首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Niemann-Pick C1 (NPC1) protein regulates the transport of cholesterol from late endosomes/lysosomes to other compartments responsible for maintaining intracellular cholesterol homeostasis. The present study examined the expression of the NPC1 gene and the distribution of the NPC1 protein that resulted from the transport of LDL-derived cholesterol through normal human fibroblasts. A key finding was that the transport of cholesterol from late endosomes/lysosomes to the sterol-regulatory pool at the endoplasmic reticulum, as determined by feedback inhibition of the sterol-regulatory element binding protein (SREBP) pathway, was associated with the downregulation of the NPC1 gene. Consistent with these results, fibroblasts incubated with LDL had decreased amounts of SREBP protein that interacted with sterol-regulatory element (SRE) sequences positioned within the NPC1 gene promoter region. Finally, partial colocalization of the NPC1 protein with late endosomes/lysosomes and distinct regions of the endoplasmic reticulum suggested that the NPC1 protein may facilitate the transport of cholesterol directly between these two compartments. Together, these results indicate that the transport of LDL-derived cholesterol from late endosomes/lysosomes to the sterol-regulatory pool, known to be regulated by the NPC1 protein, is responsible for promoting feedback inhibition of the SREBP pathway and downregulation of the NPC1 gene.  相似文献   

2.
The Niemann–Pick C protein (NPC1) is required for cholesterol transport from late endosomes and lysosomes to other cellular membranes. Mutations in NPC1 cause lysosomal lipid storage and progressive neurological degeneration. Cloning of the NPC1 gene has given us tools with which to investigate the function of this putative cholesterol transporter. Here, we discuss recent studies indicating that NPC1 is not a cholesterol-specific transport molecule. Instead, NPC1 appears to be required for the vesicular shuttling of both lipids and fluid-phase constituents from multivesicular late endosomes to destinations such as the trans -Golgi network.  相似文献   

3.
Niemann-Pick disease type C (NPC) is characterized by lysosomal storage of cholesterol and gangliosides, which results from defects in intracellular lipid trafficking. Most studies of NPC1 have focused on its role in intracellular cholesterol movement. Our hypothesis is that NPC1 facilitates the egress of cholesterol from late endosomes, which are where active NPC1 is located. When NPC1 is defective, cholesterol does not exit late endosomes; instead, it is carried along to lysosomal storage bodies, where it accumulates. In this study, we addressed whether cholesterol is transported from endosomes to the plasma membrane before reaching NPC1-containing late endosomes. Our study was conducted in Chinese hamster ovary cell lines that display the classical NPC biochemical phenotype and belong to the NPC1 complementation group. We used three approaches to test whether low density lipoprotein (LDL)-derived cholesterol en route to NPC1-containing organelles passes through the plasma membrane. First, we used cyclodextrins to measure the arrival of LDL cholesterol at the plasma membrane and found that the arrival of LDL cholesterol in a cyclodextrin-accessible pool was significantly delayed in NPC1 cells. Second, the movement of LDL cholesterol to NPC1-containing late endosomes was assessed and found to be normal in Chinese hamster ovary mutant 3-6, which exhibits defective movement of plasma membrane cholesterol to intracellular membranes. Third, we examined the movement of plasma membrane cholesterol to the endoplasmic reticulum and found that this pathway is intact in NPC1 cells, i.e. it does not pass through NPC1-containing late endosomes. Our data suggest that in NPC1 cells LDL cholesterol traffics directly through endosomes to lysosomes, bypassing the plasma membrane, and is trapped there because of dysfunctional NPC1.  相似文献   

