首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholesterol-rich and caveolin-containing microdomains of the plasma membrane, termed "caveolae," have been implicated in signal transduction. However, the role of caveolae in regulating the Ras-MAP kinase cascade is incompletely understood. The mammalian Ras isoforms (H, N, and K) use different membrane anchors to attach to the plasma membrane and thereby may localize to functionally distinct microdomains, which might explain isoform-specific signaling. Here, we show that, in Cos epithelial cells, endogenous K-Ras colocalizes largely with caveolin, whereas N-Ras localizes to both caveolar and noncaveolar subdomains; H-Ras localization was below detection limits. We find that epidermal growth factor (EGF) activates N-Ras but fails to activate K-Ras in these cells. Extraction of cholesterol with methyl-beta-cyclodextrin disrupts complex formation between caveolin and K- and N-Ras and, strikingly, enables EGF to activate both K-Ras and N-Ras. While cholesterol depletion enhances GTP-loading on total c-Ras, activation of the downstream MEK-MAP kinase cascade by EGF and lysophosphatidic acid but not that by phorbol ester is inhibited. Thus, plasma membrane cholesterol is essential for negative regulation of c-Ras isoforms (complexed to caveolin), as well as for mitogenic signaling downstream of receptor-activated c-Ras.  相似文献   

2.
The caveolin family proteins are typically associated with microdomains that are found in the plasma membrane of numerous cells. These microdomains are referred to as/called caveolae. Caveolins are small proteins (18-24 kDa) that have a hairpin loop conformation with both the N and C termini exposed to the cytoplasm. Apart from having a structural function within caveolae, these proteins have the capacity to bind cholesterol as well as a variety of proteins, such as receptors, Src-like kinases, G-proteins, H-Ras, MEK/ERK kinases and nitric oxide synthases, which are involved in signal transduction processes. Considerable data allow the assumption to be made that the majority of the interactions with signaling molecules hold them in an inactive or repressed state. The activity of caveolins seems to be dependent on its specific post-translation modifications. It is suggested that caveolins fulfill a role in the modulation of cellular signaling cascades.  相似文献   

3.
Caveolins and cellular cholesterol balance   总被引:8,自引:2,他引:6  
Caveolins are major integral membrane components of caveolae. Over the last few years, evidence has accumulated for a close link between caveolin, caveolae, and the regulation of cellular cholesterol levels. However, the exact role of caveolin in this process, the intracellular trafficking routes followed by caveolin/cholesterol complexes, and the relationship of caveolin-cholesterol to other caveolin-mediated processes such as signal transduction have remained unclear. Recent findings from a number of systems suggest that specific signaling pathways require precise regulation of cellular cholesterol. Here we review evidence for caveolin regulation of cholesterol transport and consider how this may relate to signal transduction.  相似文献   

4.
Caveolin-1 is a palmitoylated protein involved in the formation of plasma membrane subdomains termed caveolae, intracellular cholesterol transport, and assembly and regulation of signaling molecules in caveolae. Caveolin-1 interacts via a consensus binding motif with several signaling proteins, including H-Ras. Ras oncogene products function as molecular switches in several signal transduction pathways regulating cell growth and differentiation. Post-translational modifications, including palmitoylation, are critical for the membrane targeting and function of H-Ras. Subcellular localization regulates the signaling pathways engaged by H-Ras activation. We show here that H-Ras is localized at the plasma membrane in caveolin-1-expressing cells but not in caveolin-1-deficient cells. Since palmitoylation is required for trafficking of H-Ras from the endomembrane system to the plasma membrane, we tested whether the altered localization of H-Ras in caveolin-1-null cells is due to decreased H-Ras palmitoylation. Although the palmitoylation profiles of cultured embryo fibroblasts isolated from wild type and caveolin-1 gene-disrupted mice differed, suggesting that caveolin-1, or caveolae, play a role in the palmitate incorporation of a subset of palmitoylated proteins, the palmitoylation of H-Ras was not decreased in caveolin-1-null cells. We conclude that the altered localization of H-Ras in caveolin-1-deficient cells is palmitoylation-independent. This article shows two important new mechanisms by which loss of caveolin-1 expression may perturb intracellular signaling, namely the mislocalization of signaling proteins and alterations in protein palmitoylation.  相似文献   

