首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preprotachykinin-A gene, the common gene of mRNAs encoding both substance-P (SP) and neurokinin-A (NKA), was shown to be expressed in Sprague-Dawley rat thymus by detection of specific mRNA in gel-blot analyses. In situ hybridization revealed dispersed PPT-A-labeled cells in sections from rat thymus, with a concentration of grains over a subpopulation of cells in the thymic medulla. Also, neuropeptide-Y mRNA-expressing cells were found in the rat thymus, primarily in the thymic medulla. Rat thymic extracts contained SP-like immunoreactivity (SP-LI), and the major part of the immunoreactivity coeluted with authentic SP and SP sulfoxide standards. SP-LI was also detected in human thymus, which contained between 0.09-0.88 ng SP-LI/g wet wt. Evidence for translation of preprotachykinin-A mRNA in the rat thymus was obtained from the demonstration of NKA-LI in thymic cells with an epithelial-like cell morphology. Combined with previous observations on the immunoregulatory roles of tachykinin peptides and the existence of specific receptors on immunocompetent cells, the demonstration of intrathymic synthesis of NKA suggests a role for NKA-LI peptides in T-cell differentiation in the thymus.  相似文献   

2.
Calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) has been measured in various tissues of control rats and rats pretreated with systemic capsaicin, s.c. (50 mg/kg as newborns or as adults, 125 mg/kg as adults) and compared with the tissue level of substance P- and tachykinin-like immunoreactivities (SP-LI and TK-LI). The rank order of CGRP-LI concentration in various tissues was as follows: trigeminal ganglion greater than urinary bladder greater than ureter much greater than distal duodenum much greater than proximal duodenum much greater than skin (snout) greater than thymus = right atrium = vas deferens. A complete depletion of CGRP-LI following capsaicin treatment of both adult and newborn animals was observed in urinary bladder, ureter, atrium, vas deferens and skin. Capsaicin pretreatment of both adult and newborn rats reduced CGRP-LI in the duodenum by about 50%. CGRP-LI in trigeminal ganglion was reduced only in newborn animals, while it was not affected in the thymus. The CGRP-LI/SO-LI ratio varied in these tissues between 33.2 (urinary bladder) and 0.9 (proximal duodenum). A significant correlation was found between CGRP-LI and SP-LI or TK-LI in tissues where immunoreactivities were depleted by capsaicin, as well as in the urinary bladder of individual animals. The correlation between CGRP-LI with SP-LI and TK-LI upon treatment with capsaicin indicates that neurons containing SP and TK as well as CGRP, and neurons containing CGRP only, are affected in a similar manner by capsaicin.  相似文献   

3.
Capsaicin has been shown to evoke the release of substance P (SP) from small diameter primary afferent fibers. Using an in vivo perfusion of the rat spinal cord, this study examined the pharmacology of opioid receptor systems which modulate the capsaicin-evoked release of SP. The addition of capsaicin (200 μM) to the perfusate raised SP-like immunoreactivity (SP-LI) from resting levels of 31±5 to 74±14 pg/ml or an increase of 139% above the baseline. Using high pressure liquid chromatography (HPLC) the identity of the released SP-LI was determined to coelute primarily with authentic SP or the oxidized form of SP. Opioid receptor agonists were added to the perfusate and their ability to inhibit capsaicin-evoked release of SP-LI was assessed. Morphine (10–100 μM), DAGO (1–100 μM), DPLPE (10–100 μM), but not U50488H (100 μM) produced a dose-dependent reduction in the capsaicin-evoked release of SP-LI. Pretreatment with the opioid receptor antagonist naloxone (1 mg/kg, IP) had no effect on the basal or capsaicin-evoked release of SP-LI. Naloxone pretreatment was able to antagonize completely the opioid-produced inhibition of capsaicin-evoked SP-LI release. These data indicate that the release of SP from primary afferent fibers can be modulated by the activation of mu or delta but not kappa opioid receptors. Further, these data support the hypothesis that spinally administered mu and delta opioid agonists may produce their antinociceptive effect through the presynaptic inhibition of neuropeptide release from small diameter primary afferent fibers.  相似文献   

