首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Nuclear factor-kappa B (NF-kappa B) plays an important role in inflammation, proliferation and regulation of apoptosis. The purpose of the present study on type II cells was to investigate whether Chlamydophila pneumoniae contact induces (I) a Ca2+ release, that (II) disrupts F-actin/beta-tubulin cytoskeletal association with NF-kappa B/I kappa B alpha, leading to (III) a subsequent NF-kappa B activation. Incubation of rat type II pneumocytes with C. pneumoniae caused an intracellular calcium release within seconds. Confocal laser scanning microscopy (CLSM) revealed that bacterial contact with cell surface leads to a disappearance of the microvilli and disturbs the co-localization between F-actin and NF-kappa B (p65). Using semi-quantitative CLSM, we show that at 10-30 min I kappa B alpha was decreased and p65 or p50 was simultaneously translocated from cytoplasm to the nucleus, resulting in a 19-fold and 17-fold increase versus control cells. During this time no bacteria were internalized into type II cells. The pre-treatment of cells with BAPTA-AM inhibited C. pneumoniae-mediated calcium release. BAPTA-AM or SN50 prevented the C. pneumoniae-induced changes in F-actin cytoskeleton and inhibited NF-kappa B activation. Paclitaxel reduced C. pneumoniae-mediated changes of beta-tubulin cytoskeleton and activation of NF-kappa B. These results suggest that calcium-mediated cytoskeleton reorganization is involved in C. pneumoniae-induced NF-kappa B activation in type II cells.  相似文献   

5.
6.
7.
8.
9.
10.
The activation of nuclear factor kappa B (NF-kappa B) in intact cells is mechanistically not well understood. Therefore we investigated the modifications imposed on NF-kappa B/I kappa B components following stimulation and show that the final step of NF-kappa B induction in vivo involves phosphorylation of several members of the NF-kappa B/I kappa B protein families. In HeLa cells as well as in B cells, TNF-alpha rapidly induced nuclear translocation primarily of p50-p65, but not of c-rel. Both NF-kappa B precursors and I kappa B alpha became strongly phosphorylated with the same kinetics. In addition to the inducible phosphorylation after stimulation, B lymphocytes containing constitutive nuclear NF-kappa B revealed constitutively phosphorylated p65 and I kappa B alpha. Phosphorylation was accompanied by induced processing of the precursors p100 and p105 and by degradation of I kappa B alpha. As an in vitro model we show that phosphorylation of p105 impedes its ability to interact with NF-kappa B, as has been shown before for I kappa B alpha. Surprisingly, even p65, but not c-rel, was phosphorylated after induction in vivo, suggesting that TNF-alpha selectively activates only specific NF-kappa B heteromers and that modifications regulate not only I kappa B molecules but also NF-kappa B molecules. In fact, cellular NF-kappa B activity was phosphorylation-dependent and the DNA binding activity of p65-containing NF-kappa B was enhanced by phosphorylation in vitro. Furthermore, we found that the induction by hydrogen peroxide of NF-kappa B translocation to the nucleus, which is assumed to be triggered by reactive oxygen intermediates, also coincided with incorporation of phosphate into the same subunits that were modified after stimulation by TNF-alpha. Thus, phosphorylation appears to be a general mechanism for activation of NF-kappa B in vivo.  相似文献   

11.
Transformation of T cells by the intracellular parasite Theileria parva is accompanied by constitutive I-kappa B degradation and NF-kappa B activation, a process which is essential to prevent the spontaneous apoptosis of these parasite-transformed cells. NF-kappa B-mediated responses are regulated by selective combinations of NF-kappa B proteins as homo- or heterodimers and by distinct kappa B motifs. We characterised the NF-kappa B complexes induced by T. parva infection in TpM(803) T cells. By western blot, we demonstrated that all members of the NF-kappa B/Rel family of proteins translocate to the nucleus of infected cells. Using two different kappa B oligonucleotides (kappa B-1 and kappa B-2), both containing the decameric consensus kappa B motif (GGGACTTTCC), clearly distinct patterns of DNA binding activities could be demonstrated in electrophoretic mobility shift assays. Supershift analysis and UV cross-linking assays showed that complexes binding to kappa B-1 consisted of p50, p65 and RelB homo and/or heterodimers. We could also detect an association of ATF-2 and c-Fos with one of the complexes. The HIV-derived kappa B-2 oligo only bound p50 and p65. Additionally, several agents known to inhibit a wide range of NF-kappa B activation pathways had no inhibitory effect on the activation of NF-kappa B DNA binding in TpM(803) T cells.  相似文献   