5.
Caveolin-1 is a palmitoylated protein involved in the formation of plasma membrane subdomains termed caveolae, intracellular cholesterol transport, and assembly and regulation of signaling molecules in caveolae. Caveolin-1 interacts via a consensus binding motif with several signaling proteins, including H-Ras. Ras oncogene products function as molecular switches in several signal transduction pathways regulating cell growth and differentiation. Post-translational modifications, including palmitoylation, are critical for the membrane targeting and function of H-Ras. Subcellular localization regulates the signaling pathways engaged by H-Ras activation. We show here that H-Ras is localized at the plasma membrane in caveolin-1-expressing cells but not in caveolin-1-deficient cells. Since palmitoylation is required for trafficking of H-Ras from the endomembrane system to the plasma membrane, we tested whether the altered localization of H-Ras in caveolin-1-null cells is due to decreased H-Ras palmitoylation. Although the palmitoylation profiles of cultured embryo fibroblasts isolated from wild type and caveolin-1 gene-disrupted mice differed, suggesting that caveolin-1, or caveolae, play a role in the palmitate incorporation of a subset of palmitoylated proteins, the palmitoylation of H-Ras was not decreased in caveolin-1-null cells. We conclude that the altered localization of H-Ras in caveolin-1-deficient cells is palmitoylation-independent. This article shows two important new mechanisms by which loss of caveolin-1 expression may perturb intracellular signaling, namely the mislocalization of signaling proteins and alterations in protein palmitoylation.  相似文献   

6.
Lipid-anchored Ras GTPases form transient, spatially segregated nanoclusters on the plasma membrane that are essential for high-fidelity signal transmission. The lipid composition of Ras nanoclusters, however, has not previously been investigated. High-resolution spatial mapping shows that different Ras nanoclusters have distinct lipid compositions, indicating that Ras proteins engage in isoform-selective lipid sorting and accounting for different signal outputs from different Ras isoforms. Phosphatidylserine is a common constituent of all Ras nanoclusters but is only an obligate structural component of K-Ras nanoclusters. Segregation of K-Ras and H-Ras into spatially and compositionally distinct lipid assemblies is exquisitely sensitive to plasma membrane phosphatidylserine levels. Phosphatidylserine spatial organization is also modified by Ras nanocluster formation. In consequence, Ras nanoclusters engage in remote lipid-mediated communication, whereby activated H-Ras disrupts the assembly and operation of spatially segregated K-Ras nanoclusters. Computational modeling and experimentation reveal that complex effects of caveolin and cortical actin on Ras nanoclustering are similarly mediated through regulation of phosphatidylserine spatiotemporal dynamics. We conclude that phosphatidylserine maintains the lateral segregation of diverse lipid-based assemblies on the plasma membrane and that lateral connectivity between spatially remote lipid assemblies offers important previously unexplored opportunities for signal integration and signal processing.  相似文献   

