首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two‐component mixture model has been widely used in practice to detect differentially expressed genes. However, it naïvely imposes strong exchangeability assumptions across genes and does not make active use of a priori information about intergene relationships that is currently available, e.g., gene annotations through the Gene Ontology (GO) project. We propose a general strategy that first generates a set of covariates that summarizes the intergene information and then extends the two‐component mixture model into a hierarchical semiparametric model utilizing the generated covariates through latent nonparametric regression. Simulations and analysis of real microarray data show that our method can outperform the naïve two‐component mixture model.  相似文献   

3.
4.
The therapeutic benefits of dopamine (DA) agonists after traumatic brain injury (TBI) imply a role for DA systems in mediating functional deficits post‐TBI. We investigated how experimental TBI affects striatal dopamine systems using fast scan cyclic voltammetry (FSCV), western blot, and d‐amphetamine‐induced rotational behavior. Adult male Sprague–Dawley rats were injured by a controlled cortical impact (CCI) delivered unilaterally to the parietal cortex, or were naïve controls. Amphetamine‐induced rotational behavior was assessed 10 days post‐CCI. Fourteen days post‐CCI, animals were anesthetized and underwent FSCV with bilateral striatal carbon fiber microelectrode placement and stimulating electrode placement in the medial forebrain bundle (MFB). Evoked DA overflow was assessed in the striatum as the MFB was electrically stimulated at 60 Hz for 10 s. In 23% of injured animals, but no naïve animals, rotation was observed with amphetamine administration. Compared with naïves, striatal evoked DA overflow was lower for injured animals in the striatum ipsilateral to injury (p < 0.05). Injured animals exhibited a decrease in Vmax (52% of naïve, p < 0.05) for DA clearance in the hemisphere ipsilateral to injury compared with naïves. Dopamine transporter (DAT) expression was proportionally decreased in the striatum ipsilateral to injury compared with naïve animals (60% of naïve, p < 0.05), despite no injury‐related changes in vesicular monoamine transporter or D2 receptor expression (DRD2) in this region. Collectively, these data appear to confirm that the clinical efficacy of dopamine agonists in the treatment of TBI may be related to disruptions in the activity of subcortical dopamine systems.  相似文献   

5.
6.
It is well established that immune responses are diminished in the old. However, we still do not have a clear understanding of what dictates the dysfunction of old T cells at the molecular level. Although microarray analysis has been used to compare young and old T cells, identifying hundreds of genes that are differentially expressed among these populations, it has been difficult to utilize this information to pinpoint which biological pathways truly affect the function of aged T cells. To better define differences between young and old naïve CD4+ and CD8+ T cells, microarray analysis was performed pre‐ and post‐TCR stimulation for 4, 12, 24 and 72 h. Our data indicate that many genes are differentially expressed in the old compared to the young at all five time points. These genes encode proteins involved in multiple cellular functions such as cell growth, cell cycle, cell death, inflammatory response, cell trafficking, etc. Additionally, the information from this microarray analysis allowed us to underline both intrinsic deficiencies and defects in signaling only seen after activation, such as pathways involving T‐cell signaling, cytokine production, and Th2 differentiation in old T cells. With the knowledge gained, we can proceed to design strategies to restore the function of old T cells. Therefore, this microarray analysis approach is a powerful and sensitive tool that reveals the extensive changes seen between young and old CD4+ and CD8+ naïve T cells. Evaluation of these differences provides in‐depth insight into potential functional and phenotypical differences among these populations.  相似文献   

