首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In mammalian cells a complex interplay regulates the distribution of cholesterol between intracellular membrane compartments. One important aspect of cholesterol regulation is intracellular cholesterol storage in neutral lipid storage organelles called lipid droplets or lipid bodies (LBs). Recent work has thrust the LB into the limelight as a complex and dynamic cellular organelle. LBs play a crucial role in maintaining the cellular levels of cholesterol by regulating the interplay between lipid storage, hydrolysis and trafficking. Studies of caveolins, caveolar membrane proteins linked to lipid regulation, are providing new insights into the role of LBs in regulating cholesterol balance.  相似文献   

2.
Ras proteins are proto-oncogenes that are frequently mutated in human cancers. Three closely related isoforms, HRAS, KRAS and NRAS, are expressed in all cells and have overlapping but distinctive functions. Recent work has revealed how differences between the Ras isoforms in their trafficking, localization and protein-membrane orientation enable signalling specificity to be determined. We review the various strategies used to characterize compartmentalized Ras localization and signalling. Localization is an important contextual modifier of signalling networks and insights from the Ras system are of widespread relevance for researchers interested in signalling initiated from membranes.  相似文献   

3.
Annexin A6 (AnxA6) belongs to the highly conserved annexin protein family. Like other annexins, the function of AnxA6 is linked to its ability to bind phospholipids in a Ca2+-dependent manner, thereby interacting with cellular membranes in a dynamic, reversible and regulated fashion. Upon cell activation, AnxA6 is recruited to the plasma membrane, endosomes and caveolae/membrane rafts to interact with signalling proteins, the endocytic machinery and actin cytoskeleton to inhibit epidermal growth factor receptor and Ras signalling. In addition, AnxA6 associates with late endosomes to regulate cholesterol export leading to reduced cytoplasmic phospholipase A2 activity and caveolae formation. Accordingly, AnxA6 may function as an organizer of membrane domains (i) to create a scaffold for the formation of multifactorial signalling complexes, (ii) to regulate transient membrane–actin interactions during endocytic transport, and (iii) to modulate intracellular cholesterol homeostasis. Altogether, this will regulate critical physiological processes including proliferation, differentiation, inflammation and cell migration.  相似文献   

4.
Nanoclusters digitize Ras signalling   总被引:1,自引:0,他引:1  
  相似文献   

5.
Calcium is a universal intracellular signal that is responsible for controlling a plethora of cellular processes. Understanding how such a simple ion can regulate so many diverse cellular processes is a key goal of calcium- and cell-biologists. One molecule that is sensitive to changes in intracellular calcium levels is Ras. This small GTPase operates as a binary molecular switch, and regulates cell proliferation and differentiation. Here, we focus on examining the link between calcium and Ras signalling and, in particular, we speculate as to how the complexity of calcium signalling could regulate Ras activity.  相似文献   

6.
Ras signalling on the endoplasmic reticulum and the Golgi   总被引:1,自引:0,他引:1  
Current models evoke the plasma membrane (PM) as the exclusive platform from which Ras regulates signalling. We developed a fluorescent probe that reports where and when Ras is activated in living cells. We show that oncogenic H-Ras and N-Ras engage Raf-1 on the Golgi and that endogenous Ras and unpalmitoylated H-Ras are activated in response to mitogens on the Golgi and endoplasmic reticulum (ER), respectively. We also demonstrate that H-Ras that is restricted to the ER can activate the Erk pathway and transform fibroblasts, and that Ras localized on different membrane compartments differentially engages various signalling pathways. Thus, Ras signalling is not limited to the PM, but also proceeds on the endomembrane.  相似文献   

