首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Habituated and tumorous Catharanthus roseus cells grown in the absence of hormones accumulated indole alkaloids. Total alkaloids and alkaloid pattern were the same when cells were cultured in medium without hormones or in alkaloid production medium with and without indole acetic acid. Treatment of cells with Pythium homogenate as elicitor did not increase total alkaloids or change the pattern of alkaloids produced. When either habituated or tumorous cells were grown in 1B5 medium after Gamborg et al (1968) containing 2,4-dichlorophenoxyacetic acid (2,4-D), their capacity to accumulate alkaloids decreased with time. The levels of tryptophan decarboxylase (TDC) and strictosidine synthase (SS) specific activities were constant throughout growth except when cells were exposed to 2,4-D in 1B5 medium, where enzyme activities declined in step with the decrease in alkaloid accumulation. Neither habituated nor tumorous cell suspension cultures accumulated vindoline, nor could they be induced to produce this alkaloid by any of the given treatments.NRCC No. 27514  相似文献   

2.
De Luca V  Cutler AJ 《Plant physiology》1987,85(4):1099-1102
The subcellular localization of enzymes involved in indole alkaloid biosynthesis in leaves of Catharanthus roseus has been investigated. Tryptophan decarboxylase and strictosidine synthase which together produce strictosidine, the first indole alkaloid of this pathway, are both cytoplasmic enzymes. S-Adenosyl-l-methionine: 16-methoxy-2,3-dihydro-3-hydroxytabersonine-N-methyltransferase which catalyses the third to last step in vindoline biosynthesis could be localized in the chloroplasts of Catharanthus leaves and is specifically associated with thylakoids. Acetyl-coenzyme-A-deacetylvindoline-O-acetyltransferase which catalyses the last step in vindoline biosynthesis could also be localized in the cytoplasm. The participation of the chloroplast in this pathway suggests that indole alkaloid intermediates enter and exit this compartment during the biosynthesis of vindoline.  相似文献   

3.
Young leaves from Catharanthus roseus plants contain the enzymes which convert the monoterpenoid indole alkaloid, tabersonine by three hydroxylations, two methylations, and one acetylation step to vindoline. A novel direct enzyme assay has been developed for a hydroxylase involved in vindoline biosynthesis, which catalyzes the C4-hydroxylation of 2,3-dihydro-3-hydroxy-N(1)-methyltabersonine to the 3,4-dihydroxy derivative. The enzyme showed an absolute requirement for 2-oxoglutarate and enzymatic activity was enhanced by ascorbate, establishing it as a 2-oxoglutarate-dependent dioxygenase (EC 1.14.11.-). The hydroxylase exhibited specificity for position 4 of various alkaloid substrates. The enzyme exhibited a pH optima between 7 and 8 and an apparent molecular weight of 45,000. The appearance of 4-hydroxylase activity was developmentally regulated and was shown to be inducible by light treatment of seedlings. Substrate specificity studies of this enzyme for indole alkaloid substrate suggested that hydroxylation at position 3 and N-methylation occur prior to hydroxylation at position 4. This is in agreement with previous studies which suggest that C4-hydroxylation is the second to last step in vindoline biosynthesis in Catharanthus roseus.  相似文献   

4.
From differentiated plants of Catharanthus roseus (L.) G. Don, a specific enzyme was isolated and named acetyl-CoA : 17-O-deacetylvindoline 17-O-acetyltransferase, acting on the biosynthetic formation of the Aspidosperma type alkaloid vindoline.The enzyme shows a high selectivity towards different substrates. The acetyl-CoA-dependent transferase also catalyses the reverse reaction by hydrolysis of the 17-O-acetyl group of vindoline in the presence of free CoA. This enzyme is localized only in vindoline-containing plant parts, but was so far not detectable in cell suspension cultures of C. roseus. The enzyme allows the synthesis of labelled vindoline with high specific activity, applicable for instance as tracer for radioimmunoassays of vindoline.  相似文献   

5.

Background and Aims

The Madagascar periwinkle (Catharanthus roseus) produces the monoterpenoid alkaloid vindoline, which requires a specialized cell organization present only in the aerial tissues. Vindoline content can be affected by photoperiod and this effect seems to be associated with the morphogenetic capacity of branches; this association formed the basis of the study reported here.

Methods

Vindoline-producing in vitro shoot cultures were exposed either to continuous light or a 16-h photoperiod regime. New plantlet formation and alkaloid biosynthesis were analysed throughout a culture cycle.