4.
Most cell types acquire cholesterol by endocytosis of circulating low density lipoprotein, but little is known about the mechanisms of intra-endosomal cholesterol transport and about the primary cause of its aberrant accumulation in the cholesterol storage disorder Niemann-Pick type C (NPC). Here we report that lysobisphosphatidic acid (LBPA), an unconventional phospholipid that is only detected in late endosomes, regulates endosomal cholesterol levels under the control of Alix/AlP1, which is an LBPA-interacting protein involved in sorting into multivesicular endosomes. We find that Alix down-expression decreases both LBPA levels and the lumenal vesicle content of late endosomes. Cellular cholesterol levels are also decreased, presumably because the storage capacity of endosomes is affected and thus cholesterol clearance accelerated. Both lumenal membranes and cholesterol can be restored in Alix knockdown cells by exogenously added LBPA. Conversely, we also find that LBPA becomes limiting upon pathological cholesterol accumulation in NPC cells, because the addition of exogenous LBPA, but not of LBPA isoforms or analogues, partially reverts the NPC phenotype. We conclude that LBPA controls the cholesterol capacity of endosomes.  相似文献   

5.
Modulation of cellular cholesterol transport and homeostasis by Rab11   总被引:11,自引:5,他引:6       下载免费PDF全文
To analyze the contribution of vesicular trafficking pathways in cellular cholesterol transport we examined the effects of selected endosomal Rab proteins on cholesterol distribution by filipin staining. Transient overexpression of Rab11 resulted in prominent accumulation of free cholesterol in Rab11-positive organelles that sequestered transferrin receptors and internalized transferrin. Sphingolipids were selectively redistributed as pyrene-sphingomyelin and sulfatide cosequestered with Rab11-positive endosomes, whereas globotriaosyl ceramide and GM2 ganglioside did not. Rab11 overexpression did not perturb the transport of 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine-perchlorate–labeled low-density lipoprotein (LDL) to late endosomes or the Niemann-Pick type C1 (NPC1)-induced late endosomal cholesterol clearance in NPC patient cells. However, Rab11 overexpression inhibited cellular cholesterol esterification in an LDL-independent manner. This effect could be overcome by introducing cholesterol to the plasma membrane by using cyclodextrin as a carrier. These results suggest that in Rab11-overexpressing cells, deposition of cholesterol in recycling endosomes results in its impaired esterification, presumably due to defective recycling of cholesterol to the plasma membrane. The findings point to the importance of the recycling endosomes in regulating cholesterol and sphingolipid trafficking and cellular cholesterol homeostasis.  相似文献   

6.
Mitochondrial cholesterol is maintained within a narrow range to regulate steroid and oxysterol synthesis and to ensure mitochondrial function. Mitochondria acquire cholesterol through several pathways from different cellular pools. Here we have characterized mitochondrial import of endosomal cholesterol using Chinese hamster ovary cells expressing a CYP11A1 fusion protein that converts cholesterol to pregnenolone at the mitochondrial inner membrane. RNA interference-mediated depletion of the voltage-dependent anion channel 1 in the mitochondrial outer membrane or of Niemann-Pick Type C2 (NPC2) in the endosome lumen decreased arrival of cholesterol at the mitochondrial inner membrane. Expression of NPC2 mutants unable to transfer cholesterol to NPC1 still restored mitochondrial cholesterol import in NPC2-depleted cells. Transport assays in semi-permeabilized cells showed nonvesicular cholesterol trafficking directly from endosomes to mitochondria that did not require cytosolic transport proteins but that was reduced in the absence of NPC2. Our findings indicate that NPC2 delivers cholesterol to the perimeter membrane of late endosomes, where it becomes available for transport to mitochondria without requiring NPC1.  相似文献   