7.
Caveolin‐1 is a scaffolding protein of cholesterol‐rich caveolae lipid rafts in the plasma membrane. In addition to regulating cholesterol transport, caveolin‐1 has the ability to bind a diverse array of cell signaling molecules and regulate cell signal transduction in caveolae. Currently, there is little known about the role of caveolin‐1 in stem cells. It has been reported that the caveolin‐1 null mouse has an expanded population of cells expressing stem cell markers in the gut, mammary gland, and brain, suggestive of a role for caveolin‐1 in stem cell regulation. The caveolin‐1 null mouse also has increased bone mass and an increased bone formation rate, and its bone marrow‐derived mesenchymal stem cells (MSCs) have enhanced osteogenic potential. However, the role of caveolin‐1 in human MSC osteogenic differentiation remains unexplored. In this study, we have characterized the expression of caveolin‐1 in human bone marrow derived MSCs. We show that caveolin‐1 protein is enriched in density gradient‐fractionated MSC plasma membrane, consisting of ~100 nm diameter membrane‐bound vesicles, and is distributed in a punctate pattern by immunofluoresence localization. Expression of caveolin‐1 increases in MSCs induced to undergo osteogenic differentiation, and siRNA‐mediated knockdown of caveolin‐1 expression enhances MSC proliferation and osteogenic differentiation. Taken together, these findings suggest that caveolin‐1 normally acts to regulate the differentiation and renewal of MSCs, and increased caveolin‐1 expression during MSC osteogenesis likely acts as a negative feedback to stabilize the cell phenotype. J. Cell. Biochem. 113: 3773–3787, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Caveolae and lipid rafts are two distinct populations of free cholesterol, sphingolipid (FC/SPH)-rich cell surface microdomains. They differ in stability, shape, and the presence or absence of caveolin (present in caveolae) or GPI-anchored proteins (enriched in lipid rafts). In primary cells, caveolae and rafts support the assembly of different signaling complexes, though signal transduction from both is strongly dependent on the presence of FC. It was initially thought that FC promoted the formation of inactive reservoirs of signaling proteins. Recent data supports the concept of a more dynamic role for FC in caveolae and probably, also lipid rafts. It is more likely that the FC content of these domains is actively modulated as protein complexes are formed and, following signal transduction, disassembled. In transformed cell lines with few caveolae, little caveolin and a preponderance of rafts, complexes normally assembled on caveolae may function in rafts, albeit with altered kinetics. However, caveolae and lipid rafts appear not to be interconvertible. The presence of non-caveolar pools of caveolin in recycling endosomes (RE), the trans-Golgi network (TGN) and in mobile chaperone complexes is now recognized. A role in the uptake of microorganisms by cells ascribed to caveolae now seems more likely to be mediated by cell surface rafts.  相似文献   

9.
Caveolae and lipid rafts are two distinct populations of free cholesterol, sphingolipid (FC/SPH)-rich cell surface microdomains. They differ in stability, shape, and the presence or absence of caveolin (present in caveolae) or GPI-anchored proteins (enriched in lipid rafts). In primary cells, caveolae and rafts support the assembly of different signaling complexes, though signal transduction from both is strongly dependent on the presence of FC. It was initially thought that FC promoted the formation of inactive reservoirs of signaling proteins. Recent data supports the concept of a more dynamic role for FC in caveolae and probably, also lipid rafts. It is more likely that the FC content of these domains is actively modulated as protein complexes are formed and, following signal transduction, disassembled. In transformed cell lines with few caveolae, little caveolin and a preponderance of rafts, complexes normally assembled on caveolae may function in rafts, albeit with altered kinetics. However, caveolae and lipid rafts appear not to be interconvertible. The presence of non-caveolar pools of caveolin in recycling endosomes (RE), the trans-Golgi network (TGN) and in mobile chaperone complexes is now recognized. A role in the uptake of microorganisms by cells ascribed to caveolae now seems more likely to be mediated by cell surface rafts.  相似文献   

10.
The mechanisms involved in angiotensin II type 1 receptor (AT1-R) trafficking and membrane localization are largely unknown. In this study, we examined the role of caveolin in these processes. Electron microscopy of plasma membrane sheets shows that the AT1-R is not concentrated in caveolae but is clustered in cholesterol-independent microdomains; upon activation, it partially redistributes to lipid rafts. Despite the lack of AT1-R in caveolae, AT1-R.caveolin complexes are readily detectable in cells co-expressing both proteins. This interaction requires an intact caveolin scaffolding domain because mutant caveolins that lack a functional caveolin scaffolding domain do not interact with AT1-R. Expression of an N-terminally truncated caveolin-3, CavDGV, that localizes to lipid bodies, or a point mutant, Cav3-P104L, that accumulates in the Golgi mislocalizes AT1-R to lipid bodies and Golgi, respectively. Mislocalization results in aberrant maturation and surface expression of AT1-R, effects that are not reversed by supplementing cells with cholesterol. Similarly mutation of aromatic residues in the caveolin-binding site abrogates AT1-R cell surface expression. In cells lacking caveolin-1 or caveolin-3, AT1-R does not traffic to the cell surface unless caveolin is ectopically expressed. This observation is recapitulated in caveolin-1 null mice that have a 55% reduction in renal AT1-R levels compared with controls. Taken together our results indicate that a direct interaction with caveolin is required to traffic the AT1-R through the exocytic pathway, but this does not result in AT1-R sequestration in caveolae. Caveolin therefore acts as a molecular chaperone rather than a plasma membrane scaffold for AT1-R.  相似文献   