4.
5.
The aim of the present study was to establish an experimental model, previously used in cat, for studying tachykinin release from the rat spinal cord in vivo and to compare the results with those obtained in vitro. Stimulation with pulses of 40 mM potassium or 10 microM capsaicin in the spinal cord superfusion fluid increased the release of substance P (SP)- and neurokinin A (NKA)-like immunoreactivity (LI) both in vivo and in vitro. The amounts of SP-LI and NKA-LI released by potassium in vitro were 1.02 +/- 0.12 and 1.17 +/- 0.22 fmol/mg tissue, respectively. Also the ratio between the amounts released by two consecutive potassium stimulations were similar for SP-LI and NKA-LI. Reversed-phase high performance liquid chromatography of the NKA-LI released in vitro by potassium or capsaicin revealed a major immunoreactive component coeluting with synthetic NKA. Despite the use of highly sensitive radioimmunoassays, basal release of SP-LI and NKA-LI was found only in 9 of 31 in vivo experiments. In these, peripheral electrical stimulation of the sciatic nerves (50 Hz, 50 V and 0.05 ms or 10 Hz, 10 V and 5 ms) induced an increase of the SP-LI and NKA-LI levels in the superfusates. This increase persisted for more than 40 min after a 2 min stimulation. In most experiments, however, no SP-LI or NKA-LI could be detected in the superfusates, neither at basal conditions nor following electrical nerve stimulation. Similarly, no release of SP-LI could be detected in response to various noxious mechanical, thermal or chemical stimuli applied to the skin. The present results demonstrate that the superfused rat spinal cord may be used to study in vivo release of tachykinins in response to intense chemical stimulation of the entire spinal cord. However, the method seems to be less suitable for studies of tachykinin release in response to electrical activation engaging only a few spinal segments or in response to natural noxious stimuli. The results obtained in vitro suggest that SP and NKA are released in equimolar amounts from the spinal cord upon stimulation with potassium.  相似文献   

6.
The presence of substance P (SP) in the immature rat ovary was determined by radioimmunoassay (RIA) of acidic extracts. The extracts produced an inhibition-displacement curve of 125I-SP binding parallel to that generated by authentic SP in the SP RIA. Initial chromatographic characterization of ovarian SP in Sephadex G-25 revealed the presence of a molecular form that coeluted with authentic SP and a more abundant component that eluted earlier, suggesting the presence of a heavier peptide, immunologically similar to SP. Nevertheless, further characterization of these two seemingly different components by reversed-phase high-performance liquid chromatography (HPLC) demonstrated that both of them had a retention time similar to that of authentic SP. The ovarian concentration of SP-like immunoreactivity (SP-LI) varied in relation to the onset of puberty, with values increasing significantly between the late juvenile phase and the day of first proestrus. Substance P seems to be devoid of steroidogenic capacity since SP itself and its stable analog [pGlu5,MePhe8,Sar9]-SP5-11 (SP-A) failed to stimulate steroid secretion from either granulosa cells in culture or ovarian fragments in short-term incubation. Substance P also failed to stimulate prostaglandin E2 release from whole ovaries and to modify the steroidal response of cultured granulosa cells to follicle-stimulating hormone and to the beta 2-adrenergic agonist Zinterol. Production of SP-LI from granulosa cells in culture could not be detected under either basal or gonadotropin-stimulated conditions. These observations and the distribution of the peptide within the ovary presented in the companion paper (Dees et al., this issue) strongly suggest that SP is not directly involved in regulating steroidogenesis. Instead, SP may be a component of the so-called sensory innervation of the ovary, and among other undisclosed functions it may contribute to the regulation of ovarian blood flow.  相似文献   

