首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the cricket ear, sound acts on the external surface of the tympanum and also reaches the inner surface after travelling in at least three pathways in the tracheal system. We have determined the transmission gain of the three internal sound pathways; that is, the change of amplitude and phase angle from the entrances of the tracheal system to the inner surface of the tympanum. In addition, we have measured the diffraction and time of arrival of sound at the ear and at the three entrances at various directions of sound incidence. By combining these data we have calculated how the total driving force at the tympanum depends on the direction of sound. The results are in reasonable agreement with the directionality of the tympanal vibrations as determined with laser vibrometry.At the frequency of the calling song (4.7 kHz), the direction of the sound has little effect on the amplitudes of the sounds acting on the tympanum, but large effects on their phase angles, especially of the sound waves entering the tracheal system at the contralateral side of the body. The master parameter for causing the directionality of the ear in the forward direction is the sound wave entering the contralateral thoracic spiracle. The phase of this sound component may change by 130–140° with sound direction. The transmission of sound from the contralateral inputs is dominated by a very selective high-pass filter, and large changes in amplitude and phase are seen in the transmitted sounds when the sound frequency changes from 4 to 5 kHz. The directionality is therefore very dependent on sound frequency.The transmission gains vary considerably in different individuals, and much variation was also found in the directional patterns of the ears, especially in the effects of sounds from contralateral directions. However, the directional pattern in the frontal direction is quite robust (at least 5 dB difference between the 330° and 30° directions), so these variations have only little effect on how well the individual animals can approach singing conspecifics.Abbreviations CS contralateral spiracle - CT contralateral tympanum - IS ipsilateral spiracle - IT ipsilateral tympanum - P the vectorial sum of the sounds acting on the tympanum  相似文献   

2.
《Biophysical journal》2020,118(2):464-475
Bush crickets have tympanal ears located in the forelegs. Their ears are elaborate, as they have outer-, middle-, and inner-ear components. The outer ear comprises an air-filled tube derived from the respiratory trachea, the acoustic trachea (AT), which transfers sound from the mesothoracic acoustic spiracle to the internal side of the ear drums in the legs. A key feature of the AT is its capacity to reduce the velocity of sound propagation and alter the acoustic driving forces of the tympanum (the ear drum), producing differences in sound pressure and time between the left and right sides, therefore aiding the directional hearing of the animal. It has been demonstrated experimentally that the tracheal sound transmission generates a gain of ∼15 dB and a propagation velocity of 255 ms−1, an approximately 25% reduction from free-field propagation. However, the mechanism responsible for this change in sound pressure level and velocity remains elusive. In this study, we investigate the mechanical processes behind the sound pressure gain in the AT by numerically modeling the tracheal acoustic behavior using the finite-element method and real three-dimensional geometries of the tracheae of the bush cricket Copiphora gorgonensis. Taking into account the thermoviscous acoustic-shell interaction on the propagation of sound, we analyze the effects of the horn-shaped domain, material properties of the tracheal wall, and the thermal processes on the change in sound pressure level in the AT. Through the numerical results obtained, it is discerned that the tracheal geometry is the main factor contributing to the observed pressure gain.  相似文献   

3.
We make the first attempt to construct a qualitative theory covering the whole process of the major part of the first heart sound from an electrical activation to the phonocardiographic observations at the thorax. We calculate the amplitudes and frequencies of the radiated pressures during the isovolumetric contraction period generated by the muscular wall of the left ventricle and by the valves considered as a spherical shell and two-dimensional membranes, respectively. The analysis shows that both the hemodynamic and the valvular theory are able to explain most of the characteristic features of the first heart sound (linear relation between the amplitudes of the radiated pressure and the slope of the left ventricular pressure-time curve; directional polarity of the amplitudes; equidistant frequency peaks with a decline in amplitudes). However, existing magnitudes of the set of physiological parameters involved seems to favour the hemodynamic theory of the first heart sound. The aortic valve can be neglected as a source of sound. The initial conditions (like valve closure velocity), according to our theory, cannot be important. The predicted time-plot and frequency spectrum of the radiated pressure show a general resemblance with the recorded ones. It is essential to have considerably more quantitative acoustic data both for normal and diseased hearts for subsequent theoretical development.  相似文献   

