首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alpha-dystrobrevin is a component of the dystrophin-glycoprotein complex (DGC) and is thought to have both structural and signaling roles in skeletal muscle. Mice deficient for alpha-dystrobrevin (adbn(-/-)) exhibit extensive myofiber degeneration and neuromuscular junction abnormalities. However, the biochemical stability of the DGC and the functional performance of adbn(-/-) muscle have not been characterized. Here we show that the biochemical association between dystrophin and beta-dystroglycan is compromised in adbn(-/-) skeletal muscle, suggesting that alpha-dystrobrevin plays a structural role in stabilizing the DGC. However, despite muscle cell death and DGC destabilization, costamere organization and physiological performance is normal in adbn(-/-) skeletal muscle. Our results demonstrate that myofiber degeneration alone does not cause functional deficits and suggests that more complex pathological factors contribute to the development of muscle weakness in muscular dystrophy.  相似文献   

2.
The dystrophin-glycoprotein complex (DGC) links the cytoskeleton of muscle fibers to their extracellular matrix. Using knockout mice, we show that a cytoplasmic DGC component, alpha-dystrobrevin (alpha-DB), is dispensable for formation of the neuromuscular junction (NMJ) but required for maturation of its postsynaptic apparatus. We also analyzed double and triple mutants lacking other cytoskeletal DGC components (utrophin and dystrophin) and myotubes lacking a alpha-DB or a transmembrane DGC component (dystroglycan). Our results suggest that alpha-DB acts via its linkage to the DGC to enhance the stability of postsynaptic specializations following their DGC-independent formation; dystroglycan may play additional roles in assembling synaptic basal lamina. Together, these results demonstrate involvement of distinct protein complexes in the formation and maintenance of the synapse and implicate the DGC in the latter process.  相似文献   

3.
Dystrophin coordinates the assembly of a complex of structural and signalling proteins that is required for normal muscle function. A key component of the dystrophin-associated protein complex (DPC) is alpha-dystrobrevin, a dystrophin-related and -associated protein whose absence results in muscular dystrophy and neuromuscular junction defects [1,2]. The current model of the DPC predicts that dystrophin and dystrobrevin each bind a single syntrophin molecule [3]. The syntrophins are PDZ-domain-containing proteins that facilitate the recruitment of signalling proteins such as nNOS (neuronal nitric oxide synthase) to the DPC [4]. Here we show, using yeast two-hybrid analysis and biochemical binding studies, that alpha-dystrobrevin in fact contains two independent syntrophin-binding sites in tandem. The previously undescribed binding site is situated within an alternatively spliced exon of alpha-dystrobrevin, termed the variable region-3 (vr3) sequence, which is specifically expressed in skeletal and cardiac muscle [5,6]. Analysis of the syntrophin-binding region of dystrobrevin reveals a tandem pair of predicted alpha helices with significant sequence similarity. These alpha helices, each termed a syntrophin-binding motif, are also highly conserved in dystrophin and utrophin. Together these data show that there are four potential syntrophin-binding sites per dystrophin complex in skeletal muscle: two on dystrobrevin and two on dystrophin or utrophin. Furthermore, alternative splicing of dystrobrevin provides a mechanism for regulating the stoichiometry of syntrophin association with the DPC. This is likely to have important consequences for the recruitment of specific signalling molecules to the DPC and ultimately for its function.  相似文献   

4.
5.
Dystrophin coordinates the assembly of a complex of structural and signaling proteins that are required for normal muscle function. A key component of the dystrophin protein complex is alpha-dystrobrevin, a dystrophin-associated protein whose absence results in neuromuscular junction defects and muscular dystrophy. To gain further insights into the role of alpha-dystrobrevin in skeletal muscle, we used the yeast two-hybrid system to identify a novel alpha-dystrobrevin-binding partner called syncoilin. Syncoilin is a new member of the intermediate filament superfamily and is highly expressed in skeletal and cardiac muscle. In normal skeletal muscle, syncoilin is concentrated at the neuromuscular junction, where it colocalizes and coimmunoprecipitates with alpha-dystrobrevin-1. Expression studies in mammalian cells demonstrate that, while alpha-dystrobrevin and syncoilin associate directly, overexpression of syncoilin does not result in the self-assembly of intermediate filaments. Finally, unlike many components of the dystrophin protein complex, we show that syncoilin expression is up-regulated in dystrophin-deficient muscle. These data suggest that alpha-dystrobrevin provides a link between the dystrophin protein complex and the intermediate filament network at the neuromuscular junction, which may be important for the maintenance and maturation of the synapse.  相似文献   