7.
We have used mouse embryonic fibroblasts (MEFs) devoid of Ras proteins to illustrate that they are essential for proliferation and migration, but not for survival, at least in these cells. These properties are unique to the Ras subfamily of proteins because ectopic expression of other Ras‐like small GTPases, even when constitutively active, could not compensate for the absence of Ras proteins. Only constitutive activation of components of the Raf/Mek/Erk pathway was sufficient to sustain normal proliferation and migration of MEFs devoid of Ras proteins. Activation of the phosphatidylinositol 3‐kinase (PI3K)/PTEN/Akt and Ral guanine exchange factor (RalGEF)/Ral pathways, either alone or in combination, failed to induce proliferation or migration of Rasless cells, although they cooperated with Raf/Mek/Erk signalling to reproduce the full response mediated by Ras signalling. In contrast to current hypotheses, Ras signalling did not induce proliferation by inducing expression of D‐type Cyclins. Rasless MEFs had normal levels of Cyclin D1/Cdk4 and Cyclin E/Cdk2. However, these complexes were inactive. Inactivation of the pocket proteins or knock down of pRb relieved MEFs from their dependence on Ras signalling to proliferate.  相似文献   

8.
《The Journal of cell biology》1994,127(5):1185-1197
Caveolae are a membrane specialization used to internalize molecules by potocytosis. Caveolin, an integral membrane protein, is associated with the striated coat present on the cytoplasmic surface of the caveolae membrane. We now report that oxidation of caveolar cholesterol with cholesterol oxidase rapidly displaces the caveolin from the plasma membrane to intracellular vesicles that colocalize with Golgi apparatus markers. After the enzyme is removed from the medium, caveolin returns to caveolae. When untreated cells are gently homogenized, caveolin on the plasma membrane is accessible to both anti-caveolin IgG and trypsin. After cholesterol oxidase treatment, however, Golgi-associated caveolin is inaccessible to both of these molecules. Brefeldin A, which inhibits ER to Golgi trafficking, blocks the appearance of caveolin in the Golgi apparatus but does not prevent caveolin from leaving the plasma membrane. Indirect immunogold localization experiments show that in the presence of cholesterol oxidase caveolin leaves the plasma membrane and becomes associated with endoplasmic reticulum and Golgi compartments. Surprisingly, the loss of caveolin from the plasma membrane does not affect the number or morphology of the caveolae.  相似文献   

9.
10.
Ras proteins function as molecular switches that are activated in response to signalling pathways initiated by various extracellular stimuli and subsequently bind to numerous effector proteins leading to the activation of several signalling cascades within the cell. Ras and Ras-related proteins belong to a large superfamily of small GTPases characterized by significant sequence and function similarities. Several evidence indicate the existence of complex signalling networks that link Ras with its relatives in the family. A key role in this cross-talk is played by guanine nucleotide exchange factors (GEFs) that serve both as regulators and as effectors of Ras family proteins. The members of the RalGDS family, RalGDS, RGL, RGL2/Rlf and RGL3, can interact with activated Ras through their Ras Binding Domain (RBD), but may function as effectors for other Ras family members. They possess a REM-CDC25 homology region like RasGEFs, but specifically activate only RalA and RalB and not Ras or other Ras-related small GTPases. In this review we provide an update on this recently discovered family of GEFs, highlighting their crucial role in coupling activated Ras to activation of Ral, thus regulating several fundamental cell processes, and also discussing some evidence supporting Ras-independent additional functions of RalGDS proteins.  相似文献   

11.
Central to chemotaxis is the molecular mechanism by which cells exhibit directed movement in shallow gradients of a chemoattractant. We used Dictyostelium mutants to investigate the minimal requirements for chemotaxis, and identified a basal signalling module providing activation of Ras at the leading edge, which is sufficient for chemotaxis. The signalling enzymes PI3K, TorC2, PLA2 and sGC are not required for Ras activation and chemotaxis to folate or to steep gradients of cAMP, but they provide a memory of direction and improved orientation of the cell, which together increase the sensitivity about 150-fold for chemotaxis in shallow cAMP gradients.  相似文献   

12.
Human Sin1 (SAPK-interacting protein 1) is a member of a conserved family of orthologous proteins that have an essential role in signal transduction in yeast and Dictyostelium. This study demonstrates that most Sin1 orthologues contain both a Raf-like Ras-binding domain (RBD) and a pleckstrin homology (PH) domain. These domains are functional in the human Sin1 protein, with the PH domain involved in lipid and membrane binding by Sin1, and the RBD able to bind activated H-and K-Ras. Sin1 and Ras co-immunoprecipitated and co-localised, showing that these proteins associate with each other in vivo. Overexpression of Sin1 inhibited the activation of ERK, Akt and JNK signalling pathways by Ras. In contrast, siRNA knockdown of endogenous Sin1 protein expression in HEK293 cells enhanced the activation of ERK1/2 by Ras. These data suggest that Sin1 is a mammalian Ras-inhibitor.  相似文献   