Key Results

In cultures under the photoperiod, the formation of new plantlets occurred in a more synchronized fashion as compared to those under continuous light. The accumulation of vindoline in cultures under the photoperiod occurred in co-ordination with plantlet formation, in constrast to cultures under continuous light, and coincided with a peak of activity of deacetylvindoline acetyl CoA acetyltransferase (DAT), the enzyme that catalyses the last step in vindoline biosynthesis. When new plantlet formation was blocked in cultures under the photoperiod by treatment with phytoregulators, vindoline synthesis was also reduced via an effect on DAT activity. No association between plantlet formation and other biosynthetic enzymes, such as tryptophan decarboxylase (TDC) and deacetoxyvindoline 4-hydroxylase (D4H), was found. Effects of light treatment on vindoline synthesis were not mediated by ORCA-3 proteins (which are involved in the induction of alkaloid synthesis in response to elicitation), suggesting that the presence of a different set of regulatory proteins.

Conclusions

The data suggest that vindoline biosynthesis is associated with morphogenesis in shoot cultures of C. roseus.Key words: Catharanthus roseus, deacetylvindoline acetyl CoA acetyltransferase, DAT, in vitro shoot cultures, morphogenesis, vindoline  相似文献   

6.
A new enzyme, Acetyl Coenzyme A: deacetylvindoline 0-acetyl transferase (EC 2.3.1. -) which catalyses the synthesis of vindoline from acetyl coenzyme A and deacetylvindoline was isolated from the soluble protein extract of Catharanthus roseus leaves and purified approximately 365-fold. The enzyme had an apparent pI of 4.6 upon chromatofocusing, an apparent molecular weight of 45,000 daltons and a pH optimum between 8.0 to 9.0. Dithiothreitol was essential to maintain enzyme activity.Substrate saturation studies of this enzyme resulted in Michaelis Menton kinetics giving Km values of 5.4 and 0.7µM respectively for acetyl coenzyme A and deacetylvindoline. Studies of the forward reaction demonstrated an absolute requirement for acetyl coenzyme A and deacetylvindoline derivatives containing a double bond at positions 6, 7, whereas the reverse reaction occurred only in the presence of free coenzyme A and vindoline derivatives containing the same double bond. The forward reaction was subject to product inhibition by coenzyme A with an apparent Ki of 8 µM, but was not inhibited by up to 2 mM vindoline. The rate of reaction could therefore be regulated by the level of free coenzyme A in the cell, unaffected by the accumulation of indole alkaloid product.It was suggested that this enzyme catalyses a late step in the biosynthesis of vindoline.  相似文献   

7.
The Madagascar periwinkle (Catharanthus roseus) produces the well known and remarkably complex anticancer dimeric alkaloids vinblastine and vincristine, which are derived by the coupling of vindoline and catharanthine monomers. Recent data from in situ RNA hybridization and immunolocalization suggest that combinatorial cell factories within the leaf are involved in vindoline biosynthesis. In this study, the cell types responsible for vindoline biosynthesis were identified by laser-capture microdissection/RNA isolation/RT-PCR to show that geraniol hydroxylase, secologanin synthase, tryptophan decarboxylase, strictosidine synthase, strictosidine ss-glucosidase and tabersonine 16-hydroxylase can be detected preferentially in epidermal cells. A new and complementary application of the carborundum abrasion (CA) technique was developed to obtain epidermis-enriched leaf extracts that can be used to measure alkaloid metabolite levels, enzyme activities and gene expression. The CA technique showed that tabersonine and 16-methoxytabersonine, together with 16-hydroxytabersonine-16-O-methyltransferase, are found predominantly in Catharanthus leaf epidermis, in contrast to vindoline, catharanthine and later enzymatic steps in vindoline biosynthesis. The results show that leaf epidermal cells are biosynthetically competent to produce tryptamine and secologanin precursors that are converted via many enzymatic transformations to make 16-methoxytabersonine. This alkaloid or its 2,3 dihydro-derivative is then transported to cells (mesophyll/idioblast/laticifer) within Catharanthus leaves to complete the last three or four enzymatic transformations to make vindoline.  相似文献   

