediate states. The method is applied to the Shaker Kv1.2 potassium channel in implicit solvent. The rate of cycling between the open and closed states was varied to explore how slow the cycling rate needed to be to ensure that microscopic reversibility along the transition pathways was well approximated. Results specific to the K+ channel include: 1), a variation in backbone torsion angles of residues near the Pro-Val-Pro motif in the inner helix during both opening and closing; 2), the identification of possible occlusion sites in the closed channel located among Pro-Val-Pro residues and downstream; 3), a difference in the opening and closing pathways of the channel; and 4), evidence of a transient intermediate structural substate. The results also show that likely intermediate conformations during the opening-closing process can be generated in computationally tractable simulation times.  相似文献   

13.
14.
Möbitz H  Friedrich T  Boll M 《Biochemistry》2004,43(5):1376-1385
Benzoyl-CoA reductase (BCR) from the denitrifying bacterium Thauera aromatica catalyzes the ATP driven two-electron reduction of the aromatic moiety of benzoyl-CoA (BCoA) to a nonaromatic cyclic diene (2 ATP/2 e(-)). The enzyme contains two similar but nonidentical ATP-binding sites of the acetate kinase/sugar kinase/Hsp70/actin family. To obtain further insights into the overall catalytic cycle of BCR, the binding affinities and stoichiometries of all substrates as well as their effects on reduction kinetics were studied by stopped-flow UV/vis spectroscopy, freeze-quench EPR spectroscopy, and equilibrium dialysis. BCR bound maximally two nucleotides and a single BCoA. The binding of a single nucleotide induced a molecular switch (BCR --> BCR) as evidenced as follows: (i) the reduction rate of BCR by sulfoxide radical anion was significantly decreased in the nucleotide-bound state, (ii) the binding of BCoA to the reduced enzyme strictly depended on bound nucleotides, and (iii) the nucleotide binding affinities increased up to 60-fold compared to the steady-state values. The "ATP-binding switch" is distinguished from the previously described "low-spin/high-spin switch" of a [4Fe-4S] cluster which strictly depends on ATP hydrolysis. The two nucleotide binding sites were occupied sequentially; binding constants of the two sites differed by a factor of 10-40. The kinetic data obtained suggest that the ATP-binding switch is a rather fast process (>100 s(-)(1)) with a switch equilibrium constant of 54 +/- 10. In contrast, the reverse switch back of the MgADP-bound enzyme (BCR --> BCR) is considered rate-limiting in the overall catalytic cycle of BCR (4 +/- 1 s(-)(1)). The binding of nucleotides did not affect the redox potential of the [4Fe-4S](+1/+2) clusters; the switch is rather considered to alter the kinetics of internal electron transfer. Implications for the overall catalytic cycle of benzoyl-CoA reductase are discussed and compared with other ATP-hydrolyzing enzymes.  相似文献   

15.
Homohexameric, N-Ethylmaleimide Sensitive Factor (NSF) disassembles Soluble NSF Attachment Protein Receptor (SNARE) complexes after membrane fusion, an essential step in vesicular trafficking. NSF contains three domains (NSF-N, NSF-D1, and NSF-D2), each contributing to activity. We combined electron microscopic (EM) analysis, analytical ultracentrifugation (AU) and functional mutagenesis to visualize NSF's ATPase cycle. 3D density maps show that NSF-D2 remains stable, whereas NSF-N undergoes large conformational changes. NSF-Ns splay out perpendicular to the ADP-bound hexamer and twist upwards upon ATP binding, producing a more compact structure. These conformations were confirmed by hydrodynamic, AU measurements: NSF-ATP sediments faster with a lower frictional ratio (f/f(0)). Hydrodynamic analyses of NSF mutants, with specific functional defects, define the structures underlying these conformational changes. Mapping mutations onto our 3D models allows interpretation of the domain movement and suggests a mechanism for NSF binding to and disassembly of SNARE complexes.  相似文献   

16.
Glyceraldehyde 3-phosphate dehydrogenase is a tetramer of four chemically identical subunits which requires the cofactor nicotinamide adenine dinucleotide (NAD) for activity. The structure of the holo-enzyme from Bacillus stearothermophilus has recently been refined using X-ray data to 2.4 A resolution. This has facilitated the structure determination of both the apo-enzyme and the enzyme with one molecule of NAD bound to the tetramer. These structures have been refined at 4 A resolution using the constrained-restrained parameter structure factor least-squares refinement program CORELS. When combined with individual atomic temperature factors from the holo-enzyme, these refined models give crystallographic R factors of 30.2% and 30.4%, respectively, for data to 3 A resolution. The apo-enzyme has 222 molecular symmetry, and the subunit structure is related to that of the holo-enzyme by an approximate rigid-body rotation of the coenzyme binding domain by 4.3 degrees with respect to the catalytic domains, which form the core of the tetramer. The effect of this rotation is to shield the coenzyme and active site from solvent in the holo-enzyme. In addition to the rigid-body rotation, there is a rearrangement of several residues involved in NAD binding. The structure of the 1 NAD enzyme is asymmetric. The subunit which contains the bound NAD adopts a conformation very similar to that of a holo-enzyme subunit, while the other three unliganded subunits are very similar to the apo-enzyme conformation. This result provides unambiguous evidence for ligand-induced sequential conformational changes in B. stearothermophilus glyceraldehyde 3-phosphate dehydrogenase.  相似文献   