4.
We investigated directionalities of eardrum vibration and auditory nerve response in anesthetized northern leopard frogs (Rana pipiens pipiens). Simultaneous measures of eardrum velocities and firing rates from 282 auditory nerve fibers were obtained in response to free-field sounds from eight directions in the horizontal plane. Sound pressure at the external surface of the ipsilateral eardrum was kept constant for each presentation direction (± 0.5 dB). Significant effects of sound direction on eardrum velocity were shown in 90% of the cases. Maximum or minimum eardrum velocity was observed more often when sounds were presented from the lateral and posterior fields, or from the anterior and contralateral fields, respectively. Firing rates of 38% of the fibers were significantly affected by sound direction and maximum or minimum firing rate was observed more frequently when sounds were delivered from the lateral fields, or from the anterior and contralateral fields, respectively. Directionality patterns of eardrum velocity and nerve firing also vary with sound frequency. Statistically significant correlation between eardrum velocity and nerve fiber firing rate was demonstrated in only 45% of the fibers, suggesting that sound transmission to the inner ear through extratympanic pathways plays a non-trivial role in the genesis of directionality of auditory nerve responses.Abbreviations CF characteristic frequency - SVL snout-vent length - TM tympanic membrane  相似文献   

5.
There are several methodology based on voice analysis to evaluate nasal airway. Here we introduce a new quantitative index based on voice spectrum analysis to evaluate nasal obstruction. Ten subjects of nasal blockage were instructed to produced the sustained consonant-vowel syllable /m partial partial differential/ at comfortable levels of speech for at least 5 seconds. After nasal decongestant treatment, the second voice sample was collected. Sound spectrum was obtained by the algorithm of fast Fourier transform and the fundamental frequency (F0) was calculated by the method of autocorrelation. Voice low tone to high tone ratio (VLHR) was defined as the division of low frequency power (LFP) into high frequency power (HFP) of the sound power spectrum and was finally expressed in decibels. The cut-off frequency was the product of F0 and square root of (4 x 5). The VLHR after nasal decongestant treatment increased significantly as compared with that before treatment (P < 0.01). VLHR is a new index derived from sound spectral analysis and that may detect the changes in frequency characteristics of voice during treatment for nasal obstruction. The index is quantitative, non-invasive, and potentially useful for basic researches and clinical applications.  相似文献   

6.
The acoustically induced motion of the eardrum of the frog was measured by an incoherent optical technique. When free-field sound stimulation was used, the eardrum vibration had a band-pass characteristic with maximum amplitude at 1-2.5 kHz. However, when the sound was presented in a closed-field acoustic coupler the response was low-pass (cut-off frequency about 2.5 kHz). We demonstrate that the motion is the result of the mechanical properties of the eardrum and the sound pressure acting upon it. The net pressure is due to a combination of sound incident directly on the front of the drum and of sound conducted to the rear via internal (resonant) pathways. The frog ear therefore acts as a pressure-gradient receiver at low frequency and a pressure receiver at high frequency. A model is proposed and analysed in terms of its electrical analogue. This model accounts for both our own experimental observations and those of previous studies.  相似文献   

7.
Bone conduction (BC) sound is the perception of sound transmitted in the skull bones and surrounding tissues. To better understand BC sound perception and the interaction with surrounding tissues, the power transmission of BC sound is investigated in a three-dimensional finite-element model of a whole human head. BC sound transmission was simulated in the FE model and the power dissipation as well as the power flow following a mechanical vibration at the mastoid process behind the ear was analyzed. The results of the simulations show that the skull bone (comprises the cortical bone and diploë) has the highest BC power flow and thereby provide most power transmission for BC sound. The soft tissues was the second most important media for BC sound power transmission, while the least BC power transmission is through the brain and the surrounding cerebrospinal fluid (CSF) inside the cranial vault. The vibrations transmitted in the skull are mainly concentrated at the skull base when the stimulation is at the mastoid. Other vibration transmission pathways of importance are located at the occipital bone at the posterior side of the head while the transmission of sound power through the face, forehead and vertex is minor. The power flow between the skull bone and skull interior indicate that some BC power is transmitted to and from the skull interior but the transmission of sound power through the brain seem to be minimal and only local to the brain–bone interface.  相似文献   