8.
Hydroxylation at the C-16 position of the indole alkaloid tabersonine has been suggested as the first step toward vindoline biosynthesis in Catharanthus roseus. Tabersonine 16-hydroxylase (16-OH) activity was detected in total protein extracts from young leaves of C. roseus using a novel coupled assay system. Enzyme activity was dependent on NADPH and molecular oxygen and was inhibited by CO, clotrimazole, miconazole, and cytochrome c. 16-OH was localized to the endoplasmic reticulum by linear sucrose density gradient centrifugation. These data suggest that 16-OH is a cytochrome P-450-dependent monooxygenase. The activity of 16-OH reached a maximum in seedlings 9 d postimbibition and was induced by light. The leaf-specific distribution of 16-OH in the mature plant is consistent with the localization of other enzymes in the tabersonine to vindoline pathway. However, in contrast to enzymes that catalyze the last four steps of vindoline biosynthesis, enzymes responsible for the first two steps from tabersonine (16-OH and 16-O-methyltransfersase) were detected in C. roseus cell-suspension cultures. These data complement the complex model of vindoline biosynthesis that has evolved with respect to enzyme compartmentalization, metabolic transport, and control mechanisms.  相似文献   

9.
10.
Strictosidine glucosidase (SG) is an enzyme that catalyses the second step in the biosynthesis of various classes of monoterpenoid indole alkaloids. Based on the comparison of cDNA sequences of SG from Catharanthus roseus and raucaffricine glucosidase (RG) from Rauvolfia serpentina, primers for RT-PCR were designed and the cDNA encoding SG was cloned from R. serpentina cell suspension cultures. The active enzyme was expressed in Escherichia coli and purified to homogeneity. Analysis of its deduced amino-acid sequence assigned the SG from R. serpentina to family 1 of glycosyl hydrolases. In contrast to the SG from C. roseus, the enzyme from R. serpentina is predicted to lack an uncleavable N-terminal signal sequence, which is believed to direct proteins to the endoplasmic reticulum. The temperature and pH optimum, enzyme kinetic parameters and substrate specificity of the heterologously expressed SG were studied and compared to those of the C. roseus enzyme, revealing some differences between the two glucosidases. In vitro deglucosylation of strictosidine by R. serpentina SG proceeds by the same mechanism as has been shown for the C. roseus enzyme preparation. The reaction gives rise to the end product cathenamine and involves 4,21-dehydrocorynantheine aldehyde as an intermediate. The enzymatic hydrolysis of dolichantoside (Nbeta-methylstrictosidine) leads to several products. One of them was identified as a new compound, 3-isocorreantine A. From the data it can be concluded that the divergence of the biosynthetic pathways leading to different classes of indole alkaloids formed in R. serpentina and C. roseus cell suspension cultures occurs at a later stage than strictosidine deglucosylation.  相似文献   

11.
Polyclonal antibodies raised in mouse against purified potato Δ 1-pyrroline-5-carboxylate dehydrogenase (P5C-DH, EC 1.5.1.12), which catalyses the last step in the catabolism of both proline and arginine, were used to investigate the expression of this enzyme. Distribution of P5C-DH in potato ( Solanum tuberosum L. cv. Desiree) organs was studied at different stages during plant development. Variations in enzyme level were determined in axenically grown plantlets following the addition of exogenous proline, and in cell suspension cultures under hyperosmotic stress and after its relief. Free proline and arginine levels were also quantified, and compared to those of the enzyme. Results were consistent with a developmental, but not with an environmental, control of P5C-DH expression. The possible involvement of specific isozymes in proline and arginine oxidation is discussed.  相似文献   

12.
A new enzyme was discovered which specifically hydrogenates the iminium form of cathenamine at position 21 to yield the heteroyohimbine alkaloid tetrahydroalstonine. The enzyme was partially purified (35-fold) from Catharanthus roseus cell suspension cultures. It was shown to use exclusively NADPH as reductant, the pH optimum is at 6.6, the temperature optimum at 30°C, the half life of the soluble enzyme preparation is 26 min at 37°C, and the molecular weight is 81 000 ± 3%. Evidence is presented for the occurrence of two distinct and different cathenamine reductases, one reducing the iminium form of this central intermediate to give tetrahydroalstonine, the other one reducing cathenamine to yield ajmalicine. Tetrahydroalstonine synthase was present in cell suspension cultures of C. ovalis, C. roseus, Picralima nitida, Rhazya stricta, and Vinca herbacea. Dedicated to Prof. Dr. Franz Lingens on the occasion of his 60th birthday  相似文献   