7.
The adrenergic nerve fibers (ANF), the neuropeptide Y-like immunoreactive nerve fibers (NPY-NF) and the noradrenaline (NA) amount were studied in the human thymus in subjects previously treated or not treated with interferon therapy with the aim to identify the changes due to the interferon therapy. This therapy has been used in patients affected by multiple sclerosis (MS). Biochemical and morphological methods were used associated with quantitative analysis of images. The whole thymuses were removed during autopsies in young and adult patients not treated with interferon. Moreover, samples of thymus were removed from patients, either young or adult who had previously been treated with interferon therapy, and subjected, for diagnostic reasons, to thymic biopsy. All samples of thymus were weighed, measured and dissected. Thymic slices were stained with Eosin-orange for detection of the microanatomical details, or with Bodian's reaction for recognition of nervous structures. Histofluorescence microscopy was used for detection of ANF, and immunofluorescence microscopy for recognition of NPY-like immunoreactive structures. All morphological results were subjected to quantitative analysis of images. Noradrenaline contained in thymic structures was measured by biochemical methods. Our results only concerned the effects of the therapy and suggested that treatment with interferon therapy induces many changes in the thymic structures: (1) The protein content of thymus is significantly increased; (2) the NA content in the thymus is also significantly increased; (3) NPY-like immunoreactive structures in the thymus are significantly increased; (4) occurrence of NPY-like immunoreactivity is particularly and significantly increased both in thymic microenvironment and in structures resembling nerve fibers; (5) ANF are significantly increased in the same thymic structures in which NPY-like immunoreactivity is also increased (i.e. thymic microenvironment and structures resembling nerve fibers). The morphological and biochemical changes observed can also explain the immunological changes induced in the thymus after immunostimulating therapy.  相似文献   

8.
The release of different forms of substance P-like immunoreactivity (SP-LI) from superfused slices of rat spinal cord was studied. The released SP-LI was characterized by reverse-phase high-performance liquid chromatography and radioimmunoassay with two antisera directed to the C- and N-terminal parts of SP, respectively. The SP-LI detected in the superfusates with the C-terminally directed antiserum was found to consist of (undeca) SP, SP-sulfoxide and a late eluting component which was not detectable with the N-terminally directed antiserum. This component was also found in neutral extracts of the spinal cord. Upon trypsin digestion, it produced SP-LI detectable with both C- and N-terminally directed antiserum which also coeluted with SP. From these results we conclude that this form of SP-LI most likely corresponds to an N-terminally extended form of SP. An increase of the potassium concentration in the superfusion fluid from 5 to 50 mM evoked an increased overflow of both SP and the N-terminally extended SP. The present results indicate that N-terminally extended SP is released by a calcium-dependent mechanism together with SP from terminals in the spinal cord in response to potassium stimulation.  相似文献   

9.
We examined whether capsaicin-sensitive sensory neurons might be involved in the increase in the gastric tissue level of prostaglandins, thereby contributing to the reduction of water immersion restraint stress (WIR)-induced gastric mucosal injury in rats. Gastric tissue levels of calcitonin gene-related peptide (CGRP), 6-keto-PGF1alpha, and PGE2 were transiently increased 30 min after WIR. These increases were significantly inhibited by subcutaneous injection of capsazepine (CPZ), a vanilloid receptor antagonist, and by functional denervation of capsaicin-sensitive sensory neurons induced by the administration of high-dose capsaicin. The administration of capsaicin (orally) and CGRP (intravenously) significantly enhanced the WIR-induced increases in the gastric tissue level of prostaglandins 30 min after WIR, whereas CGRP-(8-37), a CGRP receptor antagonist, significantly inhibited them. Pretreatment with Nomega-nitro-L-arginine methyl ester (L-NAME), a nonselective inhibitor of nitric oxide (NO) synthase (NOS), and that with indomethacin inhibited the WIR-induced increases in gastric tissue levels of prostaglandins, whereas either pretreatment with aminoguanidine (AG), a selective inhibitor of the inducible form of NOS, or that with NS-398, a selective inhibitor of cyclooxygenase (COX)-2, did not affect them. CPZ, the functional denervation of capsaicin-sensitive sensory neurons, and CGRP-(8-37) significantly increased gastric MPO activity and exacerbated the WIR-induced gastric mucosal injury in rats subjected to 4-h WIR. The administration of capsaicin and CGRP significantly increased the gastric tissue levels of prostaglandins and inhibited both the WIR-induced increases in gastric MPO activity and gastric mucosal injury 8 h after WIR. These effects induced by capsaicin and CGRP were inhibited by pretreatment with L-NAME and indomethacin but not by pretreatment with AG and NS-398. These observations strongly suggest that capsaicin-sensitive sensory neurons might release CGRP, thereby increasing the gastric tissue levels of PGI2 and PGE2 by activating COX-1 through activation of the constitutive form of NOS in rats subjected to WIR. Such activation of capsaicin-sensitive sensory neurons might contribute to the reduction of WIR-induced gastric mucosal injury mainly by inhibiting neutrophil activation.  相似文献   

