首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth arrest specific 1 (gas1) gene is highly expressed in quiescent mammalian cells (Schneider et al., 1988, Cell 54, 787-793). Overexpression of gas1 in normal and some cancer cell lines could inhibit G(0)/G(1) transition. Presently, we have examined the functions of this gene in the developing mouse embryo. The spatial-temporal expression patterns for gas1 were established in 8.5- to 14.5-day-old embryos by immunohistochemical staining and in situ hybridization. Gas1 was found heterogeneously expressed in most organ systems including the brain, heart, kidney, limb, lung, and gonad. The antiproliferative effects of gas1 on 10.5 and 12.5 day limb cells were investigated by flow cytometry. In 10.5 day limbs cells, gas1 overexpression could not prevent G(0)/G(1) progression. It was determined that gas1 could only induce growth arrest if p53 was also coexpressed. In contrast, gas1 overexpression alone was able to induce growth arrest in 12.5 day limb cells. We also examined the cell cycle profile of gas1-expressing and nonexpressing cells by immunochemistry and flow cytometry. For 10.5 day Gas1-expressing heart and limb cells, we did not find these cells preferentially distributed at G0/G1, as compared with Gas1-negative cells. However, in the 12.5 day heart and limb, we did find significantly more Gas1-expressing cells distributed at G0/G1 phase than Gas1-negative cells. These results implied that Gas1 alone, during the early stages of development, could not inhibit cell growth. This inhibition was only established when the embryo grew older. We have overexpressed gas1 in subconfluent embryonic limb cells to determine the ability of gas1 to cross-talk with various response elements of important transduction pathways. Specifically, we have examined the interaction of gas1 with Ap-1, NFkappaB, and c-myc responsive elements tagged with a SEAP reporter. In 10.5 day limb cells, gas1 overexpression had little effect on Ap-1, NFkappaB, and c-myc activities. In contrast, gas1 overexpression in 12.5 day limb cells enhanced AP-1 response while it inhibited NFkappaB and c-myc activities. These responses were directly associated with the ability of gas1 to induce growth arrest in embryonic limb cells. In the 12.5 day hindlimb, gas1 was found strongly expressed in the interdigital tissues. We overexpressed gas1 in these tissues and discovered that it promoted interdigital cell death. Our in situ hybridization studies of limb sections and micromass cultures revealed that, during the early stages of chondrogenesis, only cells surrounding the chondrogenic condensations expressed gas1. The gene was only expressed by chondrocytes after the cartilage started to differentiate. To understand the function of gas1 in chondrogenesis, we overexpressed the gene in limb micromass cultures. It was found that cells overexpressing gas1/GFP could not participate in cartilage formation, unlike cells that just express the GFP reporter. We speculated that the reason gas1 was expressed outside the chondrogenic nodules was to restrict cells from being recruited into the nodules and thereby defining the boundary between chondrogenic and nonchondrogenic forming regions.  相似文献   

2.
Interdigital tissue regression during embryonic development is one of the most representative model systems of morphogenetic cell death, but the degenerative cascade accounting for this process awaits clarification. Although the canonical apoptotic caspase pathway appears to be activated in the interdigital mesenchyme committed to die, neither genetic nor chemical blockage of caspases or their downstream effectors, is sufficient to prevent cell death. Hence, alternative and/or complementary dying pathways must also be responsible for this degenerative process. In this work we have chosen to study the endonucleases during the regression of the interdigital tissue of avian embryos to gain insights into the molecular mechanisms accounting for programmed cell death in this system. We show that caspase activated DNase, which is a neutral DNase associated with the caspase apoptotic pathway, appears to be the main endonuclease only at an initial phase of interdigit regression. However at peak stages of the degenerative process, the acidic DNases L-DNase II and lysosomal DNase IIB become predominant in the system and markers for cell autophagy become moderately up-regulated. Consistent with the activation of acidic endonucleases we observed that microenvironmental pH value in the interdigits decreased to levels only appropriate for acidic enzymes. Furthermore, we found that overexpression of lysosomal DNase IIB in embryonic limb mesoderm promoted cell death, which was also accompanied by up-regulation and activation of L-DNase II. Up-regulation of acidic DNases was maintained in interdigits explanted to culture dishes, where the participation of exogenous professional phagocytes of hematopoietic origin is avoided. Finally, and consistent with all our findings, up-regulation of acidic DNases was much reduced in the webbed interdigits of duck embryos, characterized by a rudimentary interdigital degenerative process. We conclude that the regression of the interdigital tissue involves a coordinated and sequential activation of the caspase and lysosomal degenerative molecular cascades.  相似文献   