7.
Amoebic gill disease (AGD) is an ectoparasitic disease caused by infection with the protozoan Neoparamoeba sp. and is characterised by epithelial hyperplasia that manifests as gill lesions. In order to examine the nature of the immune response to AGD, the expression of a range of immune-regulatory genes was examined in naïve uninfected rainbow trout, Oncorhynchus mykiss, and naïve rainbow trout subjected to a laboratory-induced AGD infection. The immune-regulatory genes examined were interleukin-1 beta isoform 1 (IL-1β1), tumour necrosis factor alpha isoforms 1 and 2 (TNF-α1, TNF-α2), interleukin-8 (IL-8), transforming growth factor beta isoform 1 (TGF-β1), inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), major histocompatibility complex beta chain (MHC-II β-chain) and T-cell receptor beta chain (TCR β-chain). Immune-regulatory genes that were up/down-regulated in AGD-infected trout compared to uninfected controls at 0, 7, and 14 days post-inoculation (p.i.) in gill, liver and anterior kidney tissue were initially identified by means of semi-quantitative RT–PCR. Up/down-regulated immune-regulatory genes were subsequently quantitated and validated by real-time RT–PCR (qRT–PCR). The extent of AGD-associated pathology was consistent amongst all AGD-infected trout at 7 days p.i. and increased considerably by 14 days p.i. At both 7 and 14 days p.i. IL-1β1 and iNOS gene expression was significantly up-regulated in the gills, and IL-8 was significantly up-regulated in the liver of AGD-infected trout at 7 days p.i. These data demonstrate the involvement of the immune response to AGD at the molecular level, and indicate the importance of this response at the site of infection and the possible involvement of a systemic immune response.  相似文献   

8.

Background

Dendritic cells (DC) pulsed with MHC class I-restricted tumour associated antigen (TAA) peptides have been widely tested in pre-clinical models and early clinical studies for their ability to prime cytotoxic T cell (CTL) responses. The effect of co-expression of allogeneic MHC antigens on DC immunogenicity has not been addressed, and has implications for the feasibility of clinical applications.

Objective

This study compared DC from autologous H-2b or semi-allogeneic F1 H-2bxk mice pulsed with the H-2b-restricted model ovalbumin (OVA) peptide SIINFEKL, and compared in vitro and in vivo their ability to (i) activate specific OT1 cells, (ii) prime naïve CTL, and (iii) protect against B16.OVA challenge. Peptide-pulsed autologous and allogeneic DC were also tested in naïve human CTL priming assays.

Results

Semi-allogeneic DC expressed higher levels of co-stimulatory molecules. On pulsing with SIINFEKL they triggered greater proliferation of OT1 cells in vitro and in vivo, but were less effective at naïve CTL priming and tumour protection. Autologous human DC were similarly more potent at naïve CTL priming against the melanoma-associated TAA MART-1 in vitro.

Conclusion

The expression of allogeneic MHC antigens on peptide-pulsed DC impairs naïve CTL priming and anti-tumour effects, despite effective TAA presentation both in vitro and in vivo.
  相似文献   

9.
10.
11.
Tryptophan is an essential amino acid involved in the protein synthesis, cognition, and immunity. Oxidative catabolism of tryptophan is executed by the sets of biochemical reactions collectively referred to as the kynurenine pathway. In the immune system, two distinct enzymes, Indoleamne 2,3 dioxygenase 1 (IDO1) and Indoleamine 2, 3 dioxygenase 2 (IDO2) can initiate metabolic flux through the kynurenine pathway. Rheumatoid arthritis is an autoimmune disease driven by the exacerbated immune response towards self antigens and characterized by the chronic inflammatory reaction of the diarthrodial joints. Collagen induced arthritis (CIA) is an animal model of rheumatoid arthritis. Using CIA in wild type (WT) and mice deficient with Indoleamine 2,3 dioxygenase (Ido1KO), it was of interest to test the impact of Ido1 deletion on the concentration of tryptophan and its catabolites as well as on mRNA expression for other genes on the kynurenine pathway. Here, when compared with samples taken from naïve WT animals and those with CIA, it was found that only in the inguinal lymph nodes (iLN) taken from Ido1KO mice with CIA tryptophan concentration was significantly increased. In contrast, mRNA expression for Ido2 was decreased in naïve as well as in the diseased iLN taken from Ido1KO mice. Deletion of Ido1 and reduced mRNA expression for Ido2 neither affected the concentration of the downstream metabolites of tryptophan nor mRNA expression for downstream genes on the kynurenine pathway in iLN. Moreover, the concentration of kynurenine in sera of mice with CIA was significantly decreased in Ido1KO mice with arthritis.  相似文献   

12.