10.
A reversed-phase HPLC system was used to concentrate and separate components of substance P-like immunoreactivity (SP-LI) from human CSF. When CSF was injected and fractions collected, no SP-LI could be detected by radioimmunoassay (RIA) at the retention time of SP or SP-sulfoxide. Instead, SP-LI was detected in later eluting fractions. This SP-LI reacted with two different antisera raised against the C-terminal part of SP, but not with an antiserum against the N-terminal part. A compound with similar properties was also found to be present in neutral extracts of rat dorsal spinal cord. When the late-eluting compound from human CSF was treated with trypsin and rechromatographed on HPLC, an immunoreactive component eluting at the position of SP could be detected with both the C- and N-terminally directed SP antisera. These results suggest that an N-terminally extended form of SP is present in human CSF. Trypsinization also gave two other compounds with affinity for the N- but not the C-terminally directed antisera. This may indicate that N-terminal fragments of SP extended at the N-terminus or SP molecules extended at both the N- and the C-terminus (i.e., preprotachykinins) also are present in human CSF. In 32 CSF samples from depressed patients, SP-LI was determined with a C-terminally directed antiserum with and without prior HPLC separation. SP itself could not be detected, but the late-eluting form of SP-LI could be quantitated in all samples by combined HPLC-RIA. In most samples, there was a relatively good agreement between the SP-LI levels measured with and without HPLC.  相似文献   

11.
The aim of the study was to investigate the presence and distribution of PE-11, a peptide derived from chromogranin B, in the rat eye. For this purpose, newborn rats were injected with a single dosage of 50 mg/kg capsaicin subcutaneously under the neck fold and after three months, particular eye tissues were dissected and the concentration of PE-11-like immunoreactivity was determined by radioimmunoassay. Furthermore, PE-11-like immunoreactivities were characterized in an extract of the rat eye by reversed phase HPLC. Then, the distribution pattern of PE-11 was investigated in the rat eye and rat trigeminal ganglion by immunofluorescence. As a result, PE-11 was present in each tissue of the rat eye and capsaicin pretreatment led to a 88.05% (±7.07) and a 64.26% (±14.17) decrease of the levels of PE-11 in the cornea and choroid/sclera, respectively, and to a complete loss in the iris/ciliary body complex. Approximately 70% of immunoreactivities detected by the PE-11 antiserum have been found to represent authentic PE-11. Sparse nerve fibers were visualized in the corneal and uveal stroma, surrounding blood vessels at the limbus, ciliary body and choroid and in association with the dilator and sphincter muscle. Furthermore, immunoreactivity was present in the corneal endothelium. In the retina and optic nerve, glia was labeled. In the rat trigeminal ganglion, PE-11-immunoreactivity was visualized in small and medium sized ganglion cells with a diameter of up to 30 μm. In conclusion, there is unequivocal evidence that PE-11 is a constituent of capsaicin-sensitive sensory neurons innervating the rat eye and the distribution pattern is typically peptidergic in the peripheral innervation but in the retina completely atypical for neuropeptides and unique.  相似文献   