3.
4.
Huang C  Hales BF 《Teratology》2002,66(6):288-299
BACKGROUND: Caspases play a pivotal role in the regulation and execution of apoptosis, an essential process during limb development. Caspase 8 activation is usually downstream of the Fas/FasL death receptors, whereas caspase 9 mediates the mitochondrial signaling pathway of apoptosis. Caspase 3 is an effector caspase. Previous studies have shown that the exposure of embryonic murine limbs in vitro to 4-hydroperoxycyclophosphamide (4-OOHCPA), an activated analog of the anticancer alkylating agent, cyclophosphamide, induced limb malformations and apoptosis. The goal of this study was to determine the role of caspases in mediating apoptosis in this model system. METHODS: Limb buds from gestational day 12 CD-1 mice were excised and cultured in roller bottles in a chemically defined medium for up to 6 days in the absence or presence of 4-OOHCPA. Apoptosis was indicated by internucleosomal DNA fragmentation, as detected by TUNEL staining. The profile of caspase activation was characterized by Western blot analysis and immunohistochemistry of control and treated limbs. To determine the consequences to limb morphology of inhibiting caspase activation, DEVD-CHO, a caspase-3 inhibitor, was added to the cultures. RESULTS: Limbs cultured in the presence of 4-OOHCPA were growth retarded and malformed; apoptosis was increased in the apical ectodermal ridge and interdigital areas. Western blot analysis showed that 4-OOHCPA exposure did not activate procaspases 8 or 9 in limbs. In contrast, procaspase-3 cleavage was increased in a concentration and time-dependent manner after exposure of limbs to 4-OOHCPA. Immunoreactive activated caspase-3 was localized in the interdigital areas and the apical ectodermal ridge region in control limbs; staining in these areas and in the interdigital areas was increased dramatically in limbs exposed to 4-OOHCPA. Inhibition of caspase 3 activation with DEVD-CHO partially protected limbs from insult with 4-OOHCPA. CONCLUSION: Caspase-dependent and caspase-independent pathways of cell death are both important is mediating the abnormal limb development triggered by insult with 4-OOHCPA.  相似文献   

5.
The caspase family of proteases represents the main machinery by which apoptosis occurs. In vitro studies have revealed that upstream caspases are activated in response to apoptotic stimuli, and the active caspases in turn process downstream effector caspases that are involved in the destruction of cellular structure. Caspase-9 is an upstream caspase that can become active in response to cellular damage, including deprivation of growth factors and exposure to oxidative stress in vitro. Little is known, however, about how activation of caspase-9 is temporally and spatially regulated in vivo, e.g. during development. We have identified vimentin as the first example of a caspase-9 substrate that is not a downstream procaspase. Immunohistochemical analysis, using a specific antibody against the vimentin fragments generated by caspase-9, showed that caspase-9 cleaves vimentin in apoptotic cells in the embryonic nervous system and the interdigital regions. This result is consistent with observations that gene knockouts of caspase-9 and its activator, Apaf-1, result in developmental defects in these tissues. Our results show that the specific antibody is useful for in situ detection of caspase-9 activation in programmed cell death.  相似文献   

6.
The developing limb serves as a paradigm for studying pattern formation and morphogenetic cell death. Here, we show that conditional deletion of N-Myc (Mycn) in the developing mouse limb leads to uniformly small skeletal elements and profound soft-tissue syndactyly. The small skeletal elements are associated with decreased proliferation of limb bud mesenchyme and small cartilaginous condensations, and syndactyly is associated with a complete absence of interdigital cell death. Although Myc family proteins have pro-apoptotic activity, N-Myc is not expressed in interdigital cells undergoing programmed cell death. We provide evidence indicating that the lack of interdigital cell death and associated syndactyly is related to an absence of interdigital cells marked by expression of Fgfr2 and Msx2. Thus, instead of directly regulating interdigital cell death, we propose that N-Myc is required for the proper generation of undifferentiated mesenchymal cells that become localized to interdigital regions and trigger digit separation when eliminated by programmed cell death. Our results provide new insight into mechanisms that control limb development and suggest that defects in the formation of N-Myc-dependent interdigital tissue may be a root cause of common syndromic forms of syndactyly.  相似文献   

7.
Tissue transglutaminase (tTG) is a Ca2+-dependent cross-linking enzyme that participates in the apoptotic machinery by irreversibly assembling a protein scaffold that prevents the leakage of intracellular components. In the present study a single-chain antibody fragment (scFv) detecting tTG is described. We demonstrate that TG/F8 scFv, selected from a phase display library of human V-gene segments by binding to guinea-pig liver tTG, can react with human tTG both in Western blot and in immunohistochemistry. The specific detection of tTG by TG/F8 in human thymocytes is verified by mass spectrometric analysis of the purified protein. Furthermore, we demonstrate that in lymphoid cells tTG is cleaved by caspase 3 during the late phase of apoptotic death, concomitant to DNA fragmentation, and that such cleavage causes loss of cross-linking function. We propose tTG cleavage as a valuable biochemical marker of caspase 3 activation during the late execution phase of apoptosis.  相似文献   