6.
The dystrophin-glycoprotein complex (DGC) can be considered as a specialized adhesion complex, linking the extracellular matrix to the actin cytoskeleton, primarily in muscle cells. Mutations in several components of the DGC lead to its partial or total loss, resulting in various forms of muscular dystrophy. These typically manifest as progressive wasting diseases with loss of muscle integrity. Debate is ongoing about the precise function of the DGC: initially a strictly mechanical role was proposed but it has been suggested that there is aberrant calcium handling in muscular dystrophy and, more recently, changes in MAP kinase and GTPase signalling have been implicated in the aetiology of the disease. Here, we discuss new and interesting developments in these aspects of DGC function and attempt to rationalize the mechanical, calcium and signalling hypotheses to provide a unifying hypothesis of the underlying process of muscular dystrophy.  相似文献   

7.
Sarcospan is an integral membrane component of the dystrophin-glycoprotein complex (DGC) found at the sarcolemma of striated and smooth muscle. The DGC plays important roles in muscle function and viability as evidenced by defects in components of the DGC, which cause muscular dystrophy. Sarcospan is unique among the components of the complex in that it contains four transmembrane domains with intracellular N- and C-terminal domains and is a member of the tetraspan superfamily of proteins. Sarcospan is tightly linked to the sarcoglycans, and together these proteins form a subcomplex within the DGC. Stable expression of sarcospan at the sarcolemma is dependent upon expression of the sarcoglycans. Here we describe the generation and analysis of mice carrying a null mutation in the Sspn gene. Surprisingly, the Sspn-deficient muscle maintains expression of other components of the DGC at the sarcolemma, and no gross histological abnormalities of muscle from the mice are observed. The Sspn-deficient muscle maintains sarcolemmal integrity as determined by serum creatine kinase and Evans blue uptake assays, and the Sspn-deficient muscle maintains normal force and power generation capabilities. These data suggest either that sarcospan is not required for normal DGC function or that the Sspn-deficient muscle is compensating for the absence of sarcospan, perhaps by utilizing another protein to carry out its function.  相似文献   

8.
Recently we identified a novel target gene of MEF2A named myospryn that encodes a large, muscle-specific, costamere-restricted alpha-actinin binding protein. Myospryn belongs to the tripartite motif (TRIM) superfamily of proteins and was independently identified as a dysbindin-interacting protein. Dysbindin is associated with alpha-dystrobrevin, a component of the dystrophin-glycoprotein complex (DGC) in muscle. Apart from these initial findings little else is known regarding the potential function of myospryn in striated muscle. Here we reveal that myospryn is an anchoring protein for protein kinase A (PKA) (or AKAP) whose closest homolog is AKAP12, also known as gravin/AKAP250/SSeCKS. We demonstrate that myospryn co-localizes with RII alpha, a type II regulatory subunit of PKA, at the peripheral Z-disc/costameric region in striated muscle. Myospryn interacts with RII alpha and this scaffolding function has been evolutionarily conserved as the zebrafish ortholog also interacts with PKA. Moreover, myospryn serves as a substrate for PKA. These findings point to localized PKA signaling at the muscle costamere.  相似文献   

