首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PrPSc, an abnormal isoform of PrPC, is the only known component of the prion, an agent causing fatal neurodegenerative disorders such as bovine spongiform encephalopathy (BSE) and Creutzfeldt-Jakob disease (CJD). It has been postulated that prion diseases propagate by the conversion of detergent-soluble and protease-sensitive PrPC molecules into protease-resistant and insoluble PrPSc molecules by a mechanism in which PrPSc serves as a template. We show here that the chemical chaperone dimethyl sulfoxide (Me2SO) can partially inhibit the aggregation of either PrPSc or that of its protease-resistant core PrP27-30. Following Me2SO removal by methanol precipitation, solubilized PrP27-30 molecules aggregated into small and amorphous structures that did not resemble the rod configuration observed when scrapie brain membranes were extracted with Sarkosyl and digested with proteinase K. Interestingly, aggregates derived from Me2SO-solubilized PrP27-30 presented less than 1% of the prion infectivity obtained when the same amount of PrP27-30 in rods was inoculated into hamsters. These results suggest that the conversion of PrPC into protease-resistant and detergent-insoluble PrP molecules is not the only crucial step in prion replication. Whether an additional requirement is the aggregation of newly formed proteinase K-resistant PrP molecules into uniquely structured aggregates remains to be established.  相似文献   

2.
The central event in the pathogenesis of prion diseases, a group of fatal, transmissible neurodegenerative disorders including Creutzfeldt-Jakob disease (CJD) in humans, is the conversion of the normal or cellular prion protein (PrPC) into the abnormal or scrapie isoform (PrPSc). The basis of the PrPC to PrPSc conversion is thought to involve the diminution of alpha-helical domains accompanied by the increase of beta structures within the PrP molecule. Consequently, treatment of PrPSc with proteinase K (PK) generates a large PK-resistant C-terminal core fragment termed PrP27-30 that in human prion diseases has a gel mobility of approximately 19-21 kDa for the unglycosylated form, and a ragged N terminus between residues 78 and 103. PrP27-30 is considered the pathogenic and infectious core of PrPSc. Here we report the identification of two novel PK-resistant, but much smaller C-terminal fragments of PrP (PrP-CTF 12/13) in brains of subjects with sporadic CJD. PrP-CTF 12/13, like PrP27-30, derive from both glycosylated as well as unglycosylated forms. The unglycosylated PrPCTF 12/13 migrate at 12 and 13 kDa and have the N terminus at residues 162/167 and 154/156, respectively. Therefore, PrP-CTF12/13 are 64-76 amino acids N-terminally shorter than PrP27-30 and are about half of the size of PrP27-30. PrP-CTF12/13 are likely to originate from a subpopulation of PrPSc distinct from that which generates PrP27-30. The finding of PrP-CTF12/13 in CJD brains widens the heterogeneity of the PK-resistant PrP fragments associated with prion diseases and may provide useful insights toward the understanding of the PrPSc structure and its formation.  相似文献   

3.
Prion diseases are a group of neurodegenerative disorders associated with conversion of a normal prion protein, PrPC, into a pathogenic conformation, PrPSc. The PrPSc is thought to promote the conversion of PrPC. The structure and stability of PrPC are well characterized, whereas little is known about the structure of PrPSc, what parts of PrPC undergo conformational transition, or how mutations facilitate this transition. We use a computational knowledge-based approach to analyze the intrinsic structural propensities of the C-terminal domain of PrP and gain insights into possible mechanisms of structural conversion. We compare the properties of PrP sequences to those of a PrP paralog, Doppel, and to the distributions of structural propensities observed in known protein structures from the Protein Data Bank. We show that the prion protein contains at least two sequence fragments with highly unusual intrinsic propensities, PrP(114-125) and helix B. No segments with unusual properties were found in Doppel protein, which is topologically identical to PrP but does not undergo structural rearrangements. Known disease-promoting PrP mutations form a statistically significant cluster in the region comprising helices B and C. Due to their unusual properties, PrP(114-125) and the C terminus of helix B may be considered as primary candidates for sites involved in conformational transition from PrPC to PrPSc. The results of our study also show that most PrP mutations associated with neurodegenerative disorders increase local hydrophobicity. We suggest that the observed increase in hydrophobicity may facilitate PrP-to-PrP or/and PrP-to-cofactor interactions, and thus promote structural conversion.  相似文献   