12.
Substance P (SP) infused into the third cerebral ventricle blocks spontaneous ovulation in female rats, probably through catecholaminergic neurons. The studies presented in this paper were undertaken to investigate whether SP exerts its suppressing effect on ovulation in 6-hydroxydopamine (6-OHDA) pretreated female rats. After 8-12 days following 6-OHDA pretreatment female rats were infused, on the day of proestrus, with vehicle and all animals were found to ovulate or with a solution containing 5 nmol of SP and 89% of female rats were then found to ovulate. In the group pretreated with vehicle and subsequently infused with SP, ovulation was found to occur only in 25% of animals. The obtained results indicate that spontaneous ovulation in 6-OHDA-pretreated female rats cannot be blocked by i.c.v. administration of SP, and it may be concluded that SP exerts its suppressing effect through the monoaminergic neurons.  相似文献   

13.
6-Hydroxydopamine (6-OHDA) pretreatment of rats in the first 4 days of life considerably enhances the low hepatic ethylmorphine N-demethylation rate in 9 and 16 day old rats, whereas the higher rates in adult rats are not influenced. After 6-OHDA treatment the age differences in ethylmorphine N-demethylation rate disappear. The induction of ethylmorphine N-demethylation by phenobarbital is markedly enhanced by neonatal 6-OHDA pretreatment in 16 to 60 day old rats, whereas in 9 day old rats this synergistic action is not detectable. Unlike ethylmorphine N-demethylation, hepatic 7-ethoxy-coumarin 0-deethylation rate is only slightly or not at all influenced by 6-OHDA pretreatment. The basic activities in 9 day and rats are enhanced, the induction by phenobarbital in the same age-group is decreased. In other age-groups neither basic activities nor inducibility are influenced by 6-OHDA pretreatment. Hepatic cytochrome P-450 concentrations in 33- and 60 day old control rats do not differ from those in 6-OHDA-pretreated animals. Phenobarbital treatment increases the P-450 content; this induction effect is enhanced after 6-OHDA pretreatment, but not as markedly as with ethylmorphine N-demethylation.  相似文献   

14.
Biochemical mapping of five different peptide-like materials--calcitonin gene-related peptide (CGRP), substance P (SP), Met5-enkephalin (ME), cholecystokinin (CCK), and dynorphin A (1-8) (DYN)--was conducted in the dorsal and ventral zones of the spinal cord at the cervical, thoracic, and lumbar levels in 3-month-old rats 10 days after unilateral dorsal rhizotomy at the cervical level (C4-T2) or after neonatal administration of capsaicin (50 mg/kg s.c.). In control rats, all peptide-like materials were more abundant in the dorsal than in the ventral zone all along the spinal cord. However, in both zones, absolute concentrations of CGRP, SP, ME, and CCK were significantly higher at the lumbar than at the cervical level. Rhizotomy-induced CGRP depletion (-85%) within the ipsilateral dorsal zone of the cervical cord was more pronounced than that due to neonatal capsaicin (-60%), a finding suggesting that this peptide is contained in both capsaicin-sensitive (mostly unmyelinated) and -insensitive (myelinated) primary afferent fibers. In contrast, similar depletions of SP (-50%) were observed after dorsal rhizotomy and neonatal capsaicin treatment, as expected from the presence of SP only in the capsaicin-sensitive small-diameter primary afferent fibers. Although the other three peptides remained unaffected all along the cord by either intervention, evidence for the existence of capsaicin-insensitive CCKergic primary afferent fibers could be inferred from the increased accumulation of CCK (together with SP and CGRP) in dorsal root ganglia ipsilateral to dorsal root sections.  相似文献   