8.
With 300,000 paraplegic persons only in France, ischial pressure ulcers represent a major public health issue. They result from the buttocks? soft tissues compression by the bony prominences. Unfortunately, the current clinical techniques, with – in the best case – embedded pressure sensor mats, are insufficient to prevent them because most are due to high internal strains which can occur even with low pressures at the skin surface. Therefore, improving prevention requires using a biomechanical model to estimate internal strains from skin surface pressures. However, the buttocks? soft tissues? stiffness is still unknown. This paper provides a stiffness sensitivity analysis using a finite element model. Different layers with distinct Neo Hookean materials simulate the skin, fat and muscles. With Young moduli in the range [100–500 kPa], [25–35 kPa], and [80–140 kPa] for the skin, fat, and muscles, respectively, maximum internal strains reach realistic 50 to 60% values. The fat and muscle stiffnesses have an important influence on the strain variations, while skin stiffness is less influent. Simulating different sitting postures and changing the muscle thickness also result in a variation in the internal strains.  相似文献   

9.
A quantitative model is provided which describes how noradrenaline (NAd), released from varicosities at the adventitial surface of an artery, either diffuses into the media of the vessel to reach the intimal surface, diffuses into the volume of solution surrounding the artery, or is removed by the uptake 1 process in the varicosities. These predictions are then compared with experimental evaluations of the extent of changes in NAd to be found at the adventitial and intimal surfaces of the rat-tail artery, during and after trains of impulses, as determined using amperometry. In the model of the blood vessel there is a sequential decrease in the diffusion constant of NAd from the surrounding solution, to the adventitia, to the media, to the endothelium, to rise again in the lumen of the vessel; there is also an uptake 1 NAd pump in the varicosities described by Michaelis-Menten kinetics. This model is shown to provide a quantitative account of the spatial and temporal changes in NAd observed following trains of impulses at different frequencies of stimulation (5-40 Hz) for different periods of times (10-40 s). Changes in the spatio-temporal distribution of NAd observed following block of the uptake 1 NAd pump were also successfully predicted by the model. It is concluded that, within the context of the model, there is no need to evoke special mechanisms of buffering at the sympathetic varicosities, nor distinctions on the basis that only secreting varicosities utilize the uptake 1 mechanism, in order to describe the dynamics of NAd distribution in arteries during nerve activity.  相似文献   

10.
In spite of detailed elaboration of masking methods of measuring the frequency selectivity of hearing, such measurements actually are not in use for diagnostics purpose because of their time-consumption and ambiguity of extrapolation of the results to perception of complex sound spectrum patterns. A method of direct measuring of spectrum resolving power using rippled-noise test, is suggested. Results of measurements have shown that the actual ability of hearing to discriminate complex sound spectra is higher than that predicted by acuteness of auditory frequency filters: dependence of acuteness of auditory frequency filters on sound level does not influence the ability to discriminate complex spectra; and the influence on interfering noise on the frequency resolving power can not be explained by a decrease of the spectral contrast by the spread of excitation.  相似文献   