4.
A key molecular event in prion diseases is the conversion of the prion protein (PrP) from its normal cellular form (PrPC) to the disease-specific form (PrPSc). The transition from PrPC to PrPSc involves a major conformational change, resulting in amorphous protein aggregates and fibrillar amyloid deposits with increased beta-sheet structure. Using recombinant PrP refolded into a beta-sheet-rich form (beta-PrP) we have studied the fibrillization of beta-PrP both in solution and in association with raft membranes. In low ionic strength thick dense fibrils form large networks, which coexist with amorphous aggregates. High ionic strength results in less compact fibrils, that assemble in large sheets packed with globular PrP particles, resembling diffuse aggregates found in ex vivo preparations of PrPSc. Here we report on the finding of a beta-turn-rich conformation involved in prion fibrillization that is toxic to neuronal cells in culture. This is the first account of an intermediate in prion fibril formation that is toxic to neuronal cells. We propose that this unusual beta-turn-rich form of PrP may be a precursor of PrPSc and a candidate for the neurotoxic molecule in prion pathogenesis.  相似文献   

5.
The phenotype of human prion diseases is influenced by the prion protein (PrP) genotype as determined by the methionine (M)/valine (V) polymorphism at codon 129, the scrapie PrP (PrPSc) type and the etiology. To gain further insight into the mechanisms of phenotype determination, we compared two-dimensional immunoblot profiles of detergent insoluble and proteinase K-resistant PrP species in a type of sporadic Creutzfeldt-Jakob disease (sCJDMM2), variant CJD (vCJD) and sporadic fatal insomnia (sFI). Full-length and truncated PrP forms present in the insoluble fractions were also separately analyzed. These three diseases were selected because they have the same M/M PrP genotype at codon 129 and the same type 2 PrPSc, but different etiologies, also sCJDMM2 and sFI are sporadic, whereas vCJD is acquired by infection. We observed minor differences in the PrP detergent-insoluble fractions between sCJDMM2 and vCJD, although both differ in the corresponding fractions from sFI. We detected more substantial heterogeneity between sCJDMM2 and vCJD in the two-dimensional blots of the proteinase K-resistant PrP fraction suggesting that different PrP species are selected for conversion to proteinase K-resistant PrP in sCJDMM2 and vCJD. These differences are mostly, but not exclusively, due to variations in the type of the N-linked glycans. We also show that the over-representation of the highly glycosylated forms distinctive of the proteinase K-resistant PrPSc of vCJD in one-dimensional blots is due to differences in both the amount and the natures of the glycans. Overall, these findings underline the complexity of phenotypic determination in human prion diseases.  相似文献   

6.
Prion diseases are fatal transmissible neurodegenerative diseases affecting many mammalian species. The normal prion protein (PrP) converts into a pathological aggregated form, PrPSc, which is enriched in the β-sheet structure. Although the high resolution structure of the normal PrP was determined, the structure of the converted form of PrP remains inaccessible to high resolution techniques. To map the PrP conversion process we introduced disulfide bridges into different positions within the globular domain of PrP, tethering selected secondary structure elements. The majority of tethered PrP mutants exhibited increased thermodynamic stability, nevertheless, they converted efficiently. Only the disulfides that tether subdomain B1-H1-B2 to subdomain H2-H3 prevented PrP conversion in vitro and in prion-infected cell cultures. Reduction of disulfides recovered the ability of these mutants to convert, demonstrating that the separation of subdomains is an essential step in conversion. Formation of disulfide-linked proteinase K-resistant dimers in fibrils composed of a pair of single cysteine mutants supports the model based on domain-swapped dimers as the building blocks of prion fibrils. In contrast to previously proposed structural models of PrPSc suggesting conversion of large secondary structural segments, we provide evidence for the conservation of secondary structural elements of the globular domain upon PrP conversion. Previous studies already showed that dimerization is the rate-limiting step in PrP conversion. We show that separation and swapping of subdomains of the globular domain is necessary for conversion. Therefore, we propose that the domain-swapped dimer of PrP precedes amyloid formation and represents a potential target for therapeutic intervention.  相似文献   