11.
The urokinase plasminogen activator receptor (uPAR), a glycosylphosphatidylinositol-linked glycoprotein, plays a central role in the regulation of pericellular proteolysis and participates in events leading to cell activation. Here, we demonstrate that uPAR, on a human melanoma cell line, is localized in caveolae, flask-shaped microinvaginations of the plasma membrane found in a variety of cell types. Indirect immunofluorescence with anti-uPAR antibodies on the melanoma cells showed a punctated staining pattern that accumulated to stretches along sides of cell-cell contact and membrane ruffles. uPAR colocalized with caveolin, a characteristic protein in the coat of caveolae, as demonstrated by double staining with specific antibodies. Further, uPAR could be directly localized in caveolae by in vivo immunoelectron microscopy. Both uPAR and its ligand, uPA, were present in caveolae enriched low density Triton X-100 insoluble complexes, as shown by immunoblotting. From such complexes, caveolin could be coprecipitated with uPAR-specific antibodies suggesting a close spatial association between uPAR and caveolin that might have implications for the signal transduction mediated by uPAR. Further, functional studies indicated that the localization of uPAR and its ligand in caveolae enhances pericellular plasminogen activation, since treatment of the cells with drugs that interfere with the structural integrity of caveolae, such as nystatin, markedly reduced cell surface plasmin generation. Thus, caveolae promote efficient cell surface plasminogen activation by clustering uPAR, uPA, and possibly other protease receptors in one membrane compartment.  相似文献   

12.
《The Journal of cell biology》1994,127(5):1185-1197
Caveolae are a membrane specialization used to internalize molecules by potocytosis. Caveolin, an integral membrane protein, is associated with the striated coat present on the cytoplasmic surface of the caveolae membrane. We now report that oxidation of caveolar cholesterol with cholesterol oxidase rapidly displaces the caveolin from the plasma membrane to intracellular vesicles that colocalize with Golgi apparatus markers. After the enzyme is removed from the medium, caveolin returns to caveolae. When untreated cells are gently homogenized, caveolin on the plasma membrane is accessible to both anti-caveolin IgG and trypsin. After cholesterol oxidase treatment, however, Golgi-associated caveolin is inaccessible to both of these molecules. Brefeldin A, which inhibits ER to Golgi trafficking, blocks the appearance of caveolin in the Golgi apparatus but does not prevent caveolin from leaving the plasma membrane. Indirect immunogold localization experiments show that in the presence of cholesterol oxidase caveolin leaves the plasma membrane and becomes associated with endoplasmic reticulum and Golgi compartments. Surprisingly, the loss of caveolin from the plasma membrane does not affect the number or morphology of the caveolae.  相似文献   

13.
Caveolae are flask-shaped invaginations in the membrane that depend on the contents of cholesterol and on the structural protein caveolin. The organisation of caveolae in parallel strands between dense bands in smooth muscle is arguably unique. It is increasingly recognised, bolstered in large part by recent studies in caveolae deficient animals, that caveolae sequester and regulate a variety of signalling intermediaries. The role of caveolae in smooth muscle signal transduction, as inferred from studies on transgenic animals and in vitro approaches, is the topic of the current review. Both G-protein coupled receptors and tyrosine kinase receptors are believed to cluster in caveolae, and the exciting possibility that caveolae provide a platform for interactions between the sarcoplasmic reticulum and plasmalemmal ion channels is emerging. Moreover, messengers involved in Ca2+ sensitization of myosin phosphorylation and contraction may depend on caveolae or caveolin. Caveolae thus appear to constitute an important signalling domain that plays a role not only in regulation of smooth muscle tone, but also in proliferation, such as seen in neointima formation and atherosclerosis.  相似文献   