7.
Niemann-Pick type C1 (NPC1) is a late endosomal transmembrane protein, which, together with NPC2 in the endosome lumen, mediates the transport of endosomal cholesterol to the plasma membrane and endoplasmic reticulum. Loss of function of NPC1 or NPC2 leads to cholesterol accumulation in late endosomes and causes neuronal dysfunction and neurodegeneration. Recent studies indicate that cholesterol also accumulates in mitochondria of NPC1-deficient cells and brain tissue and that NPC1 deficiency leads to alterations in mitochondrial function and energy metabolism. Here, we have investigated the effects of increased mitochondrial cholesterol levels on energy metabolism, using RNA interference to deplete Chinese hamster ovary cells of NPC1 alone or in combination with MLN64, which mediates endosomal cholesterol transport to mitochondria. Mitochondrial cholesterol levels were also altered by depletion of NPC2 in combination with the expression of NPC2 mutants. We found that the depletion of NPC1 increased lactate secretion, decreased glutamine-dependent mitochondrial respiration, and decreased ATP transport across mitochondrial membranes. These metabolic alterations did not occur when transport of endosomal cholesterol to mitochondria was blocked. In addition, the elevated mitochondrial cholesterol levels in NPC1-depleted cells and in NPC2-depleted cells expressing mutant NPC2 that allows endosomal cholesterol trafficking to mitochondria were associated with increased expression of the antioxidant response factor Nrf2. Antioxidant treatment not only prevented the increase in Nrf2 mRNA levels but also prevented the increased lactate secretion in NPC1-depleted cells. These results suggest that mitochondrial cholesterol accumulation can increase oxidative stress and in turn cause increased glycolysis to lactate and other metabolic alterations.  相似文献   

8.
Niemann-Pick C 1 (NPC1) is a large integral membrane glycoprotein that resides in late endosomes, whereas NPC2 is a small soluble protein found in the lumen of lysosomes. Mutations in either NPC1 or NPC2 result in aberrant lipid transport from endocytic compartments, which results in lysosomal storage of a complex mixture of lipids, primarily cholesterol and glycosphingolipids. What are the biological functions of the NPC1 and NPC2 proteins? Here we review what is known about the intracellular itinerary of these two proteins as they facilitate lipid transport. We propose that the intracellular trafficking patterns of these proteins will provide clues about their function.  相似文献   

9.
There is growing evidence suggesting that cholesterol metabolism is linked to susceptibility to Alzheimer's disease by influencing amyloid beta-protein (Abeta) metabolism. However, the precise cellular linkage sites between cholesterol and Abeta have not yet been clarified. To address this issue, we investigated Niemann-Pick type C (NPC) model cells and NPC mutant cells, which showed aberrant cholesterol trafficking. We observed a remarkable Abeta accumulation in late endosomes of both NPC model cells and mutant cells where cholesterol accumulates and a significant accumulation in the NPC mouse brain. This Abeta accumulation was independent of its constitutive secretion and production through an endocytic pathway. In addition, it is characterized by a marked predominance of Abeta42 and insolubility in SDS, suggesting the presence of aggregated Abeta in late endosomes. Most importantly, Abeta accumulation is coupled with the cholesterol levels in late endosomes. Thus, late endosomes of NPC cells are a novel pool of aggregated Abeta42 as well as cholesterol, suggesting a direct interaction between aggregated Abeta and cholesterol.  相似文献   

10.
It has been reported that an accumulation of cholesterol within late endosomes/lysosomes in Niemann-Pick type C (NPC) fibroblasts and U18666A-treated cells causes impairment of retrograde trafficking of the cation-independent mannose 6-phosphate/IGF-II receptor (MPR300) from late endosomes to the trans-Golgi network (TGN). In apparent conflict with these results, here we show that as in normal fibroblasts, MPR300 localizes exclusively to the TGN in NPC fibroblasts as well as in normal fibroblasts treated with U18666A. This localization can explain why several lysosomal properties and functions, such as intracellular lysosomal enzyme activity and localization, the biosynthesis of cathepsin D, and protein degradation, are all normal in NPC fibroblasts. These results, therefore, suggest that the accumulation of cholesterol in late endosomes/lysosomes does not affect the retrieval of MPR300 from endosomes to the TGN. Furthermore, treatment of normal and NPC fibroblasts with chloroquine, which inhibits membrane traffic from early endosomes to the TGN, resulted in a redistribution of MPR300 to EEA1 and internalized transferrin-positive, but LAMP-2-negative, early-recycling endosomes. We propose that in normal and NPC fibroblasts, MPR300 is exclusively targeted from the TGN to early endosomes, from where it rapidly recycles back to the TGN without being delivered to late endosomes. This notion provides important insights into the definition of late endosomes, as well as the biogenesis of lysosomes.  相似文献   