7.
朊病毒病,即传染性海绵状脑病(transmissible spongiform encephalopathies,TSEs),是一类致死性的神经退行性疾病,存在散发性、感染性和遗传性3种形式。在朊病毒病的病理过程中,细胞正常朊蛋白PrPc(cellular PrP)转化为异常构象的PrP^Sc(scrapie PrP)是至关重要的,但是朊病毒的增殖如何导致神经元凋亡仍不清楚。PrPc的胞内运输在朊病毒病中发挥重要作用,朊病毒感染后PrP^C转化为PrP^Sc,及遗传性朊病毒病中PrP突变可能影响PrP的生物合成、亚细胞定位及转运过程,通过干扰PrP^C的正常功能或产生毒性中间体而导致神经系统病变。现对近年来关于PrP胞内运输在朊病毒病中的作用进行综述。  相似文献   

8.
Evidence for synthesis of scrapie prion proteins in the endocytic pathway.   总被引:28,自引:0,他引:28  
Infectious scrapie prions are composed largely, if not entirely, of an abnormal isoform of the prion protein (PrP) which is designated PrPSc. A chromosomal gene encodes both the cellular prion protein (PrPC) as well as PrPSc. Pulse-chase experiments with scrapie-infected cultured cells indicate that PrPSc is formed by a post-translational process. PrP is translated in the endoplasmic reticulum, modified as it passes through the Golgi, and is transported to the cell surface. Release of nascent PrP from the cell surface by phosphatidylinositol-specific phospholipase C or hydrolysis with dispase prevented PrPSc synthesis. At 18 degrees C, the synthesis of PrPSc was inhibited under conditions that other investigators report a blockage of endosomal fusion with lysosomes. Our results suggest that PrPSc synthesis occurs after PrP transits from the cell surface. Whether all of the PrP molecules have an equal likelihood to be converted into PrPSc or only a distinct subset is eligible for conversion remains to be established. Identifying the subcellular compartment(s) of PrPSc synthesis should be of considerable importance in defining the molecular changes that distinguish PrPSc from PrPC.  相似文献   

9.
Prion diseases are rare and obligatory fatal neurodegenerative disorders caused by the accumulation of a misfolded isoform (PrPSc) of the host-encoded prion protein (PrPc). Prophylactic and therapeutic regimens against prion diseases are very limited. To extend such strategies we selected peptide aptamers binding to PrP from a combinatorial peptide library presented on the Escherichia coli thioredoxin A (trxA) protein as a scaffold. In a yeast two-hybrid screen employing full-length murine PrP (aa 23-231) as a bait we identified three peptide aptamers that reproducibly bind to PrP. Treatment of prion-infected cells with recombinantly expressed aptamers added to the culture medium abolished PrPSc conversion with an IC50 between 350 and 700 nM. For expression in eukaryotic cells, peptide aptamers were fused to an N-terminal signal peptide for entry of the secretory pathway. The C terminus was modified by a glycosyl-phosphatidyl-inositol-(GPI) anchoring signal, a KDEL retention motif and the transmembrane and cytosolic domain of LAMP-I, respectively. These peptide aptamers retained their binding properties to PrPc and, depending on peptide sequence and C-terminal modification, interfered with endogenous PrPSc conversion upon expression in prion-infected cells. Notably, infection of cell cultures could be prevented by expression of KDEL peptide aptamers. For the first time, we show that trxA-based peptide aptamers can be targeted to the secretory pathway, thereby not losing the affinity for their target protein. Beside their inhibitory effect on prion conversion, these molecules could be used as fundament for rational drug design.  相似文献   

10.
Prion infection     
《朊病毒》2013,7(2):67-72
The prion infection is a conversion of host encoded prion protein (PrP) from its cellular isoform PrPC into the pathological and infectious isoform PrPSc; the conversion process was investigated by in vitro studies using recombinant and cellular PrP and natural PrPSc. We present a brief summary of the results determined with our in vitro conversion system and the derived mechanistic models. We describe well characterized intermediates and precursor states during the conversion process, kinetic studies of spontaneous and seeded fibrillogenesis and the impact of the membrane environment.  相似文献   

