首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Escherichia coli chromosome is condensed into an ill-defined structure known as the nucleoid. Nucleoid-associated DNA-binding proteins are involved in maintaining this structure and in mediating chromosome compaction. We have exploited chromatin immunoprecipitation and high-density microarrays to study the binding of three such proteins, FIS, H-NS and IHF, across the E.coli genome in vivo. Our results show that the distribution of these proteins is biased to intergenic parts of the genome, and that the binding profiles overlap. Hence some targets are associated with combinations of bound FIS, H-NS and IHF. In addition, many regions associated with FIS and H-NS are also associated with RNA polymerase.  相似文献   

2.
3.
4.
Binding sites for the Escherichia coli protein integration host factor (IHF) include a set of conserved bases that can be summarized by the consensus sequence WATCAANNNNTTR (W is dA or dT, R is dA or dG, and N is any nucleotide). However, additional 5'-proximal bases, whose common feature is a high dA+dT content, are also thought to be required for binding at some sites. We examine the relative contribution of these two sequence elements to IHF binding to the H' and H1 sites in attP of bacteriophage lambda by using the bacteriophage P22-based challenge-phage system. IHF was unable to act as a repressor in the challenge-phage assay at H' sites containing the core consensus element but lacking the dA+dT-rich element. This indicates that both elements are required for IHF to bind to the H' site. In contrast, the core consensus determinant alone is sufficient for IHF binding to the H1 site, which lacks an upstream dA+dT-rich region. Fifty mutants that decreased or eliminated IHF binding to the H1 site were isolated. Sequence analysis showed changes in the bases in the core consensus element only, further indicating that this determinant is sufficient for IHF binding to the H1 site. We found that placement of a dA+dT-rich element upstream of the H1 core consensus element significantly increased the affinity, suggesting that the presence of a dA+dT-rich element enhances IHF binding.  相似文献   

5.
6.
Summary We have shown that the plasmid pSC101 is unable to be maintained in strains of E. coli carrying deletions in the genes himA and hip which specify the pleitropic heterodimeric DNA binding protein, IHF. We show that this effect is not due to a modulation of the expression of the pSC101 RepA protein, required for replication of the plasmid. Inspection of the DNA sequence of the essential replication region of pSC101 reveals the presence of a site, located between the DnaA binding-site and that of RepA, which shows extensive homology with the consensus IHF binding site. The proximity of the sites suggests that these three proteins, IHF, DnaA, and RepA may interact in generating a specific DNA structure required for initiation of pSC101 replication.  相似文献   

7.
DNA binding proteins that induce structural changes in DNA are common in both prokaryotes and eukaryotes. Integration host factor (IHF) is a multi-functional DNA binding and bending protein of Escherichia coli that can mediate protein-protein and protein-DNA interactions by bending DNA. Previously we have shown that the presence of a dA+dT element 5'-proximal to an IHF consensus sequence can affect the binding of IHF to a particular site. In this study the contribution of various sequence elements to the formation of IHF-DNA complexes was examined. We show that IHF bends DNA more when it binds to a site containing a dA+dT element upstream of its core consensus element than to a site lacking a dA+dT element. We demonstrate that IHF can be specifically crosslinked to DNA with binding sites either containing or lacking this dA+dT element. These results indicate the importance of flanking DNA and a dA+dT element in the binding and bending of a site by IHF.  相似文献   

8.
9.
The phage lambda attachment site, attP, contains three binding sites for an Escherichia coli protein, IHF, that is needed for efficient integrative recombination. We have used synthetic oligodeoxyribonucleotides to direct multiple base changes at each of these three sites. Alteration by two base-pairs of the consensus sequence for the leftmost binding site specifically interferes with IHF binding to that site and modestly depresses recombination in vitro. For each of the three binding sites, alteration of the consensus sequence by four base-pairs strongly depresses recombination in vitro, indicating that all three sites are important for attP function. The mutated attP sites are also depressed for recombination in vivo but some of the mutants are less affected than they are in vitro. The disparity between effects in vivo and in vitro for some mutants but not others suggests that the three binding sites are not functionally equivalent and that at some sites additional E. coli factors may replace or assist IHF. The non-equivalence of the three IHF sites is also indicated by the behavior of prophage attachment sites carrying mutations in the binding sites.  相似文献   

10.
11.
12.
Regulation of the xyl gene operons of the Pseudomonas putida TOL plasmid is mediated by the products of the downstream clustered and divergently oriented xylR and xylS regulatory genes. The xylR-xylS intergenic region contains the xylR and xylS promoters Pr and Ps, respectively. A binding site for the XylR activator protein is located upstream of Ps and overlapping Pr. DNase I footprint experiments showed that one of these sites, which overlaps the recognition site for XylR activator, as well as an AT-rich region comprising the Ps promoter consensus were protected by integration host factor (IHF). IHF was found to act negatively in the in vivo activation of the Ps promoter, since the activity of a Ps promoter::lacZ fusion was elevated in an Escherichia coli mutant lacking IHF. In contrast, no alteration in the synthesis of XylR protein in the E. coli IHF-deficient mutant was detected.  相似文献   

13.
14.
HU is one of the most abundant DNA binding proteins of bacteria. Unlike IHF, integration host factor of Escherichia coli, with which HU shares many properties, including a strong sequence homology and similar predicted structure, HU seems to bind non-specifically to DNA whereas IHF binds to specific sites. In this work we compare the binding characteristics of HU and IHF to a DNA fragment containing the minimal origin of replication of E. coli (oriC) and we analyse the effect of HU on the binding capacity of IHF to this oriC fragment. We show that HU interacts randomly and non-specifically with oriC as opposed to the specific binding of IHF to this same DNA sequence. In addition, we show that HU can modulate the binding of IHF to its specific oriC site. Depending on the relative concentrations of HU and IHF, HU is able either to activate or to inhibit the binding of IHF to oriC.  相似文献   

15.
P Prentki  M Chandler    D J Galas 《The EMBO journal》1987,6(8):2479-2487
The integration host factor of Escherichia coli (IHF) is a small, histone-like protein which participates in the integration of bacteriophage lambda into the E. coli chromosome and in a number of regulatory processes. Our recent footprinting analysis has shown that IHF binds specifically to the ends of the transposable element IS1, as well as to several sites within a short segment of the plasmid pBR322. We have extended our studies of the binding of the IHF molecule to these sites in vitro using a gel retardation assay. We report here that IHF bends the DNA upon binding, as judged from the strong cyclic dependence of the protein-induced mobility shift on the position of the binding site. Using cloned, synthetic ends of IS1 as substrates, we have found that some mutations within the conserved bases of the IHF consensus binding sequence abolish binding, and that alterations of the flanking sequences can greatly reduce IHF binding. The presence of multiple IHF sites on a single DNA fragment increases binding very little, indicating that IHF does not bind cooperatively in this complex. We discuss the possibility that DNA bending is related to the role IHF plays in forming and stabilizing nucleoprotein complexes, and suggest that bending at the IHF sites may be important to its diverse effects in the cell.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号