9.
The dystrophin-associated protein complex (DPC) is required for the maintenance of muscle integrity during the mechanical stresses of contraction and relaxation. In addition to providing a membrane scaffold, members of the DPC such as the alpha-dystrobrevin protein family are thought to play an important role in intracellular signal transduction. To gain additional insights into the function of the DPC, we performed a yeast two-hybrid screen for dystrobrevin-interacting proteins. Here we describe the identification of a dysbindin, a novel dystrobrevin-binding protein. Dysbindin is an evolutionary conserved 40-kDa coiled-coil-containing protein that binds to alpha- and beta-dystrobrevin in muscle and brain. Dystrophin and alpha-dystrobrevin are co-immunoprecipitated with dysbindin, indicating that dysbindin is DPC-associated in muscle. Dysbindin co-localizes with alpha-dystrobrevin at the sarcolemma and is up-regulated in dystrophin-deficient muscle. In the brain, dysbindin is found primarily in axon bundles and especially in certain axon terminals, notably mossy fiber synaptic terminals in the cerebellum and hippocampus. These findings have implications for the molecular pathology of Duchenne muscular dystrophy and may provide an alternative route for anchoring dystrobrevin and the DPC to the muscle membrane.  相似文献   

10.
Duchenne muscular dystrophy is caused by mutations in the dystrophin gene and is characterized by progressive muscle wasting. A number of Duchenne patients also present with mental retardation. The dystrophin protein is part of the highly conserved dystrophin-associated glycoprotein complex (DGC) which accumulates at the neuromuscular junction (NMJ) and at a variety of synapses in the peripheral and central nervous systems. Many years of research into the roles of the DGC in muscle have revealed its structural function in stabilizing the sarcolemma. In addition, the DGC also acts as a scaffold for various signaling pathways. Here, we discuss recent advances in understanding DGC roles in the nervous system, gained from studies in both vertebrate and invertebrate model systems. From these studies, it has become clear that the DGC is important for the maturation of neurotransmitter receptor complexes and for the regulation of neurotransmitter release at the NMJ and central synapses. Furthermore, roles for the DGC have been established in consolidation of long-term spatial and recognition memory. The challenges ahead include the integration of the behavioral and mechanistic studies and the use of this information to identify therapeutic targets.  相似文献   

11.
Enigk RE  Maimone MM 《Gene》1999,238(2):479-488
Alpha-dystrobrevin is a dystrophin-related protein expressed primarily in skeletal muscle, heart, lung and brain. In skeletal muscle, alpha-dystrobrevin is a component of the dystrophin-associated glycoprotein complex and is localized to the sarcolemma, presumably through interactions with dystrophin and utrophin. Alternative splicing of the alpha-dystrobrevin gene generates multiple isoforms which have been grouped into three major classes: alpha-DB1, alpha-DB2, and alpha-DB3. Various isoforms have been shown to interact with a variety of proteins; however, the physiological function of the alpha-dystrobrevins remains unknown. In the present study, we have cloned a novel alpha-dystrobrevin cDNA encoding a protein (referred to as alpha-DB2b) with a unique 11 amino acid C-terminal tail. Using RT PCR with primers specific to the new isoform, we have characterized its expression in skeletal muscle, heart, and brain, and in differentiating C2C12 muscle cells. We show that alpha-DB2b is expressed in skeletal muscle, heart and brain, and that exons 12 and 13 are alternatively spliced in alpha-DB2b to generate at least three splice variants. The major alpha-DB2b splice variant expressed in adult skeletal muscle and heart contains exons 12 and 13, while in adult brain, two alpha-DB2b splice variants are expressed at similar levels. This is consistent with the preferential expression of exons 12 and 13 in other alpha-dystrobrevin isoforms in skeletal muscle and heart. Similarly, in alpha-DB1 the first 21 nucleotides of exon 18 are preferentially expressed in skeletal muscle and heart relative to brain. We also show that the expression of alternatively spliced alpha-DB2b is developmentally regulated in muscle; during differentiation of C2C12 cells, alpha-DB2b expression switches from an isoform lacking exons 12 and 13 to one containing them. We demonstrate similar developmental upregulation of exons 12, 13, and 18 in alpha-DB1 and of exons 12 and 13 in alpha-DB2a. Finally, we show that alpha-DB2b protein is expressed in adult skeletal muscle, suggesting that it has a functional role in adult muscle. Together, these data suggest that alternatively spliced variants of the new alpha-dystrobrevin isoform, alpha-DB2b, are differentially expressed in various tissues and developmentally regulated during muscle cell differentiation in a fashion similar to that previously described for alpha-dystrobrevin isoforms.  相似文献   