15.
The effect of interleukin 1beta on the thymus of control and chemically sympathectomized adult and aged rats was studied with the aim of assessing the importance of adrenergic nerve fibres (ANF) in the regulation of some immunological functions.The whole thymus was removed from normal, sympathectomized (with the neurotoxin 6-OH-dopamine) and treated (interleukin 1beta) rats. Thymic slices were stained with eosin orange (for the recognition of microanatomical details of the thymic microenvironment) and with Bodian's method for staining of nerve fibres. Histofluorescence microscopy was employed for staining ANF and immunofluorescence was used for detecting NPY-like immunoreactivity. All images were submitted to quantitative morphometrical analysis and statistical analysis of data. Moreover, the amount of proteins and noradrenaline was measured on thymic homogenates. The results indicate that in normal conditions the formation of the thymic nerve plexi in the rat is complex: the majority of ANF are destroyed after chemical sympathectomy with 6-OH-dopamine and do not change after treatment with interleukin 1beta; on the contrary, treatment with interleukin 1beta induces substantial changes in the fresh weight of the thymus, the thymic microenvironment, thymic nerve fibers, ANF, NPY-like positive nerve fibres, and on the total amount of proteins and noradrenaline in rat thymic tissue homogenates.Immunostimulation with interleukin 1beta induces substantial changes in the whole thymus, in its microenvironment and in ANF and NPY-like nerve fibres. After chemical sympathectomy, no significant immune response was evoked by interleukin 1beta, since the majority of ANF was destroyed by chemical sympathectomy.  相似文献   

16.
The occurrence and distribution of calcitonin gene-related peptide (CGRP) in the lower airways was studied by means of immunohistochemistry and radioimmunoassay (RIA) in combination with high performance liquid chromatography (HPLC). CGRP-like immunoreactivity (-LI) was observed in nerves from the epiglottis down to peripheral bronchi in rat, cat and guinea pig and also in human bronchi. Double staining revealed colocalization of CGRP-LI and substance P (SP)-LI in cell bodies of nodose and jugular ganglia as well as in axons and nerve terminals of the airways. Systemic capsaicin pretreatment induced a marked loss of the CGRP- and SP-immunoreactive (-IR) nerves in the lower airways. CGRP-IR was also present in epithelial endocrine cells and neuroepithelial bodies. The content of CGRP-LI as measured with RIA in guinea pig bronchi was significantly lower after capsaicin pretreatment. Analysis of human bronchial extracts revealed that CGRP-LI coeluted with synthetic human CGRP on HPLC. In the isolated perfused guinea pig lung capsaicin exposure caused overflow of CGRP-LI suggesting release from peripheral branches of sensory nerves. Both in vivo experiments in the guinea pig measuring insufflation pressure as well as in vitro studies on isolated guinea pig and human bronchi showed that whereas tachykinins contracted bronchial smooth muscle no contractile or relaxing effect was elicited by human or rat CGRP. However, CGRP caused relaxation of serotonin precontracted guinea pig and human pulmonary arteries. In conclusion, the presence and release of CGRP-LI from capsaicin sensitive nerves in the lower airways adds another possible mediator, in addition to tachykinins, of vascular reactions upon sensory nerve irritation.  相似文献   

17.
X Y Hua  T L Yaksh 《Peptides》1992,13(1):113-120
The release of calcitonin gene-related peptide (CGRP), neurokinin A (NKA) and substance P (SP) from intralumenally perfused rat trachea was examined in vitro. In accord with the relative tissue levels of the respective peptides, capsaicin (10(-8) to 10(-5) M) and K+ (120 mM) added to the perfusate resulted in a concentration-dependent increase in the levels of CGRP and NKA, and to a minor extent SP, in the perfusates. Sequential exposure of the trachea to capsaicin revealed a concentration-dependent tachyphylaxis of CGRP release. Thus, 40 min after the application with capsaicin 10(-5) M, a second exposure to capsaicin at the same concentration, or K+ 120 mM, did not evoke CGRP release. In contrast, prior stimulation with K+ 120 mM significantly enhanced the CGRP release induced by a second stimulation with K+ 120 mM or capsaicin 10(-5) M. Capsaicin- and K(+)-induced peptide release was diminished or abolished in the absence of Ca2+. HPLC analysis of CGRP in release materials revealed that there was a single peak which eluted in the same fraction as synthetic rat CGRP. These data demonstrate that CGRP, NKA and SP exist in releasable, capsaicin-sensitive pools in terminals which lie within the proximal lumen of the trachea.  相似文献   