Introduction

The major histocompatibility complex (H-2d) and non-major histocompatibility complex genetic backgrounds make the BALB/c strain highly susceptible to inflammatory arthritis and spondylitis. Although different BALB/c colonies develop proteoglycan-induced arthritis and proteoglycan-induced spondylitis in response to immunization with human cartilage proteoglycan, they show significant differences in disease penetrance despite being maintained by the same vendor at either the same or a different location.

Methods

BALB/c female mice (24 to 26 weeks old after 4 weeks of acclimatization) were immunized with a suboptimal dose of cartilage proteoglycan to explore even minute differences among 11 subcolonies purchased from five different vendors. In vitro-measured T-cell responses, and serum cytokines and (auto)antibodies were correlated with arthritis (and spondylitis) phenotypic scores. cDNA microarrays were also performed using spleen cells of naïve and immunized BALB/cJ and BALB/cByJ mice (both colonies from The Jackson Laboratory, Bar Harbor, ME, USA), which represent the two major BALB/c sublines.

Results

The 11 BALB/c colonies could be separated into high (n = 3), average (n = 6), and low (n = 2) responder groups based upon their arthritis scores. While the clinical phenotypes showed significant differences, only a few immune parameters correlated with clinical or histopathological abnormalities, and seemingly none of them affected differences found in altered clinical phenotypes (onset time, severity or incidence of arthritis, or severity and progression of spondylitis). Affymetrix assay (Affymetrix, Santa Clara, CA, USA) explored 77 differentially expressed genes (at a significant level, P < 0.05) between The Jackson Laboratory's BALB/cJ (original) and BALB/cByJ (transferred from the National Institutes of Health, Bethesda, MD, USA). Fourteen of the 77 differentially expressed genes had unknown function; 24 of 77 genes showed over twofold differences, and only 8 genes were induced by immunization, some in both colonies.

Conclusions

Using different subcolonies of the BALB/c strain, we can detect significant differences in arthritis phenotypes, single-nucleotide polymorphisms (SNPs), and a large number of differentially expressed genes, even in non-immunized animals. A number of the known genes (and SNPs) are associated with immune responses and/or arthritis in this genetically arthritis-prone murine strain, and a number of genes of as-yet-unknown function may affect or modify clinical phenotypes of arthritis and/or spondylitis.  相似文献   

13.
Chemokines play a pivotal role in regulating the immune response through a tightly controlled expression. Elevated levels of inflammatory chemokines commonly occur with aging but the mechanism underlying this age‐associated change is not fully understood. Here, we report the role of microRNA‐125b (miR‐125b) in regulating inflammatory CC chemokine 4 (CCL4) expression in human immune cells and its altered expression with aging. We first analyzed the mRNA level of CCL4 in eight different types of immune cells including CD4 and CD8 T‐cell subsets (naïve, central and effector memory), B cells and monocytes in blood from both young (≤42 years) and old (≥70 years) adults. We observed that monocytes and naïve CD8 T cells expressed higher levels of CCL4 and exhibited an age‐related increase in CCL4. We then found the level of miR‐125b was inversely correlated with the level of CCL4 in these cells, and the level of miR‐125b was reduced in monocytes and naïve CD8 T cells of the old compared to the young adults. Knock‐down of miR‐125b by shRNA in monocytes and naïve CD8 T cells led to an increase of CCL4 protein, whereas enhanced miR‐125b expression by transfection in naïve CD8 T cells resulted in a reduction of the CCL4 mRNA and protein in response to stimulation. Finally, we demonstrated that miR‐125b action requires the ‘seed’ sequence in 3′UTR of CCL4. Together these findings demonstrated that miR‐125b is a negative regulator of CCL4 and its reduction is partially responsible for the age‐related increase of CCL4.  相似文献   

14.
15.
16.
17.
In vitro expanded CNS precursors could provide a renewable source of dopamine (DA) neurons for cell therapy in Parkinson's disease. Functional DA neurons have been derived previously from early midbrain precursors. Here we demonstrate the ability of Nurr1, a nuclear orphan receptor essential for midbrain DA neuron development in vivo, to induce dopaminergic differentiation in naïve CNS precursors in vitro. Independent of gestational age or brain region of origin, Nurr1‐induced precursors expressed dopaminergic markers and exhibited depolarization‐evoked DA release in vitro. However, these cells were less mature and secreted lower levels of DA than those derived from mesencephalic precursors. Transplantation of Nurr1‐induced DA neuron precursors resulted in limited survival and in vivo differentiation. No behavioral improvement in apomorphine‐induced rotation scores was observed. These results demonstrate that Nurr1 induces dopaminergic features in naïve CNS precursors in vitro. However, additional factors will be required to achieve in vivo function and to unravel the full potential of neural precursors for cell therapy in Parkinson's disease.  相似文献   