12.
The dystrophin-glycoprotein complex (DGC) is a multisubunit complex that connects the cytoskeleton of a muscle fiber to its surrounding extracellular matrix. Mutations in the DGC disrupt the complex and lead to muscular dystrophy. There are a few naturally occurring animal models of DGC-associated muscular dystrophy (e.g. the dystrophin-deficient mdx mouse, dystrophic golden retriever dog, HFMD cat and the delta-sarcoglycan-deficient BIO 14.6 cardiomyopathic hamster) that share common genetic protein abnormalities similar to those of the human disease. However, the naturally occurring animal models only partially resemble human disease. In addition, no naturally occurring mouse models associated with loss of other DGC components are available. This has encouraged the generation of genetically engineered mouse models for DGC-linked muscular dystrophy. Not only have analyses of these mice led to a significant improvement in our understanding of the pathogenetic mechanisms for the development of muscular dystrophy, but they will also be immensely valuable tools for the development of novel therapeutic approaches for these incapacitating diseases.  相似文献   

13.
Transversal cytoskeletal organization of muscle fibers is well described, although very few data are available concerning protein content. Measurements of desmin, alpha-actinin, and actin contents in soleus and extensor digitorum longus (EDL) rat skeletal muscles, taken with the results previously reported for several dystrophin-glycoprotein complex (DGC) components, indicate that the contents of most cytoskeletal proteins are higher in slow-type fibers than in fast ones. The effects of hypokinesia and unloading on the cytoskeleton were also investigated, using hindlimb suspension. First, this resulted in a decrease in contractile protein contents, only after 6 wk, in the soleus. Dystrophin and associated proteins were shown to be reduced for soleus at 3 wk, whereas only the dystrophin-associated proteins were found to increase after 6 wk. On the other hand, the contents of DGC components were increased for EDL for the two durations. Desmin and alpha-actinin levels were unchanged in the same conditions. Consequently, it can be concluded that the cytoskeletal protein expression levels could largely contribute to muscle fiber adaptation induced by modified functional demands.  相似文献   

14.
Mutations in genes encoding proteins of the human dystrophin-associated glycoprotein complex (DGC) cause the Duchenne, Becker and limb-girdle muscular dystrophies. Subsets of the DGC proteins form tissue-specific complexes which are thought to play structural and signaling roles in the muscle and at the neuromuscular junction. Furthermore, mutations in the dystrophin gene that lead to Duchenne muscular dystrophy are frequently associated with cognitive and behavioral deficits, suggesting a role for dystrophin in the nervous system. Despite significant progress over the past decade, many fundamental questions about the roles played by dystrophin and the other DGC proteins in the muscle and peripheral and central nervous systems remain to be answered. Mammalian models of DGC gene function are complicated by the existence of fully or partially redundant genes whose functions can mask effects of the inactivation of a given DGC gene. The genome of the fruitfly Drosophila melanogaster encodes a single ortholog of the majority of the mammalian DGC protein subclasses, thus potentially simplifying their functional analysis. We report here the embryonic mRNA expression patterns of the individual DGC orthologs. We find that they are predominantly expressed in the nervous system and in muscle. Dystrophin, dystrobrevin-like, dystroglycan-like, syntrophin-like 1, and all three sarcoglycan orthologs are found in the brain and the ventral nerve cord, while dystrophin, dystrobrevin-like, dystroglycan-like, syntrophin-like 2, sarcoglycan alpha and sarcoglycan delta are expressed in distinct and sometimes overlapping domains of mesoderm-derived tissues, i.e. muscles of the body wall and around the gut.  相似文献   