13.
In order to investigate a possible interaction of the small GTP-binding proteins Ras and Rac1 with Ca2+-mediated signalling cascades the effects of dominant negative mutants of Ras and Rac1 on Ca2+ signalling have been studied after stimulation of either the EGFR or the nerve growth factor receptor (TRK). Expression of dominant negative Ras blocks the release of Ca2+ from internal stores after activation of EGFR whereas the calcium signal elicited by the activated TRK receptor is unaffected. The sensitivity to dominant negative Ras is determined by the structure of the PLCγ-binding sites of the corresponding receptors. Exchange of the PLCγ-binding domain of the EGFR by the PLCγ-binding site of TRK renders the EGFR-induced calcium signal insensitive to the expression of dominant negative Ras. Substitution of the PLCγ-binding site of TRK by the PLCγ-binding region of EGFR renders TRK sensitive to dominant negative Ras. The inhibition of Ca2+ release by dominant negative Ras is accompanied by a reduction in PLCγ binding to the EGFR and a concomitant decrease of EGF-induced inositol-1,3,5-trisphosphate (InsP3) formation. The depression of PLCγ binding to EGFR is explained by a competition of PLCγ with other SH2-domain containing proteins for the same low affinity binding regions of the EGFR. This conclusion is supported by the observation that microinjection of several SH2-domain containing proteins including Ras-GP, lipase-free fragment of PLCγ or Janus kinase binding protein (JAB), reduces the association of PLCγ to the EGFR, not, however, to TRK. In contrast to dominant negative Ras which does not affect the Ca2+ transient induced by the activation of the TRK receptor, a dominant negative mutant of Rac significantly depresses the Ca2+ signals induced by EGFR as well as by TRK. The different behavior of Rac and Ras supports the notion that the two small GTP-binding proteins act through separate pathways. It is demonstrated that dominant negative Rac significantly reduces the formation of phosphatidylinositol-4,5-bisphosphate (PIP2), the substrate of PLCγ. This effect is not observed after expression of dominant negative Ras. In summary, the data provide further evidence for a cross-talk between small GTP-binding proteins and Ca2+ signalling in which both G-proteins interfere with the formation of InsP3 although by different mechanisms.  相似文献   

14.
15.
Wong ES  Fong CW  Lim J  Yusoff P  Low BC  Langdon WY  Guy GR 《The EMBO journal》2002,21(18):4796-4808
Drosophila Sprouty (dSpry) was genetically identified as a novel antagonist of fibroblast growth factor receptor (FGFR), epidermal growth factor receptor (EGFR) and Sevenless signalling, ostensibly by eliciting its response on the Ras/MAPK pathway. Four mammalian sprouty genes have been cloned, which appear to play an inhibitory role mainly in FGF- mediated lung and limb morphogenesis. Evidence is presented herein that describes the functional implications of the direct association between human Sprouty2 (hSpry2) and c-Cbl, and its impact on the cellular localization and signalling capacity of EGFR. Contrary to the consensus view that Spry2 is a general inhibitor of receptor tyrosine kinase signalling, hSpry2 was shown to abrogate EGFR ubiquitylation and endocytosis, and sustain EGF-induced ERK signalling that culminates in differentiation of PC12 cells. Correlative evidence showed the failure of hSpry2DeltaN11 and mSpry4, both deficient in c-Cbl binding, to instigate these effects. hSpry2 interacts specifically with the c-Cbl RING finger domain and displaces UbcH7 from its binding site on the E3 ligase. We conclude that hSpry2 potentiates EGFR signalling by specifically intercepting c-Cbl-mediated effects on receptor down-regulation.  相似文献   