17.
Enzymes that digest plant cell wall polysaccharides generally contain non-catalytic, carbohydrate-binding modules (CBMs) that function by attaching the enzyme to the substrate, potentiating catalytic activity. Here, we present the first structure of a family 35 CBM, derived from the Cellvibrio japonicus beta-1,4-mannanase Man5C. The NMR structure has been determined for both the free protein and the protein bound to mannopentaose. The data show that the protein displays a typical beta-jelly-roll fold. Ligand binding is not located on the concave surface of the protein, as occurs in many CBMs that display the jelly-roll fold, but is formed by the loops that link the two beta-sheets of the protein, similar to family 6 CBMs. In contrast to the majority of CBMs, which are generally rigid proteins, CBM35 undergoes significant conformational change upon ligand binding. The curvature of the binding site and the narrow binding cleft are likely to be the main determinants of binding specificity. The predicted solvent exposure of O6 at several subsites provides an explanation for the observed accommodation of decorated mannans. Two of the key aromatic residues in Man5C-CBM35 that interact with mannopentaose are conserved in mannanase-derived CBM35s, which will guide specificity predictions based on the primary sequence of proteins in this CBM family.  相似文献   

18.
The interaction of thrombin with alpha 2-macroglobulin (alpha 2M) was characterized by monitoring conformational changes and measuring the increase of free sulfhydryl groups during the reaction. Under experimental conditions where [thrombin] greater than [alpha 2M], the conformational change, measured by increases in the fluorescence of 6-(p-toluidino)-2-naphthalenesulfonate, and thiol group appearance displayed biphasic kinetics. The initial rapid phase results in the formation of a stable complex, the appearance of two sulfhydryl groups, the cleavage of approximately half of the Mr 180 000 subunits, and a conformational change that is not as extensive as that which occurs with trypsin. The slower phase is associated with the appearance of two additional sulfhydryl groups, increased cleavage of the Mr 180 000 subunit, and additional conformational changes. The available evidence suggests that the slow phase results from hydrolysis of the Mr 180 000 subunit(s) due to proteolysis of the alpha 2M-thrombin complex by free thrombin. Experiments with 125I-thrombin document the binding of 1 mol of thrombin/mol of alpha 2M that is not dissociated upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the complex. At higher ratios of thrombin to alpha 2M, a second mole of thrombin will reversibly associate with the 1:1 alpha 2M-thrombin complex. Under conditions where [thrombin] less than [alpha 2M], biphasic kinetics were not observed, and the conformational change, sulfhydryl appearance, and hydrolysis of the Mr 180 000 subunit were found to follow second-order kinetics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Because the ligand bound to the ligand-binding domain (LBD) of nuclear hormone receptors is completely enveloped by protein, it is thought that the process of ligand binding or unbinding must involve a significant conformational change of this domain. We have used the intrinsic tryptophan fluorescence of the estrogen receptor-alpha (ERalpha) or estrogen receptor-beta (ERbeta) LBD, as well as bis-anilinonaphthalenesulfonate (bis-ANS), a probe for accessible interior regions of protein, to follow the guanidine-hydrochloride (Gua-HCl)-induced unfolding of this domain. In both cases, we find that the ER-LBD unfolding follows a two-phase process. At low Gua-HCl, the ER-LBD undergoes partial unfolding, whereas at high Gua-HCl, this domain undergoes a global unfolding, with bis-ANS binding preferentially to the partially unfolded state. The partially unfolded state of the ERalpha-LBD induced by denaturant does not bind ligand stably, but it may resemble an intermediate that this domain accesses transiently under native conditions that allow ligands to enter or exit the ligand-binding pocket.  相似文献   

20.
Recently, a solid-state NMR study revealed that scorpion toxin binding leads to conformational changes in the selectivity filter of potassium channels. The exact nature of the conformational changes, however, remained elusive. We carried out all-atom molecular dynamics simulations that enabled us to cover the complete pathway of toxin approach and binding, and we validated our simulation results by using solid-state NMR data and electrophysiological measurements. Our structural model revealed a mechanism of cooperative toxin-induced conformational changes that accounts both for the signal changes observed in solid-state NMR and for the tight interaction between KcsA-Kv1.3 and Kaliotoxin. We show that this mechanism is structurally and functionally closely related to recovery from C-type inactivation. Furthermore, our simulations indicate heterogeneity in the binding modes of Kaliotoxin, which might serve to enhance its affinity for KcsA-Kv1.3 further by entropic stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号