13.
Madagascar periwinkle (Catharanthus roseus) produces many therapeutically valuable terpenoid indole alkaloids (TIAs), such as vinblastine and vincristine derived from the monomers vindoline and catharanthine. Deacetylvindoline-4-O-acetyltransferase (DAT) is a key enzyme for the terminal step of vindoline biosynthesis. In this research, the DAT gene promoter was cloned, sequenced, and analyzed. An approximately 1,773 bp genomic DNA fragment of DAT promoter was obtained. Sequence analysis revealed that DAT promoter contained several potential regulatory elements which were involved in the regulation of gene expression. To investigate its function, the promoter fragments with 5′ deletions and gain-of-function deletions were fused to GUS reporter gene, and their expressions were analyzed by transient expression in C. roseus cell suspensions. The regulatory activity of DAT promoter was identified with fluorescence quantitative assays. Three TGACG motifs and one inverted motif (CGTCA) between −808 and −1,086 bp in the DAT promoter were found to be involved in methyljasmonate signal transduction pathway.  相似文献   

14.
15.
Cell suspension cultures of Cinchona succirubra were cultivated in shake cultures and for the first time in airlift fermenters. Under both conditions L-tryptophan exerts a stimulatory effect on alkaloid formation. In this context the regulatory pattern of some shikimate pathway enzymes was investigated in non-supplemented and tryptophan supplemented Cinchona cell cultures. A remarkable increase of tryptophan decarboxylase (TDC) activity was observed in Cinchona cells under the influence of tryptophan. Apparently, like in some other indole alkaloid producing cell cultures, a high TDC activity is a prerequisite for alkaloid formation. Growth pattern and some enzyme activities of C. succirubra fermenter cultures at controlled and non-regulated pH levels were followed. Optimum growth and alkaloid formation were recorded under non-regulated (normal) pH conditions.Abbreviations TDC tryptophan decarboxylase - try L-tyrosine - phe L-phenylalanine - DAHP 3-deoxy-D-arabino-heptulosonic acid-7-phosphate - trp L-tryptophan - E-4-P erythrose-4-phosphate - PEP phosphoenolpyruvate - MDH malate dehydrogenase - G-6-PDH glucose-6-phosphate dehydrogenase - 6-PG-DH 6-phosphogluconate dehydrogenase - Ch-mutase chorismate mutase - AS-synthase anthranilate synthase - n.d. not determined  相似文献   

16.
KDN is an abbreviation for 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid, and its natural occurrence was revealed in 1986 by a research group including the present authors. Since sialic acid was used as a synonym for N-acylneuraminic acid at that time, there was an argument if this deaminated neuraminic acid belongs to the family of sialic acids. In this review, we describe the 20 years history of studies on KDN (KDNology), through which KDN has established its position as a distinct member of the sialic acid family. These studies have clarified that: (1) KDN occurs widely among vertebrates and bacteria similar to the occurrence of the more common sialic acid, N-acetylneuraminic acid (Neu5Ac), but its abundant occurrence in animals is limited to lower vertebrates. (2) KDN is found in almost all types of glycoconjugates, including glycolipids, glycoproteins and capsular polysaccharides. (3) KDN residues are linked to almost all glycan structures in place of Neu5Ac. All linkage types known for Neu5Ac; α2,3-, α2,4-, α2,6-, and α2,8- are also found for KDN. (4) KDN is biosynthesized de novo using mannose as a precursor sugar, which is activated to CMP-KDN and transferred to acceptor sugar residues. These reactions are catalyzed by enzymes, some of which preferably recognize KDN, but many others prefer Neu5Ac to KDN. In addition to these basic findings, elevated expression of KDN was found in fetal human red blood cells compared with adult red blood cells, and ovarian tumor tissues compared with normal controls. KDNase, an enzyme which specifically cleaves KDN-linkages, was discovered in a bacterium and monoclonal antibodies that specifically recognize KDN residues in KDNα2,3-Gal- and KDNα2,8-KDN-linkages have been developed. These have been used for identification of KDN-containing molecules. Based on past basic studies and variety of findings, future perspective of KDNology is presented.  相似文献   