14.
Nerve growth factor (NGF) induces survival and differentiation of the neural crest-derived PC12 cell line. Caveolae are cholesterol-enriched, caveolin-containing plasma membrane microdomains involved in vesicular transport and signal transduction. Here we demonstrate the presence of caveolae in PC12 cells and their involvement in NGF signaling. Our results showed the expression of caveolin-1 by Western blot and confocal immuno-microscopy. The presence of plasma membrane caveolae was directly shown by rapid-freeze deep-etching electron microscopy. Moreover, combined deep-etching and immunogold techniques revealed the presence of the NGF receptor TrkA in the caveolae of PC12 cells. These data together with the cofractionation of Shc, Ras, caveolin, and TrkA in the caveolae fraction supported a role for these plasma membrane microdomains in NGF signaling. To approach this hypothesis, caveolae were disrupted by treatment of PC12 cells with cholesterol binding drugs. Either filipin or cyclodextrin treatment increased basal levels of MAPK phosphorylation. In contrast, pretreatment of PC12 cells with these drugs inhibited the NGF- but not the epidermal growth factor-induced MAPK phosphorylation without affecting the TrkA autophosphorylation. Taken together, our results demonstrate the presence of caveolae in PC12 cells, which contain the high affinity NGF receptor TrkA, and the specific involvement of these cholesterol-enriched plasma membrane microdomains in the propagation of the NGF-induced signal.  相似文献   

15.
H-, N-, and K-Ras are isoforms of Ras proteins, which undergo different lipid modifications at the C terminus. These post-translational events make possible the association of Ras proteins both with the inner plasma membrane and to the cytosolic surface of endoplasmic reticulum and Golgi complex, which is also required for the proper function of these proteins. To better characterize the intracellular distribution and sorting of Ras proteins, constructs were engineered to express the C-terminal domain of H- and K-Ras fused to variants of green fluorescent protein. Using confocal microscopy, we found in CHO-K1 cells that H-Ras, which is palmitoylated and farnesylated, localized at the recycling endosome in addition to the inner leaflet of the plasma membrane. In contrast, K-Ras, which is farnesylated and nonpalmitoylated, mainly localized at the plasma membrane. Moreover, we demonstrate that sorting signals of H- and K-Ras are contained within the C-terminal domain of these proteins and that palmitoylation on this region of H-Ras might operate as a dominant sorting signal for proper subcellular localization of this protein in CHO-K1 cells. Using selective photobleaching techniques, we demonstrate the dynamic nature of H-Ras trafficking to the recycling endosome from plasma membrane. We also provide evidence that Rab5 and Rab11 activities are required for proper delivery of H-Ras to the endocytic recycling compartment. Using a chimera containing the Ras binding domain of c-Raf-1 fused to a fluorescent protein, we found that a pool of GTP-bound H-Ras localized on membranes from Rab11-positive recycling endosome after serum stimulation. These results suggest that H-Ras present in membranes of the recycling endosome might be activating signal cascades essential for the dynamic and function of the organelle.  相似文献   

16.
Localization of the insulin receptor in caveolae of adipocyte plasma membrane.   总被引:15,自引:0,他引:15  
The insulin receptor is a transmembrane protein of the plasma membrane, where it recognizes extracellular insulin and transmits signals into the cellular signaling network. We report that insulin receptors are localized and signal in caveolae microdomains of adipocyte plasma membrane. Immunogold electron microscopy and immunofluorescence microscopy show that insulin receptors are restricted to caveolae and are colocalized with caveolin over the plasma membrane. Insulin receptor was enriched in a caveolae-enriched fraction of plasma membrane. By extraction with beta-cyclodextrin or destruction with cholesterol oxidase, cholesterol reduction attenuated insulin receptor signaling to protein phosphorylation or glucose transport. Insulin signaling was regained by spontaneous recovery or by exogenous replenishment of cholesterol. beta-Cyclodextrin treatment caused a nearly complete annihilation of caveolae invaginations as examined by electron microscopy. This suggests that the receptor is dependent on the caveolae environment for signaling. Insulin stimulation of cells prior to isolation of caveolae or insulin stimulation of the isolated caveolae fraction increased tyrosine phosphorylation of the insulin receptor in caveolae, demonstrating that insulin receptors in caveolae are functional. Our results indicate that insulin receptors are localized to caveolae in the plasma membrane of adipocytes, are signaling in caveolae, and are dependent on caveolae for signaling.  相似文献   