18.
Jung YS  Cho TS  Moon CH  Lee B  Lee SM  Shin HS 《Life sciences》1999,64(14):PL173-PL177
In this study, we investigated whether the systemically administered capsazepine can prevent the capsaicin-induced desensitization ex vivo in guinea-pig bronchi. Pretreatment with capsaicin (2.5, 5 and 10 mg/kg, s.c.) induced the functional desensitization and the loss of substance P-like immunoreactivity (SP-LI) with a similar potency (ED50: 3.31 +/- 0.57 and 4.81 +/- 0.89 mg/kg, respectively) in isolated guinea-pig bronchi. Capsazepine (30 mg/kg, s.c.) co-administered with capsaicin (5 mg/kg, s.c.) prevented the capsaicin (5 mg/kg, s.c.)-induced functional desensitization and loss of SP-LI. These results suggest that capsazepine can antagonize systemically the desensitizing action of capsaicin at the level of receptor, preventing the loss of SP-LI and the establishment of functional desensitization in guinea-pig bronchi.  相似文献   

19.
The occurrence of tachykinins in sensory neurons of the guinea-pig was studied by means of radioimmunoassay combined with ion-exchange and high-performance liquid chromatography as well as by immunohistochemistry. Antisera raised against kassinin (antiserum K12), neurokinin A (NKA) (antiserum NKA2) and substance P (SP) (antisera SP25 and SP2) were used. Antiserum K12 detected NKA, neuropeptide K (NPK) and a component eluting in the position of eledoisin (ELE) in extracts of the lung and ureter. Neurokinin B (NKB) was, however, not found. Neutral water extraction favored recovery of NKA and of the ELE-like component, while NPK was found only in acid extracts. The SP antisera detected two immunoreactive components of which the major form coeluted with synthetic SP. Capsaicin pretreatment depleted all these various forms of immunoreactivity in several peripheral organs including the ureter and lung. The immunoreactivity detected by antisera K12 or SP25 in radioimmunoassay had a similar regional distribution pattern in peripheral tissues. Immunohistochemical examination revealed that antiserum NKA2 stained the same spinal ganglion cells as the SP2 antiserum. The distribution of capsaicin-sensitive nerve fibers stained by these two antisera was also identical in peripheral organs such as the ureter, inferior mesenteric ganglion, heart and lung. It is concluded that multiple tachykinins, including SP, NKA, NPK and an ELE-like peptide, are present in capsaicin-sensitive sensory nerves in the guinea-pig. This finding can most likely be related to the origin of SP, NKA and NPK from the same precursor molecule, subsequent posttranslational tissue processing and axonal transport to terminal regions.  相似文献   

20.
The possible trophic influence of the capsaicin-sensitive extrinsic innervation of the gastrointestinal mucosa was investigated. Rats were treated neonatally with capsaicin. The gastrointestinal content of serotonin and glucagon-like immunoreactivity were used as a measure of the effect on the endocrine gut mucosa and gastrointestinal aminopeptidase and alkaline phosphatase activities were used as a measure of the effect on the gut brush-border. The gastrointestinal content of the neuropeptides substance P, VIP and CGRP were used to monitor effects on the innervation of the gut. The depletion of substance P-immunoreactivity(-IR) and calcitonin gene-related peptide(CGRP)-IR in extracts of urinary bladder and lung from the capsaicin-treated rats is evidence of the efficacy of capsaicin treatment in affecting a loss of C-fibre sensory nerves. The significant depletion of CGRP-IR measured in the stomach and duodenum of capsaicin-treated rats indicated the loss of the C-fibre sensory innervation to the gastrointestinal tract. The gastrointestinal content of VIP and substance P, which are predominantly within intrinsic gut neurones, were unaffected by capsaicin treatment. In all regions of the gastrointestinal tract of capsaicin-treated rats, the serotonin and glucagon-IR levels were not significantly different from those in controls. Similarly the levels of activity of the brush-border enzymes were not significantly effected by capsaicin treatment. This suggest the absence of any major trophic influence of capsaicin-sensitive sensory nerves on the gut endocrine mucosa and the brush border.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号