11.
Background information. Within the group of lysosomal storage diseases, NPC1 [NPC (Niemann‐Pick type C) 1] disease is a lipidosis characterized by excessive accumulation of free cholesterol as well as gangliosides, glycosphingolipids and fatty acids in the late E/L (endosomal/lysosomal) system (Chen et al., 2005 ) due to a defect in late endosome lipid egress. We have previously demonstrated that expression of the small GTPase Rab9 in NPC1 cells can rescue the lipid transport block phenotype (Walter et al., 2003 ), albeit by an undefined mechanism. Results. To investigate further the mechanism by which Rab9 facilitates lipid movement from late endosomes we sought to identify novel Rab9 binding/interacting proteins. In the present study, we report that Rab9 interacts with the intermediate filament phosphoprotein vimentin and this interaction is altered by lipid accumulation in late endosomes, which results in inhibition of PKC (protein kinase C) and hypophosphorylation of vimentin, leading to late endosome dysfunction. Intermediate filament hypophosphorylation, aggregation and entrapment of Rab9 ultimately leads to transport defects and inhibition of lipid egress from late endosomes. Conclusions. These results reveal a previously unappreciated interaction between Rab proteins and intermediate filaments in regulating intracellular lipid transport.  相似文献   

12.
Niemann-Pick type C1 (NPC1) disease is an autosomal-recessive cholesterol-storage disorder characterized by liver dysfunction, hepatosplenomegaly, and progressive neurodegeneration. The NPC1 gene is expressed in every tissue of the body, with liver expressing the highest amounts of NPC1 mRNA and protein. A number of studies have now indicated that the NPC1 protein regulates the transport of cholesterol from late endosomes/lysosomes to other cellular compartments involved in maintaining intracellular cholesterol homeostasis. The present study characterizes liver disease and lipid metabolism in NPC1 mice at 35 days of age before the development of weight loss and neurological symptoms. At this age, homozygous affected (NPC1(-/-)) mice were characterized with mild hepatomegaly, an elevation of liver enzymes, and an accumulation of liver cholesterol approximately four times that measured in normal (NPC1(+/+)) mice. In contrast, heterozygous (NPC1(+/-)) mice were without hepatomegaly and an elevation of liver enzymes, but the livers had a significant accumulation of triacylglycerol. With respect to apolipoprotein and lipoprotein metabolism, the results indicated only minor alterations in NPC1(-/-) mouse serum. Finally, compared to NPC1(+/+) mouse livers, the amount and processing of SREBP-1 and -2 proteins were significantly increased in NPC1(-/-) mouse livers, suggesting a relative deficiency of cholesterol at the metabolically active pool of cholesterol located at the endoplasmic reticulum. The results from this study further support the hypothesis that an accumulation of lipoprotein-derived cholesterol within late endosomes/lysosomes, in addition to altered intracellular cholesterol homeostasis, has a key role in the biochemical and cellular pathophysiology associated with NPC1 liver disease.  相似文献   

13.
People homozygous for mutations in the Niemann-Pick type C1 (NPC1) gene have physiological defects, including excess accumulation of intracellular cholesterol and other lipids, that lead to drastic neural and liver degeneration. The NPC1 multipass transmembrane protein is resident in late endosomes and lysosomes, but its functions are unknown. We find that organelles containing functional NPC1-fluorescent protein fusions undergo dramatic movements, some in association with extending strands of endoplasmic reticulum. In NPC1 mutant cells the NPC1-bearing organelles that normally move at high speed between perinuclear regions and the periphery of the cell are largely absent. Pulse-chase experiments with dialkylindocarbocyanine low-density lipoprotein showed that NPC1 organelles function late in the endocytic pathway; NPC1 protein may aid the partitioning of endocytic and lysosomal compartments. The close connection between NPC1 and the drug U18666A, which causes NPC1-like organelle defects, was established by rescuing drug-treated cells with overproduced NPC1. U18666A inhibits outward movements of NPC1 organelles, trapping membranes and cholesterol in perinuclear organelles similar to those in NPC1 mutant cells, even when cells are grown in lipoprotein-depleted serum. We conclude that NPC1 protein promotes the creation and/or movement of particular late endosomes, which rapidly transport materials to and from the cell periphery.  相似文献   