11.
For optimal transfer of power to the surrounding medium, a sound source should have a radius of 1/6 to 1/4 of the sound wavelength. Sound-waves propagate from the source as compressions and rarefactions of the fluid medium, which decay by spreading and viscous losses. Higher frequencies are more easily refracted and reflected by objects in the environment, causing degradation of signal structure. In open air or water, the sound spreads spherically and decays by the inverse square law. If the sound is restricted to two dimensions rather than three, it decays as the inverse of range, whereas waves within a rod decay largely due to viscous losses; such calls are usually rather simple pulses and rely on the initial time of arrival because of multiple pathlengths or different propagation velocities in the environment. Because of the relationship between calling success and reproductive success, singing insects are under selective pressure to optimize the range, and to maintain the specificity, of their calls. Smaller insects have less muscle power; because of their small sound sources, higher frequencies will be radiated more efficiently than lower frequencies, but in order to produce brief loud pulses from a long-duration muscle contraction they may use both a frequency multiplier mechanism and a mechanical power amplifier. Airborne insect sounds in the range from 1 to 5 kHz tend to have sustained puretone components and a specific pattern of pulses which propagate accurately. Where the song frequency is higher, the pulses tend to become briefer, with a rapid initial build-up that gives a reliable time of onset through obstructed transmission pathways. These scale effects may be related both to the sound-producing mechanism and the auditory system of the receiver. Tiny insects have the special acoustic problem of communicating with only a small amount of available power. Some, such as fruit flies, communicate at low frequencies, at close range, by generating air currents; these currents may also be used to waft specific pheromones. Other small insects, such as Hemiptera, beetles, etc., communicate using substrate vibration. This enables long-range communication, but signal structure degrades with distance from the source; vibration signals tend to be confined to certain types of linear substrate, such as vegetation.  相似文献   

12.
Summary The inner ear of the leopard frog,Rana pipiens, receives sound via two separate pathways: the tympanic-columellar pathway and an extratympanic route. The relative efficiency of the two pathways was investigated. Laser interferometry measurements of tympanic vibration induced by free-field acoustic stimulation reveal a broadly tuned response with maximal vibration at 800 and 1500 Hz. Vibrational amplitude falls off rapidly above and below these frequencies so that above 2 kHz and below 300 Hz tympanic vibration is severely reduced. Electrophysiological measurements of the thresholds of single eighth cranial nerve fibers from both the amphibian and basilar papillae in response to pure tones were made in such a way that the relative efficiency of tympanic and extratympanic transmission could be assessed for each fiber. Thresholds for the two routes are very similar up to 1.0 kHz, above which tympanic transmission eventually becomes more efficient by 15–20 dB. By varying the relative phase of the two modes of stimulation, a reduction of the eighth nerve response can be achieved. When considered together, the measurements of tympanic vibration and the measurements of tympanic and extratympanic transmission thresholds suggest that under normal conditions in this species (1) below 300 Hz extratympanic sound transmission is the main source of inner ear stimulation; (2) for most of the basilar papilla frequency range (i.e., above 1.2 kHz) tympanic transmission is more important; and (3) both routes contribute to the stimulation of amphibian papilla fibers tuned between those points. Thus acoustic excitation of the an uran's inner ear depends on a complex interac tion between tympanic and extratympanic sound transmission.Abbreviations dB SPL decibels sound pressure level re: 20 N/ m2 - AP amphibian papilla - BP basilar papilla - BEF best excitatory frequency  相似文献   

13.
Turtles, like other amphibious animals, face a trade-off between terrestrial and aquatic hearing. We used laser vibrometry and auditory brainstem responses to measure their sensitivity to vibration stimuli and to airborne versus underwater sound. Turtles are most sensitive to sound underwater, and their sensitivity depends on the large middle ear, which has a compliant tympanic disc attached to the columella. Behind the disc, the middle ear is a large air-filled cavity with a volume of approximately 0.5 ml and a resonance frequency of approximately 500 Hz underwater. Laser vibrometry measurements underwater showed peak vibrations at 500-600 Hz with a maximum of 300 μm s(-1) Pa(-1), approximately 100 times more than the surrounding water. In air, the auditory brainstem response audiogram showed a best sensitivity to sound of 300-500 Hz. Audiograms before and after removing the skin covering reveal that the cartilaginous tympanic disc shows unchanged sensitivity, indicating that the tympanic disc, and not the overlying skin, is the key sound receiver. If air and water thresholds are compared in terms of sound intensity, thresholds in water are approximately 20-30 dB lower than in air. Therefore, this tympanic ear is specialized for underwater hearing, most probably because sound-induced pulsations of the air in the middle ear cavity drive the tympanic disc.  相似文献   