16.
17.
Caveolin-1 is an integral membrane protein of plasma membrane caveolae. Here we report that caveolin-1 collects at the cytosolic surface of lysosomal membranes when cells are serum starved. This is due to an elevation of the intralysosomal pH, since ionophores and proton pump inhibitors that dissipate the lysosomal pH gradient also trapped caveolin-1 on late endosome/lysosomes. Accumulation is both saturable and reversible. At least a portion of the caveolin-1 goes to the plasma membrane upon reversal. Several studies suggest that caveolin-1 is involved in cholesterol transport within the cell. Strikingly, we find that blocking cholesterol export from lysosomes with progesterone or U18666A or treating cells with low concentrations of cyclodextrin also caused caveolin-1 to accumulate on late endosome/lysosomal membranes. Under these conditions, however, live-cell imaging shows cavicles actively docking with lysosomes, suggesting that these structures might be involved in delivering caveolin-1. Targeting of caveolin-1 to late endosome/lysosomes is not observed normally, and the degradation rate of caveolin-1 is not altered by any of these conditions, indicating that caveolin-1 accumulation is not a consequence of blocked degradation. We conclude that caveolin-1 normally traffics to and from the cytoplasmic surface of lysosomes during intracellular cholesterol trafficking.  相似文献   

18.
Transformation by oncogenic Ras requires the function of the Rho family GTPases. We find that Ras-transformed cells have elevated levels of RhoA-GTP, which functions to inhibit the expression of the cell cycle inhibitor p21/Waf1. These high levels of Rho-GTP are not a direct consequence of Ras signalling but are selected for in response to sustained ERK-MAP kinase signalling. While the elevated levels of Rho-GTP control the level of p21/Waf, they no longer regulate the formation of actin stress fibres in transformed cells. We show that the sustained ERK-MAP kinase signalling resulting from transformation by oncogenic Ras down-regulates ROCK1 and Rho-kinase, two Rho effectors required for actin stress fibre formation. The repression of Rho- dependent stress fibre formation by ERK-MAP kinase signalling contributes to the increased motility of Ras-transformed fibroblasts. Overexpression of the ROCK target LIM kinase restores actin stress fibres and inhibits the motility of Ras-transformed fibroblasts. We propose a model in which Ras and Rho signalling pathways cross-talk to promote signalling pathways favouring transformation.  相似文献   

19.
We have identified a novel Drosophila gene, DRacGAP, which behaves as a negative regulator of &Rgr;-family GTPases DRac1 and DCdc42. Reduced function of DRacGAP or increased expression of DRac1 in the wing imaginal disc cause similar effects on vein and sensory organ development and cell proliferation. These effects result from enhanced activity of the EGFR/Ras signalling pathway. We find that in the wing disc, DRac1 enhances EGFR/Ras-dependent activation of MAP Kinase in the prospective veins. Interestingly, DRacGAP expression is negatively regulated by the EGFR/Ras pathway in these regions. During vein formation, local DRacGAP repression would ensure maximal activity of Rac and, in turn, of Ras pathways in vein territories. Additionally, maximal expression of DRacGAP at the vein/intervein boundaries would help to refine the width of the veins. Hence, control of DRacGAP expression by the EGFR/Ras pathway is a previously undescribed feedback mechanism modulating the intensity and/or duration of its signalling during Drosophila development.  相似文献   

20.
Schwann cells are a regenerative cell type. Following nerve injury, a differentiated myelinating Schwann cell can dedifferentiate and regain the potential to proliferate. These cells then redifferentiate during the repair process. This behaviour is important for successful axonal repair, but the signalling pathways mediating the switch between the two differentiation states remain unclear. Sustained activation of the Ras/Raf/ERK cascade in primary cells results in a cell cycle arrest and has been implicated in the differentiation of certain cell types, in many cases acting to promote differentiation. We therefore investigated its effects on the differentiation state of Schwann cells. Surprisingly, we found that Ras/Raf/ERK signalling drives the dedifferentiation of Schwann cells even in the presence of normal axonal signalling. Furthermore, nerve wounding in vivo results in sustained ERK signalling in associated Schwann cells. Elevated Ras signalling is thought to be important in the development of Schwann cell-derived tumours in neurofibromatosis type 1 patients. Our results suggest that the effects of Ras signalling on the differentiation state of Schwann cells may be important in the pathogenesis of these tumours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号