14.
We have previously established that the ABCA1 transporter, which plays a critical role in the lipidation of extracellular apolipoprotein acceptors, traffics between late endocytic vesicles and the cell surface (Neufeld, E. B., Remaley, A. T., Demosky, S. J., Jr., Stonik, J. A., Cooney, A. M., Comly, M., Dwyer, N. K., Zhang, M., Blanchette-Mackie, J., Santamarina-Fojo, S., and Brewer, H. B., Jr. (2001) J. Biol. Chem. 276, 27584-27590). The present study provides evidence that ABCA1 in late endocytic vesicles plays a role in cellular lipid efflux. Late endocytic trafficking was defective in Tangier disease fibroblasts that lack functional ABCA1. Consistent with a late endocytic protein trafficking defect, the hydrophobic amine U18666A retained NPC1 in abnormally tubulated, cholesterol-poor, Tangier disease late endosomes, rather than cholesterol-laden lysosomes, as in wild type fibroblasts. Consistent with a lipid trafficking defect, Tangier disease late endocytic vesicles accumulated both cholesterol and sphingomyelin and were immobilized in a perinuclear localization. The excess cholesterol in Tangier disease late endocytic vesicles retained massive amounts of NPC1, which traffics lysosomal cholesterol to other cellular sites. Exogenous apoA-I abrogated the cholesterol-induced retention of NPC1 in wild type but not in Tangier disease late endosomes. Adenovirally mediated ABCA1-GFP expression in Tangier disease fibroblasts corrected the late endocytic trafficking defects and restored apoA-I-mediated cholesterol efflux. ABCA1-GFP expression in wild type fibroblasts also reduced late endosome-associated NPC1, induced a marked uptake of fluorescent apoA-I into ABCA1-GFP-containing endosomes (that shuttled between late endosomes and the cell surface), and enhanced apoA-I-mediated cholesterol efflux. The combined results of this study suggest that ABCA1 converts pools of late endocytic lipids that retain NPC1 to pools that can associate with endocytosed apoA-I, and be released from the cell as nascent high density lipoprotein.  相似文献   

15.
Cholesterol is an important precursor for numerous biologically active molecules, and it plays a major role in membrane structure and function. Cholesterol can be endogenously synthesized or exogenously taken up via the endocytic vesicle system and subsequently delivered to post-endo/lysosomal sites including the plasma membrane and the endoplasmic reticulum. Niemann–Pick C (NPC) disease results in the accumulation of exogenously-derived cholesterol, as well as other lipids, in late endosomes and lysosomes (LE/LY). Identification of the two genes that underlie NPC disease, NPC1 and NPC2, has focused attention on the mechanisms by which lipids, in particular cholesterol, are transported out of the LE/LY compartment. This review discusses the role of the NPC2 protein in cholesterol transport, and the potential for concerted action of NPC1 and NPC2 in regulating normal intracellular cholesterol homeostasis.  相似文献   

16.
17.
Cholesterol accumulation in an aberrant endosomal/lysosomal compartment is the hallmark of Niemann-Pick type C (NPC) disease. To gain insight into the etiology of the NPC compartment, we studied a novel Chinese hamster ovary cell mutant that was identified through a genetic screen and phenocopies the NPC1 mutation. We show that the M87 mutant harbors a mutation in a gene distinct from the NPC1 and HE1/NPC2 disease genes. M87 cells have increased total cellular cholesterol with accumulation in an aberrant compartment that contains LAMP-1, LAMP-2, and NPC1, but not CI-MPR, similar to the cholesterol-rich compartment in NPC mutant cells. We demonstrate that low-density lipoprotein receptor activity is increased 3-fold in the M87 mutant, and likely contributes to accumulation of excess cholesterol. In contrast to NPC1-null cells, the M87 mutant exhibits normal rates of delivery of endosomal cholesterol to the endoplasmic reticulum and to the plasma membrane. The preserved late endosomal function in the M87 mutant is associated with the presence of NPC1-containing multivesicular late endosomes and supports a role for these multivesicular late endosomes in the sorting and distribution of cholesterol. Our findings implicate cholesterol overload in the formation of an NPC-like compartment that is independent of inhibition of NPC1 or HE1/NPC2 function.  相似文献   