17.
Conditions have been established for the optimization of the specific activity of a membrane-bound monoterpene hydroxylase from cell suspension cultures of Catharanthus roseus. In time course studies, the hydroxylase and NADPH-cytochrome c reductase exhibited maximal activities 18–20 days after inoculation, i.e., during early stationary phase. By late stationary phase, enzyme activity had declined. In contrast an enzyme of primary metabolism achieved optimal specific activity by the 12th day and remained constant through day 26, synchronous with general growth. Effects of nutritional and hormonal factors on the specific activity of the hydroxylase and cell growth were evaluated. Inhibitors of hydroxylase activity were also assessed in vitro. A soluble form of the monoterpene hydroxylase has been detected in cultured cells possibly affording a useful source of this enzyme for further purification.  相似文献   

18.
Magnotta M  Murata J  Chen J  De Luca V 《Phytochemistry》2007,68(14):1922-1931
Madagascar periwinkle [Catharanthus roseus (L.) G Don] is a pantropical plant of horticultural value that produces the powerful anticancer drugs vinblastine and vincristine that are derived from the dimerization of the monoterpenoid indole alkaloids (MIAs), vindoline and catharanthine. The present study describes the genetic engineering and expression of the terminal step of vindoline biosynthesis, deacetylvindoline-4-O-acetyltransferase (DAT) in Catharanthus roseus hairy root cultures. Biochemical analyses showed that several hairy root lines expressed high levels of DAT enzyme activity compared to control hairy root cultures expressing β-gulucuronidase activity (GUS) activity. Metabolite analysis using high performance liquid chromotagraphy established that hairy root extracts had an altered alkaloid profile with respect to hörhammericine accumulation in DAT expressing lines in comparison to control lines. Further analyses of one hairy root culture expressing high DAT activity suggested that DAT expression and accumulation of hörhammericine (9) were related. It is concluded that expression of DAT in hairy roots altered their MIA profile and suggests that further expression of vindoline pathway genes could lead to significant changes in alkaloid profiles. Evidence is provided that hörhammericine (9) accumulates via a DAT interaction with the root specific minovincinine-19-O-acetyltransferase (MAT) that inhibits the MAT mediated conversion of hörhammericine (9) into 19-O-acetyl-hörhammericine (12).  相似文献   

19.
The kinetics of release of four intracellular enzymes from different yeast cell locations using the Differential Product Release (DPR) method has been investigated. The method uses a combination of physical, chemical and biological agents such as lytic enzymes, an osmotic support and a spheroplast stabilizer. Using the DPR technique a wall enzyme, invertase, was released with a very high specific activity in the first step from a breadmaking strain ofS. cerevisiae. Maximum release could be obtained in this step when the incubation time was extended from 60 min to 100 min. Two cytosol enzymes, α-D-glucosidase and alcohol dehydrogenase were released in the second step. Fumarase was released in the third step almost instantaneously after disruption of the mitochondria which reduces considerably, by ca. 1 hour, the total incubation time of DPR. This paper investigates the kinetics of enzyme release during the 3 steps of DPR.  相似文献   

20.
The NAD-dependent oxidation of ethanol, 2,3-butanediol, and other primary and secondary alcohols, catalyzed by alcohol dehydrogenases derived from Penicillium charlesii, was investigated. Alcohol dehydrogenase, ADH-I, was purified to homogeneity in a yield of 54%. The enzyme utilizes several primary alcohols as substrates, with Km values of the order of 10?4m. A Km value of 60 mm was obtained for R,R,-2,3-butanediol. The stereospecificity of the oxidation of 2-butanol was investigated, and S-(+)-2-butanol was found to be oxidized 2.4 times faster than was R-(?)-2-butanol. The reduction of 2-butanone was shown to produce S-(+)-2-butanol and R-(?)-butanol in a ratio of 7:3. ADH-I is the primary isozyme of alcohol dehydrogenase present in cultures utilizing glucose as the sole carbon source. The level of alcohol dehydrogenase activity increased 7.6-fold in mycelia from cultures grown with glucose and 2,3-butanediol (0.5%) as carbon sources compared with the activity in cultures grown on only glucose. Two additional forms of alcohol dehydrogenase, ADH-II and ADH-III, were present in the cultures supplemented with 2,3-butanediol. These forms of alcohol dehydrogenase catalyze the oxidation of ethanol and 2,3-butanediol. These data suggest that P. charlesii carries out an oxidation of 2,3-butanediol which may constitute the first reaction in the degradation of 2,3-butanediol as well as the last reaction in the mixed-acid fermentation. Alcohol dehydrogenase activities in P. charlesii may be encoded by multiple genes, one which is expressed constitutively and others whose expression is inducible by 2,3-butanediol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号