11.
The cellular prion protein (PrPC) undergoes constitutive proteolytic cleavage between residues 111/112 to yield a soluble N-terminal fragment (N1) and a membrane-anchored C-terminal fragment (C1). The C1 fragment represents the major proteolytic fragment of PrPC in brain and several cell types. To explore the role of C1 in prion disease, we generated Tg(C1) transgenic mice expressing this fragment (PrP(Δ23-111)) in the presence and absence of endogenous PrP. In contrast to several other N-terminally deleted forms of PrP, the C1 fragment does not cause a spontaneous neurological disease in the absence of endogenous PrP. Tg(C1) mice inoculated with scrapie prions remain healthy and do not accumulate protease-resistant PrP, demonstrating that C1 is not a substrate for conversion to PrPSc (the disease-associated isoform). Interestingly, Tg(C1) mice co-expressing C1 along with wild-type PrP (either endogenous or encoded by a second transgene) become ill after scrapie inoculation, but with a dramatically delayed time course compared with mice lacking C1. In addition, accumulation of PrPSc was markedly slowed in these animals. Similar effects were produced by a shorter C-terminal fragment of PrP(Δ23-134). These results demonstrate that C1 acts as dominant-negative inhibitor of PrPSc formation and accumulation of neurotoxic forms of PrP. Thus, C1, a naturally occurring fragment of PrPC, might play a modulatory role during the course of prion diseases. In addition, enhancing production of C1, or exogenously administering this fragment, represents a potential therapeutic strategy for the treatment of prion diseases.  相似文献   

12.
Wang F  Yang F  Hu Y  Wang X  Wang X  Jin C  Ma J 《Biochemistry》2007,46(23):7045-7053
The conversion of prion protein (PrP) to the pathogenic PrPSc conformation is central to prion disease. Previous studies revealed that PrP interacts with lipids and the interaction induces PrP conformational changes, yet it remains unclear whether in the absence of any denaturing treatment, PrP-lipid interaction is sufficient to convert PrP to the classic proteinase K-resistant conformation. Using recombinant mouse PrP, we analyzed PrP-lipid interaction under physiological conditions and followed lipid-induced PrP conformational change with proteinase K (PK) digestion. We found that the PrP-lipid interaction was initiated by electrostatic contact and followed by hydrophobic interaction. The PrP-lipid interaction converted full-length alpha-helix-rich recombinant PrP to different forms. A significant portion of PrP gained a conformation reminiscent of PrPSc, with a PrPSc-like PK-resistant core and increased beta-sheet content. The efficiency for lipid-induced PrP conversion depended on lipid headgroup structure and/or the arrangement of lipids on the surface of vesicles. When lipid vesicles were disrupted by Triton X-100, PrP aggregation was necessary to maintain the lipid-induced PrPSc-like conformation. However, the PK resistance of lipid-induced PrPSc-like conformation does not depend on amyloid fiber formation. Our results clearly revealed that the lipid interaction can overcome the energy barrier and convert full-length alpha-helix-rich PrP to a PrPSc-like conformation under physiological conditions, supporting the relevance of lipid-induced PrP conformational change to in vivo PrP conversion.  相似文献   

13.
Binding of prion proteins to lipid membranes   总被引:5,自引:0,他引:5  
A key molecular event in prion diseases is the conversion of the normal cellular form of the prion protein (PrPC) to an aberrant form known as the scrapie isoform, PrPSc. Under normal physiological conditions PrPC is attached to the outer leaflet of the plasma membrane via a GPI-anchor. It has been proposed that a direct interaction between PrP and lipid membranes could be involved in the conversion of PrPC to its disease-associated corrupted conformation, PrPSc. Recombinant PrP can be refolded into an alpha-helical structure, designated alpha-PrP isoform, or into beta-sheet-rich states, designated beta-PrP isoform. The current study investigates the binding of recombinant PrP isoforms to model lipid membranes using surface plasmon resonance spectroscopy. The binding of alpha- and beta-PrP to negatively charged lipid membranes of POPG, zwitterionic membranes of DPPC, and model raft membranes composed of DPPC, cholesterol, and sphingomyelin is compared at pH 7 and 5, to simulate the environment at the plasma membrane and within endosomes, respectively. It is found that PrP binds strongly to lipid membranes. The strength of the association of PrP with lipid membranes depends on the protein conformation and pH, and involves both hydrophobic and electrostatic lipid-protein interactions. Competition binding measurements established that the binding of alpha-PrP to lipid membranes follows a decreasing order of affinity to POPG>DPPC>rafts.  相似文献   