17.
Caveolae are plasma membrane subcompartments that have been implicated in signal transduction. In many cellular systems, caveolae are rich in signal transduction molecules such as G proteins and receptor-associated tyrosine kinases. An important structural component of the caveolae is caveolin. Recent evidence show that among the caveolin gene family, caveolin-3 is expressed in skeletal and cardiac muscle and caveolae are present in cardiac myocyte cells. Both the ANP receptor as well as the muscarinic receptor have been localized to the caveolae of cardiac myocytes in culture. These findings prompted us to conduct a further analysis of cardiac caveolae. In order to improve our understanding of the mechanisms of signal transduction regulation in cardiac myocytes, we isolated cardiac caveolae by discontinuous sucrose density gradient centrifugation from rat ventricles and rat neonatal cardiocytes. Our analysis of caveolar content demonstrates that heterotrimeric G proteins, p21ras and receptor-associated tyrosine kinases are concentrated within these structures. We also show that adrenergic stimulation induces an increase in the amount of diverse alpha- and beta-subunits of G proteins, as well as p21ras, in both in vivo and in vitro experimental settings. Our data show that cardiac caveolae are an important site of signal transduction regulation. This finding suggests a potential role for these structures in physiological and pathological states.  相似文献   

18.
Caveolae are specialised vesicular microdomains of the plasma membrane. Using freeze-fracture immunogold labelling and stereoscopic imaging, the distribution of labelled caveolin 1 in caveolae of 3T3-L1 mouse fibroblast cells was shown. Immunogold-labelled caveolin structures surrounded the basolateral region of deeply invaginated caveolae like a belt whereas in the apical region distal to the plasma membrane, the caveolin labelling was nearly absent. Shallow caveolar membranes showed a dispersed caveolin labelling. After membrane cholesterol reduction by methyl-ß-cyclodextrin treatment, a dynamic re-distribution of labelled caveolin 1 and a flattening of caveolar structures was found. The highly curved caveolar membrane got totally flat, and the initial belt-like caveolin labelling disintegrated to a ring-like structure and later to a dispersed order. Intramembrane particle-free domains were still observable after cholesterol depletion and caveolin re-distribution. These results indicate that cholesterol interacting with caveolin structures at the basolateral part of caveolae is necessary for the maintenance of the deeply invaginated caveolar membranes.  相似文献   

19.
Specific point mutations in caveolin-3, a predominantly muscle-specific member of the caveolin family, have been implicated in limb-girdle muscular dystrophy and in rippling muscle disease. We examined the effect of these mutations on caveolin-3 localization and function. Using two independent assay systems, Raf activation in fibroblasts and neurite extension in PC12 cells, we show that one of the caveolin-3 point mutants, caveolin-3-C71W, specifically inhibits signaling by activated H-Ras but not by K-Ras. To gain insights into the effect of the mutant protein on H-Ras signaling, we examined the localization of the mutant proteins in fibroblastic cells and in differentiating myotubes. Unlike the previously characterized caveolin-3-DGV mutant, the inhibitory caveolin-3-C71W mutant reached the plasma membrane and colocalized with wild type caveolins. In BHK cells, caveolin-3-C71W associated with caveolae and in differentiating muscle cells with the developing T-tubule system. In contrast, the caveolin-3-P104L mutant accumulated in the Golgi complex and had no effect on H-Ras-mediated Raf activation. Inhibition by caveolin-3-C71W was rescued by cholesterol addition, suggesting that the mutant protein perturbs cholesterol-rich raft domains. Thus, we have demonstrated that a naturally occurring caveolin-3 mutation can inhibit signaling involving cholesterol-sensitive raft domains.  相似文献   

20.
Caveolae, plasma membrane invaginations that serve as membrane organizing centers, are found in most cell types, but are enriched in adipocytes, endothelial cells, and myocytes. Three members of the caveolin family (Cav-1, -2, and -3) are essential for the formation of caveolae. Specialized motifs in the caveolin proteins function to recruit lipids and proteins to caveolae for participation in intracellular trafficking of cellular components and operation in signal transduction. Mutations in the gene encoding CAV-1 are associated with the development and progression of breast cancers, whereas mutations in the CAV-3 gene result in Rippling Muscle Disease and a form of Limb-Girdle Muscular Dystrophy. The generation of caveolin-null mice has confirmed the essential role of these proteins in caveolae biogenesis and in the pathophysiology of diverse tissues. Caveolin-null mice provide new animal models for studying the pathogenesis of a number of human diseases, including cancer, diabetes, atherosclerosis, restrictive lung disease and pulmonary fibrosis, cardiomyopathy, muscular dystrophy, and bladder dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号