18.
Vance JE 《FEBS letters》2006,580(23):5518-5524
Niemann-Pick C (NPC) disease is a progressive neurological disorder in which cholesterol, gangliosides and bis-monoacylglycerol phosphate accumulate in late endosomes/lysosomes. This disease is caused by mutations in either the NPC1 or NPC2 gene. NPC1 and NPC2 are involved in egress of lipids, particularly cholesterol, from late endosomes/lysosomes but the precise functions of these proteins are not clear. An important question regarding the function of NPC proteins is: why do mutations in these ubiquitously expressed proteins have such dire consequences in the brain? This review summarizes the roles of NPC proteins in lipid homeostasis particularly in the central nervous system.  相似文献   

19.
The Niemann-Pick C1 (NPC1) protein functions to regulate the transport of cholesterol from late endosomes/lysosomes to other cellular compartments after lipoprotein uptake through the coated-pit pathway. The present study examines the relative expression of NPC1 mRNA and NPC1 protein in different tissues of the mouse in relation to the uptake of total cholesterol carried in chylomicron remnants (CMr-TC), low density lipoproteins (LDL-TC), cholesteryl ester carried in high density lipoproteins (HDL-CE), and cholesterol synthesis. Results from this study demonstrate that the highest relative expression of NPC1 is in the liver, which is also the tissue with the highest uptake of CMr-TC, LDL-TC, HDL-CE, and cholesterol synthesis. However, there was no similar relation in the remaining tissues. To examine the relative expression of NPC1 in relation to the amount of cholesterol that flowed through the coated-pit pathway, mice were fed a diet supplemented with increasing amounts of cholesterol or cholestyramine. The results from this study demonstrated that there was no relation between the relative expression of NPC1 and the amount of cholesterol that flowed through the coated-pit pathway. We conclude that the relative expression of NPC1 is not regulated by the flow of cholesterol through cells in the mouse and is therefore constitutive.  相似文献   

20.
Niemann Pick type C (NPC) disease is a progressive neurodegenerative disorder. In cells lacking functional NPC1 protein, endocytosed cholesterol accumulates in late endosomes/lysosomes. We utilized primary neuronal cultures in which cell bodies and distal axons reside in separate compartments to investigate the requirement of NPC1 protein for transport of cholesterol from cell bodies to distal axons. We have recently observed that in NPC1-deficient neurons compared with wild-type neurons, cholesterol accumulates in cell bodies but is reduced in distal axons (Karten, B., Vance, D. E., Campenot, R. B., and Vance, J. E. (2002) J. Neurochem. 83, 1154-1163). We now show that NPC1 protein is expressed in both cell bodies and distal axons. In NPC1-deficient neurons, cholesterol delivered to cell bodies from low density lipoproteins (LDLs), high density lipoproteins, or cyclodextrin complexes was transported into axons in normal amounts, whereas transport of endogenously synthesized cholesterol was impaired. Inhibition of cholesterol synthesis with pravastatin in wild-type and NPC1-deficient neurons reduced axonal growth. However, LDLs restored a normal rate of growth to wild-type but not NPC1-deficient neurons treated with pravastatin. Thus, although LDL cholesterol is transported into axons of NPC1-deficient neurons, this source of cholesterol does not sustain normal axonal growth. Over the lifespan of NPC1-deficient neurons, these defects in cholesterol transport might be responsible for the observed altered distribution of cholesterol between cell bodies and axons and, consequently, might contribute to the neurological dysfunction in NPC disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号