14.
Prions cause transmissible and genetic neurodegenerative diseases. Infectious prion particles are composed largely, if not entirely, of an abnormal isoform of the prion protein (PrPSc), which is encoded by a chromosomal gene. Although the PrP gene is single copy, transgenic mice with both alleles of the PrP gene ablated develop normally. A post-translational process, as yet unidentified, converts the cellular prion protein (PrPC) into PrPSc. Scrapie incubation times, neuropathology and prion synthesis in transgenic mice are controlled by the PrP gene. Mutations in this gene are genetically linked to the development of neurodegeneration. Transgenic mice expressing mutant PrP spontaneously develop neurological dysfunction and spongiform neuropathology. Future investigations of prion diseases using molecular biological and genetic approaches promise to yield much new information about these once enigmatic disorders.  相似文献   

15.
The molecular hallmark of prion disease is the conversion of normal prion protein (PrPC) to an insoluble, proteinase K-resistant, pathogenic isoform (PrPSc). Once generated, PrPSc propagates by complexing with, and transferring its pathogenic conformation onto, PrPC. Defining the specific nature of this PrPSc-PrPC interaction is critical to understanding prion genesis. To begin to approach this question, we employed a prion-infected neuroblastoma cell line (ScN2a) combined with a heterologous yeast expression system to independently model PrPSc generation and propagation. We additionally applied fluorescence resonance energy transfer analysis to the latter to specifically study PrP-PrP interactions. In this report we focus on an N-terminal hydrophobic palindrome of PrP (112-AGAAAAGA-119) thought to feature intimately in prion generation via an unclear mechanism. We found that, in contrast to wild type (wt) PrP, PrP lacking the palindrome (PrPDelta112-119) neither converted to PrPSc when expressed in ScN2a cells nor generated proteinase K-resistant PrP when expressed in yeast. Furthermore, PrPDelta112-119 was a dominant-negative inhibitor of wtPrP in ScN2a cells. Both wtPrP and PrPDelta112-119 were highly insoluble when expressed in yeast and produced distinct cytosolic aggregates when expressed as fluorescent fusion proteins (PrP::YFP). Although self-aggregation was evident, fluorescence resonance energy transfer studies in live yeast co-expressing PrPSc-like protein and PrPDelta112-119 indicated altered interaction properties. These results suggest that the palindrome is required, not only for the attainment of the PrPSc conformation but also to facilitate the proper association of PrPSc with PrPC to effect prion propagation.  相似文献   

16.
Identification of cellular proteins binding to the scrapie prion protein   总被引:2,自引:0,他引:2  
The scrapie prion protein (PrPSc) is an abnormal isoform of the cellular protein PrPc. PrPSc is found only in animals with scrapie or other prion diseases. The invariable association of PrPSc with infectivity suggests that PrPSc is a component of the infectious particle. In this study, we report the identification of two proteins from hamster brain of 45 and 110 kDa (denoted PrP ligands Pli 45 and Pli 110) which were able to bind to PrP 27-30, the protease-resistant core of PrPSc on ligand blots. Pli 45 and Pli 110 also bound PrPC. Both Pli's had isoelectric points of approximately 5. The dissociation rate constant of the Pli 45/PrP 27-30 complex was 3 x 10(-6) s-1. Amino acid and protein sequence analyses were performed on purified Pli 45. Both the composition and the sequence were almost identical with those predicted for mouse glial fibrillary acidic protein (GFAP). Furthermore, antibodies to Pli 45 reacted with recombinant GFAP. The identification of proteins which interact with the PrP isoforms in normal and diseased brain may provide new insights into the function of PrPC and into the molecular mechanisms underlying prion diseases.  相似文献   