14.
The ability of auditory evoked potentials to follow sound pulse (click or pip) rate was studied in bottlenosed dolphins. Sound pulses were presented in 20-ms rhythmic trains separated by 80-ms pauses. Rhythmic click or pip trains evoked a quasi-sustained response consisting of a sequence of auditory brainstem responses. This was designated as the rate-following response. Rate following response peak-to-peak amplitude dependence on sound pulse rate was almost flat up to 200 s−1, then displayed a few peaks and valleys superimposed on a low-pass filtering function with a cut-off frequency of 1700 s−1 at a 0.1-amplitude level. Peaks and valleys of the function corresponded to the pattern of the single auditory brain stem response spectrum; the low-pass cut-off frequency was below the auditory brain stem response spectrum bandwidth. Rate-following response frequency composition (magnitudes of the fundamental and harmonics) corresponded to the auditory brain stem response frequency spectrum except for lower fundamental magnitudes at frequencies above 1700 Hz. These regularities were similar for both click and pip trains. The rate-following response to steady-state rhythmic stimulation was similar to the rate-following response evoked by short trains except for a slight amplitude decrease with the rate increase above 10 s−1. The latter effect is attributed to a long-term rate-dependent adaptation in conditions of the steady-state pulse stimulation. Accepted: 18 June 1998  相似文献   

15.
The combination of major resistance genes with quantitative resistance factors is hypothesized as a promising breeding strategy to preserve the durability of resistant cultivar, as recently observed in different pathosystems. Using the pepper (Capsicum annuum)/Potato virus Y (PVY, genus Potyvirus) pathosystem, we aimed at identifying plant genetic factors directly affecting the frequency of virus adaptation to the major resistance gene pvr23 and at comparing them with genetic factors affecting quantitative resistance. The resistance breakdown frequency was a highly heritable trait (h2=0.87). Four loci including additive quantitative trait loci (QTLs) and epistatic interactions explained together 70% of the variance of pvr23 breakdown frequency. Three of the four QTLs controlling pvr23 breakdown frequency were also involved in quantitative resistance, strongly suggesting that QTLs controlling quantitative resistance have a pleiotropic effect on the durability of the major resistance gene. With the first mapping of QTLs directly affecting resistance durability, this study provides a rationale for sustainable resistance breeding. Surprisingly, a genetic trade-off was observed between the durability of PVY resistance controlled by pvr23 and the spectrum of the resistance against different potyviruses. This trade-off seemed to have been resolved by the combination of minor-effect durability QTLs under long-term farmer selection.  相似文献   

16.
The experiments on the frog Rana temporaria isolated skin showed participation of autacoids in regulation of the epithelium water permeability and of the transepithelial ion transport. The removal of autacoids secreted by the cells into the Ringer solution at its internal surface with the aid of frequent replacements of this solution leads to an increased water permeability and to a decreased transepithelial potential difference. Inhibition of prostaglandin synthesis with 1 × 10–5 M indomethacin produces the frog skin depolarization. Addition of prostaglandin E2 to the Ringer solution at the internal surface of the frog skin is accompanied by a decrease of the osmotic permeability, hyperpolarization, and an increase of short-circuit current. The non-contradictory model is described of the role of autacoids in regulation of the frog skin functions connected with participation of the skin in the water–salt homeostasis.  相似文献   

17.
Isolated frog skins (without chorion) were incubated with 42K+ Ringer's solution, bathing the internal surface for 2 h.All the K+ contained in the frog skin was equilibrated in specific activity with external 42K+.The kinetics of the washout of 42K+ from the internal surface of the skin exhibits one fast and one slow exponential component.Amiloride reduces the release of 42K+ corresponding to both components without affecting the K+ content of the skin.Ouabain increases the loss of 42K+ of the slow component by 200%. Since the total K+ in the skin decreases to 25% of its original value both compartments are affected.The results suggest that two distinct functional compartments exist defined by two 42K+ release ratios and that because of the large K+ contents of these compartments both are intracellular.The relation with the transepithelial Na+ transport and the morphological identification of these compartments is discussed.  相似文献   