12.
U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor 65 kDa (U2AF65) is an essential splicing factor in the recognition of the pre-mRNA 3' splice sites during the assembly of the splicing commitment complex. We report here that U2AF65 is proteolyzed during apoptosis. This cleavage is group I or III caspase dependent in a noncanonical single site localized around the aspartic acid(128) residue and leads to the separation of the N- and C-terminal parts of U2AF65. The U2AF65 N-terminal fragment mainly accumulates in the nucleus within nuclear bodies (nucleoli-like pattern) and to a much lesser extent in the cytoplasm, whereas the C-terminal fragment is found in the cytoplasm, even in localization studies on apoptosis induction. From a functional viewpoint, the N-terminal fragment promotes Fas exon 6 skipping from a reporter minigene, by acting as a dominant-negative version of U2AF65, whereas the C-terminal fragment has no significant effect. The dominant-negative behavior of the U2AF65 N-terminal fragment can be reverted by U2AF35 overexpression. Interestingly, U2AF65 proteolysis in Jurkat cells on induction of early apoptosis correlates with the down-regulation of endogenous Fas exon 6 inclusion. Thus, these results support a functional link among apoptosis induction, U2AF65 cleavage, and the regulation of Fas alternative splicing.  相似文献   

13.
14.
15.
16.
17.
Fas apoptosis inhibitory molecule (FAIM) is a protein identified as an antagonist of Fas-induced cell death. We show that FAIM overexpression fails to rescue neurons from trophic factor deprivation, but exerts a marked neurite growth-promoting action in different neuronal systems. Whereas FAIM overexpression greatly enhanced neurite outgrowth from PC12 cells and sympathetic neurons grown with nerve growth factor (NGF), reduction of endogenous FAIM levels by RNAi decreased neurite outgrowth in these cells. FAIM overexpression promoted NF-kappa B activation, and blocking this activation by using a super-repressor I kappa B alpha or by carrying out experiments using cortical neurons from mice that lack the p65 NF-kappa B subunit prevented FAIM-induced neurite outgrowth. The effect of FAIM on neurite outgrowth was also blocked by inhibition of the Ras-ERK pathway. Finally, we show that FAIM interacts with both Trk and p75 neurotrophin receptor NGF receptors in a ligand-dependent manner. These results reveal a new function of FAIM in promoting neurite outgrowth by a mechanism involving activation of the Ras-ERK pathway and NF-kappa B.  相似文献   

18.
19.
20.
Sulfur mustard has been used as a vesicant chemical warfare agent. To understand the mechanism by which mustard gas exposure causes respiratory damage, we have used 2-chloroethyl ethyl sulfide (CEES) as a mustard analog. Our initial studies have shown that guinea pigs exposed to CEES intratracheally accumulate high levels of TNF-alpha. Accumulation of TNF-alpha leads to activation of both acid and neutral sphingomyelinases, resulting in high accumulation of ceramides, a second messenger involved in cell apoptosis. In addition, NF-kappa B was activated for a short period (1-2 h after exposure) as determined by mobility shift assay. Supershift assays indicated that both p50 and p65 of NF-kappa B were activated due to CEES exposure. However, NF-kappa B rapidly disappeared after 2 h. It is possible that the initial activation of NF-kappa B was an adaptive response to protect the cells from damage since NF-kappa B is known to inhibit TNF-alpha/ceramide-induced cell apoptosis. Since NF-kappa B disappeared after 2 h, the cells continued being damaged owing to accumulation of ceramides and activation of several caspases, leading to apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号