15.
The dystrophin-glycoprotein complex (DGC) is a multisubunit complex that spans the muscle plasma membrane and forms a link between the F-actin cytoskeleton and the extracellular matrix. The proteins of the DGC are structurally organized into distinct subcomplexes, and genetic mutations in many individual components are manifested as muscular dystrophy. We recently identified a unique tetraspan-like dystrophin-associated protein, which we have named sarcospan (SPN) for its multiple sarcolemma spanning domains (Crosbie, R.H., J. Heighway, D.P. Venzke, J.C. Lee, and K.P. Campbell. 1997. J. Biol. Chem. 272:31221-31224). To probe molecular associations of SPN within the DGC, we investigated SPN expression in normal muscle as a baseline for comparison to SPN's expression in animal models of muscular dystrophy. We show that, in addition to its sarcolemma localization, SPN is enriched at the myotendinous junction (MTJ) and neuromuscular junction (NMJ), where it is a component of both the dystrophin- and utrophin-glycoprotein complexes. We demonstrate that SPN is preferentially associated with the sarcoglycan (SG) subcomplex, and this interaction is critical for stable localization of SPN to the sarcolemma, NMJ, and MTJ. Our experiments indicate that assembly of the SG subcomplex is a prerequisite for targeting SPN to the sarcolemma. In addition, the SG- SPN subcomplex functions to stabilize alpha-dystroglycan to the muscle plasma membrane. Taken together, our data provide important information about assembly and function of the SG-SPN subcomplex.  相似文献   

16.
Syntrophins are a family of 59 kDa peripheral membrane‐associated adapter proteins, containing multiple protein‐protein and protein‐lipid interaction domains. The syntrophin family consists of five isoforms that exhibit specific tissue distribution, distinct sub‐cellular localization and unique expression patterns implying their diverse functional roles. These syntrophin isoforms form multiple functional protein complexes and ensure proper localization of signalling proteins and their binding partners to specific membrane domains and provide appropriate spatiotemporal regulation of signalling pathways. Syntrophins consist of two PH domains, a PDZ domain and a conserved SU domain. The PH1 domain is split by the PDZ domain. The PH2 and the SU domain are involved in the interaction between syntrophin and the dystrophin‐glycoprotein complex (DGC). Syntrophins recruit various signalling proteins to DGC and link extracellular matrix to internal signalling apparatus via DGC. The different domains of the syntrophin isoforms are responsible for modulation of cytoskeleton. Syntrophins associate with cytoskeletal proteins and lead to various cellular responses by modulating the cytoskeleton. Syntrophins are involved in many physiological processes which involve cytoskeletal reorganization like insulin secretion, blood pressure regulation, myogenesis, cell migration, formation and retraction of focal adhesions. Syntrophins have been implicated in various pathologies like Alzheimer’s disease, muscular dystrophy, cancer. Their role in cytoskeletal organization and modulation makes them perfect candidates for further studies in various cancers and other ailments that involve cytoskeletal modulation. The role of syntrophins in cytoskeletal organization and modulation has not yet been comprehensively reviewed till now. This review focuses on syntrophins and highlights their role in cytoskeletal organization, modulation and dynamics via its involvement in different cell signalling networks.  相似文献   

17.
Dystrophin is a cytosolic protein belonging to a membrane-spanning glycoprotein complex, called dystrophin–glycoprotein complex (DGC) that is expressed in many tissues, especially in skeletal muscle and in the nervous system. The DGC connects the cytoskeleton to the extracellular matrix and, although none of the proteins of the DGC displays kinase or phosphatase activity, it is involved in many signal transduction pathways. Mutations in some components of the DGC are linked to many forms of inherited muscular dystrophies. In particular, a mutation in the dystrophin gene, leading to a complete loss of the protein, provokes one of the most prominent muscular dystrophies, the Duchenne muscular dystrophy, which affects 1 out of 3500 newborn males. What is observed in these circumstances, is a dramatic alteration of the expression levels of a multitude of metalloproteinases (MMPs), a family of extracellular Zn2+-dependent endopeptidases, in particular of MMP-2 and MMP-9, also called gelatinases. Indeed, the enzymatic activity of MMP-2 and MMP-9 on dystroglycan, an important member of the DGC, plays a significant role also in physiological processes taking place in the central and peripheral nervous system. This mini-review discusses the role of MMP-2 and MMP-9, in physiological as well as pathological processes involving members of the DGC.  相似文献   