17.
Miura T  Yoda M  Takaku N  Hirose T  Takeuchi H 《Biochemistry》2007,46(41):11589-11597
The conformational conversion of prion protein (PrP) from an alpha-helix-rich normal cellular isoform (PrPC) to a beta-sheet-rich pathogenic isoform (PrPSc) is a key event in the development of prion diseases, and it takes place in caveolae, cavelike invaginations of the plasma membrane. A peptide homologous to residues 106-126 of human PrP (PrP106-126) is known to share several properties with PrPSc, e.g., the capability to form a beta-sheet and toxicity against PrPC-expressing cells. PrP106-126 is thus expected to represent a segment of PrP that is involved in the formation of PrPSc. We have examined the effect of lipid membranes containing negatively charged ganglioside, an important component of caveolae, on the secondary structure of PrP106-126 by circular dichroism. The peptide forms an alpha-helical or a beta-sheet structure on the ganglioside-containing membranes. The beta-sheet content increases with an increase of the peptide:lipid ratio, indicating that the beta-sheet formation is linked with self-association of the positively charged peptide on the negatively charged membrane surface. Analogous beta-sheet formation is also induced by membranes composed of negatively charged and neutral glycerophospholipids with high and low melting temperatures, respectively, in which lateral phase separation and clustering of negatively charged lipids occur as shown by Raman spectroscopy. Since ganglioside-containing membranes also exhibit lateral phase separation, clustered negative charges are concluded to be responsible for the beta-sheet formation of PrP106-126. In caveolae, clustered ganglioside molecules are likely to interact with the residue 106-126 region of PrPC to promote the PrPC-to-PrPSc conversion.  相似文献   

18.
Tauopathies are a family of neurodegenerative diseases in which fibrils of human hyperphosphorylated tau (P-tau) are believed to cause neuropathology. In Alzheimer disease, P-tau associates with A-beta amyloid and contributes to disease pathogenesis. In familial human prion diseases and variant CJD, P-tau often co-associates with prion protein amyloid, and might also accelerate disease progression. To test this latter possibility, here we compared progression of amyloid prion disease in vivo after scrapie infection of mice with and without expression of human tau. The mice used expressed both anchorless prion protein (PrP) and membrane-anchored PrP, that generate disease associated amyloid and non-amyloid PrP (PrPSc) after scrapie infection. Human P-tau induced by scrapie infection was only rarely associated with non-amyloid PrPSc, but abundant human P-tau was detected at extracellular, perivascular and axonal deposits associated with amyloid PrPSc. This pathology was quite similar to that seen in familial prion diseases. However, association of human and mouse P-tau with amyloid PrPSc did not diminish survival time following prion infection in these mice. By analogy, human P-tau may not affect prion disease progression in humans. Alternatively, these results might be due to other factors, including rapidity of disease, blocking effects by mouse tau, or low toxicity of human P-tau in this model.  相似文献   

19.
Selective oxidation of methionine residues in prion proteins.   总被引:5,自引:0,他引:5  
Prion proteins are central to the pathogenesis of several neurodegenerative diseases through the postulated conversion of the endogenous cellular isoform (PrPc) into a pathogenic isoform (PrPSc). Although the cellular function of normal prion protein remains unresolved a number of studies have shown that prion proteins may be involved in the cellular response to oxidative stress. Here, using purified recombinant sources of mouse and chicken PrP refolded in the presence of copper (II) we show that the methionine residues of the protein are uniquely susceptible to oxidation. We suggest that Met residues may form an essential part of the mechanism of the antioxidant activity exhibited by normal prion protein.  相似文献   

20.
In animals infected with a transmissible spongiform encephalopathy, or prion disease, conformational isomers (known as PrPSc proteins) of the wild-type, host-encoded cellular prion protein (PrPc) accumulate. The infectious agents, prions, are composed mainly of these conformational isomers, with distinct prion isolates or strains being associated with different PrPSc conformations and patterns of glycosylation. Here we show that two different human PrPSc types, seen in clinically distinct subtypes of classical Creutzfeldt-Jakob disease, can be interconverted in vitro by altering their metal-ion occupancy. The dependence of PrPSc conformation on the binding of copper and zinc represents a new mechanism for post-translational modification of PrP and for the generation of multiple prion strains, with widespread implications for both the molecular classification and the pathogenesis of prion diseases in humans and animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号