18.
BACKGROUND AND AIMS: The gastrointestinal trefoil factor family (TFF1, TFF2, TFF3) peptides are considered to play an important role in maintaining the integrity of the mucosa. The physiological role of TFF2 in the protection of the GI tract was investigated in TFF2 deficiency. METHODS: TFF2-/- mice were generated and differential expression of various genes was assessed by using a mouse expression microarray, quantitative real time PCR, Northern blots or immunohistochemistry. RESULTS: On an mRNA level we found 128 differentially expressed genes. We observed modulation of a number of crucial genes involved in innate and adaptive immunity in the TFF2-/- mice. Expression of proteasomal subunits genes (LMP2, LMP7 and PSMB5) involved in the MHC class I presentation pathway were modulated indicating the formation of immunoproteasomes improving antigen presentation. Expression of one subunit of a transporter (TAP1) responsible for importing degraded antigens into ER was increased, similarly to the BAG2 gene that modulates chaperone activity in ER helping proper loading on MHC class I molecules. Several mouse defensin (cryptdin) genes coding important intestinal microbicidal proteins were up-regulated as a consequence of TFF2 deficiency. Normally moderate expression of TFF3 was highly increased in stomach.  相似文献   

19.
Heart failure (HF) is the major of cause of mortality and morbidity in the developed world. Gene expression profiles of animal model of heart failure have been used in number of studies to understand human cardiac disease. In this study, statistical methods of analysing microarray data on cardiac tissues from dogs with pacing induced HF were used to identify differentially expressed genes between normal and two abnormal tissues. The unsupervised techniques principal component analysis (PCA) and cluster analysis were explored to distinguish between three different groups of 12 arrays and to separate the genes which are up regulated in different conditions among 23912 genes in heart failure canines'' microarray data. It was found that out of 23912 genes, 1802 genes were differentially expressed in the three groups at 5% level of significance and 496 genes were differentially expressed at 1% level of significance using one way analysis of variance (ANOVA). The genes clustered using PCA and clustering analysis were explored in the paper to understand HF and a small number of differentially expressed genes related to HF were identified.  相似文献   

20.
The characteristics of pluripotent embryonic stem cells of human and mouse are different. The properties of human embryonic stem cells (hESCs) are similar to those of mouse epiblast stem cells (mEpiSCs), which are in a later developmental pluripotency state, the so-called “primed state” compared to mouse embryonic stem cells (mESCs) which are in a naïve state. As a result of the properties of the primed state, hESCs proliferate slowly, cannot survive as single cells, and can only be transfected with genes at low efficiency. Generating hESCs in the naïve state is necessary to overcome these problems and allow their application in regenerative medicine. Therefore, clarifying the mechanism of the transition between the naïve and primed states in pluripotent stem cells is important for the establishment of stable methods of generating naïve state hESCs. However, the signaling pathways which contribute to the transition between the naïve and primed states are still unclear. In this study, we carried out induction from mESCs to mEpiSC-like cells (mEpiSCLCs), and observed an increase in the activation of Fas signaling during the induction. The expression of Fgf5, an epiblast marker, was diminished by inhibition of Fas signaling using the caspase-8 and -3 blocking peptides, IETD and DEVD, respectively. Furthermore, during the induction, we observed increased expression of 3-O sulfated heparan sulfate (HS) structures synthesized by HS 3-O-sulfotransferase (3OST), which are recognized by the HS4C3 antibody (HS4C3-binding epitope). Knockdown of 3OST-5 reduced Fas signaling and the potential for the transition to mEpiSCLCs. This indicates that the HS4C3-binding epitope is necessary for the transition to the primed state. We propose that Fas signaling through the HS4C3-binding epitope contributes to the transition from the naïve state to the primed state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号