18.
The habitat ambient noise may exert an important selective pressure on frequencies used in acoustic communication by animals. A previous study demonstrated the presence of a match between the low-frequency quiet region of the stream ambient noise (termed ‘quiet window’) and the main frequencies used for sound production and hearing by two stream gobies (Padogobius bonelli, Gobius nigricans). The present study examines the spectral features of ambient noise in very shallow freshwater, brackish and marine habitats and correlates them to the range of dominant frequencies of sounds used by nine species of Mediterranean gobies reproducing in these environments. Ambient noise spectra of these habitats featured a low-frequency quiet window centered at 100 Hz (stream, sandy/rocky sea shore), or at 200 Hz (spring, brackish lagoon). The analysis of the ambient noise/sound spectrum relationships showed the sound frequencies matched the frequency band of the quiet window in the ambient noise typical of their own habitat. Analogous ambient noise/sound frequency relationships were observed in other shallow-water teleosts living in similar underwater environments. Conclusions may be relevant to the understanding of evolution of fish acoustic communication and hearing.  相似文献   

19.
Confocal scanning laser microscopy (CSLM) was used to demonstrate the attachment of Escherichia coli O157:H7 transformed with a plasmid encoding for green fluorescent protein (GFP) to the surface and within the internal structures of nonwaxed Red Delicious cv. apples. Apples at 2 or 25°C were inoculated with an E. coli O157:H7 cell suspension at 2 or 25°C. The effect of a negative temperature differential (cold inoculum, warm apple), a positive differential (warm inoculum, cold apple), and no differential (warm inoculum, warm apple), in combination with a pressure differential (atmospheric versus 10,130 Pa), on the attachment and infiltration of cells was determined. CSLM stereo images of external surfaces of apples subjected to all combinations of test parameters showed preferential cellular attachment to discontinuities in the waxy cuticle on the surface and to damaged tissue surrounding puncture wounds, where the pathogen was observed at depths up to 70 μm below the skin surface. Attachment to lenticels was sporadic but was occasionally observed at depths of up to 40 μm. Infiltration through the floral tube and attachment to seeds, cartilaginous pericarp, and internal trichomes were observed in all apples examined, regardless of temperature differential during inoculation. The pressure differential had no effect on infiltration or attachment of E. coli O157:H7. Image analysis to count cells at various depths within tissues was used to quantitatively compare the extent of infiltration into various apple structures as well as the effects of the temperature differential. Puncture wounds harbored greater numbers of the pathogen at greater depths than did other sites examined. Attachment or infiltration of cells was greater on the intact skin and in lenticels, russet areas, and the floral tube of apples inoculated under a negative temperature differential compared to those inoculated under no temperature differential. The results suggest that E. coli O157:H7 attached to internal core structures or within tissues of apples may evade decontamination treatments. Interventions designed to deliver disinfectants to these locations or to remove viable cells of E. coli O157:H7 and other pathogens from apples by other means need to be developed and validated.  相似文献   

20.
In view of the rapid extension of offshore wind farms, there is an urgent need to improve our knowledge on possible adverse effects of underwater sound generated by pile-driving. Mortality and injuries have been observed in fish exposed to loud impulse sounds, but knowledge on the sound levels at which (sub-)lethal effects occur is limited for juvenile and adult fish, and virtually non-existent for fish eggs and larvae. A device was developed in which fish larvae can be exposed to underwater sound. It consists of a rigid-walled cylindrical chamber driven by an electro-dynamical sound projector. Samples of up to 100 larvae can be exposed simultaneously to a homogeneously distributed sound pressure and particle velocity field. Recorded pile-driving sounds could be reproduced accurately in the frequency range between 50 and 1000 Hz, at zero to peak pressure levels up to 210 dB re 1μPa(2) (zero to peak pressures up to 32 kPa) and single pulse sound exposure levels up to 186 dB re 1μPa(2)s. The device was used to examine lethal effects of sound exposure in common sole (Solea solea) larvae. Different developmental stages were exposed to various levels and durations of pile-driving sound. The highest cumulative sound exposure level applied was 206 dB re 1μPa(2)s, which corresponds to 100 strikes at a distance of 100 m from a typical North Sea pile-driving site. The results showed no statistically significant differences in mortality between exposure and control groups at sound exposure levels which were well above the US interim criteria for non-auditory tissue damage in fish. Although our findings cannot be extrapolated to fish larvae in general, as interspecific differences in vulnerability to sound exposure may occur, they do indicate that previous assumptions and criteria may need to be revised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号