18.
Dystroglycan (DG) plays a pivotal role within the dystrophin-glycoprotein complex (DGC) which represents a major factor for muscle fibre stability upon contraction. It has been shown that many muscular dystrophy phenotypes are caused by mutations of proteins belonging to or being associated with the DGC. Due to its prominent role for muscle stability, the detailed knowledge of DG structural and functional aspects should be considered of primary importance in order to develop new treatments for neuromuscular diseases.  相似文献   

19.
Mice rendered null for alpha-dystrobrevin, a component of the dystrophin complex, have muscular dystrophy, despite the fact that the sarcolemma remains relatively intact (Grady, R. M., Grange, R. W., Lau, K. S., Maimone, M. M., Nichol, M. C., Stull, J. T., and Sanes, J. R. (1999) Nat. Cell Biol. 1, 215-220) Thus, alpha-dystrobrevin may serve a signaling function that is important for the maintenance of muscle integrity. We have identified a new dystrobrevin-associated protein, DAMAGE, that may play a signaling role in brain, muscle, and peripheral nerve. In humans, DAMAGE is encoded by an intronless gene located at chromosome Xq13.1, a locus that contains genes involved in mental retardation. DAMAGE associates directly with alpha-dystrobrevin, as shown by yeast two-hybrid, and co-immunoprecipitates with the dystrobrevin-syntrophin complex from brain. This co-immunoprecipitation is dependent on the presence of alpha-dystrobrevin but not beta-dystrobrevin. The DAMAGE protein contains a potential nuclear localization signal, 30 12-amino acid repeats, and two MAGE homology domains. The domain structure of DAMAGE is similar to that of NRAGE, a MAGE protein that mediates p75 neurotrophin receptor signaling and neuronal apoptosis (Salehi, A. H., Roux, P. P., Kubu, C. J., Zeindler, C., Bhakar, A., Tannis, L. L., Verdi, J. M., and Barker, P. A. (2000) Neuron 27, 279-288). DAMAGE is highly expressed in brain and is present in the cell bodies and dendrites of hippocampal and Purkinje neurons. In skeletal muscle, DAMAGE is at the postsynaptic membrane and is associated with a subset of myonuclei. DAMAGE is also expressed in peripheral nerve, where it localizes along with other members of the dystrophin complex to the perineurium and myelin. These results expand the role of dystrobrevin and the dystrophin complex in membrane signaling and disease.  相似文献   

20.
The dystrophin-glycoprotein complex (DGC) is a large trans-sarcolemmal complex that provides a linkage between the subsarcolemmal cytoskeleton and the extracellular matrix. In skeletal muscle, it consists of the dystroglycan, sarcoglycan and cytoplasmic complexes, with dystrophin forming the core protein. The DGC has been described as being absent or greatly reduced in dystrophin-deficient muscles, and this lack is considered to be involved in the dystrophic phenotype. Such a decrease in the DGC content was observed in dystrophin-deficient muscle from humans with muscular dystrophy and in mice with X-linked muscular dystrophy (mdx mice). These deficits were observed in total muscle homogenates and in partially membrane-purified muscle fractions, the so-called KCl-washed microsomes. Here, we report that most of the proteins of the DGC are actually present at normal levels in the mdx mouse muscle plasma membrane. The proteins are detected in dystrophic animal muscles when the immunoblot assay is performed with crude surface membrane fractions instead of the usually employed KCl-washed microsomes. We propose that these proteins form SDS-insoluble membrane complexes when dystrophin is absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号