8.
We have investigated the role of FGFs in the control of programmed cell death during limb development by analyzing the effects of increasing and blocking FGF signaling in the avian limb bud. BMPs are currently considered as the signals responsible for cell death. Here we show that FGF signaling is also necessary for apoptosis and that the establishment of the areas of cell death is regulated by the convergence of FGF- and BMP-mediated signaling pathways. As previously demonstrated, cell death is inhibited for short intervals (12 hours) after administration of FGFs. However, this initial inhibition is followed (24 hours) by a dramatic increase in cell death, which can be abolished by treatments with a BMP antagonist (Noggin or Gremlin). Conversely, blockage of FGF signaling by applying a specific FGF-inhibitor (SU5402) into the interdigital regions inhibits both physiological cell death and that mediated by exogenous BMPs. Furthermore, FGF receptors 1, 2 and 3 are expressed in the autopodial mesoderm during the regression of the interdigital tissue, and the expression of FGFR3 in the interdigital regions is regulated by FGFs and BMPs in the same fashion as apopotosis. Together our findings indicate that, in the absence of FGF signaling BMPs are not sufficient to trigger apoptosis in the developing limb. Although we provide evidence for a positive influence of FGFs on BMP gene expression, the physiological implication of FGFs in apoptosis appears to result from their requirement for the expression of genes of the apoptotic cascade. We have identified MSX2 and Snail as candidate genes associated with apoptosis the expression of which requires the combined action of FGFs and BMPs.  相似文献   

9.
Programmed cell death in animals is usually associated with apoptotic morphology and requires caspase activation. Necrosis and caspase-independent cell death have been reported, but mostly in experimental conditions that lead some to question their existence it in vivo. Loss of interdigital cells in the mouse embryo, a paradigm of cell death during development [1], is known to include an apoptotic [2] and caspase-dependent [3] [4] mechanism. Here, we report that, when caspase activity was inhibited using drugs or when apoptosis was prevented genetically (using Hammertoe mutant mice, or mice homozygous for a mutation in the gene encoding APAF-1, a caspase-activating adaptor protein), interdigital cell death still occurred. This cell death was negative for the terminal-deoxynucleotidyl-mediated dUTP nick end-labelling (TUNEL) assay and there was no overall cell condensation. At the electron microscopy level, peculiar 'mottled' chromatin alterations and marked mitochondrial and membrane lesions, suggestive of classical necrotic cell death, were observed with no detectable phagocytosis and no local inflammatory response. Thus, in this developmental context, although caspase activity confers cell death with an apoptotic morphotype, in the absence of caspase activity an underlying mechanism independent of known caspases can also confer cell death, but with a necrotic morphotype. This cell death can go undetected when using apoptosis-specific methodology, and cannot be blocked by agents that act on caspases.  相似文献   

10.
Physiological cell death is a key mechanism that ensures appropriate development and maintenance of tissues and organs in multicellular organisms. Most structures in the vertebrate embryo exhibit defined areas of cell death at precise stages of development. In this regard the areas of interdigital cell death during limb development provide a paradigmatic model of massive cell death with an evident morphogenetic role in digit morphogenesis. Physiological cell death has been proposed to occur by apoptosis, cellular phenomena genetically controlled to orchestrate cell suicide following two main pathways, cytochrome C liberation from the mitochondria or activation of death receptors. Such pathways converge in the activation of cysteine proteases known as caspases, which execute the cell death program, leading to typical morphologic changes within the cell, termed apoptosis. According to these findings it would be expected that caspases loss of function experiments could cause inhibition of interdigital cell death promoting syndactyly phenotypes. A syndactyly phenotype is characterized by absence of digit freeing during development that, when caused by absence of interdigital cell death, is accompanied by the persistence of an interdigital membrane. However this situation has not been reported in any of the KO mice or chicken loss of function experiments ever performed. Moreover histological analysis of dying cells within the interdigit reveals the synchronic occurrence of different types of cell death. All these findings are indicative of caspase alternative and/or complementary mechanisms responsible for physiological interdigital cell death. Characterization of alternative cell death pathways is required to explain vertebrate morphogenesis. Today there is great interest in cell death via autophagy, which could substitute or act synergistically to the apoptotic pathway. Here we discuss what is known about physiological cell death in the developing interdigital tissue of vertebrate embryos, paying special attention to the avian species.  相似文献   

11.
Hypoxia is a condition in which the whole body or a region of the body is deprived of oxygen supply. The brain is very sensitive to the lack of oxygen and cerebral hypoxia can rapidly cause severe brain damage. Astrocytes are essential for the survival and function of neurons. Therefore, protecting astrocytes against cell death is one of the main therapeutic strategies for treating hypoxia. Hence, the mechanism of hypoxia‐induced astrocytic cell death should be fully elucidated. In this study, astrocytes were exposed to hypoxic conditions using a hypoxia work station or the hypoxia mimetic agent cobalt chloride (CoCl2). Both the hypoxic gas mixture (1% O2) and chemical hypoxia‐induced apoptotic cell death in T98G glioblastoma cells and mouse primary astrocytes. Reactive oxygen species were generated in response to the hypoxia‐mediated activation of caspase‐1. Active caspase‐1 induced the classical caspase‐dependent apoptosis of astrocytes. In addition, the microRNA processing enzyme Dicer was cleaved by caspase‐3 during hypoxia. Knockdown of Dicer using antisense oligonucleotides induced apoptosis of T98G cells. Taken together, these results suggest that astrocytic cell death during hypoxia is mediated by the reactive oxygen species/caspase‐1/classical caspase‐dependent apoptotic pathway. In addition, the decrease in Dicer levels by active caspase‐3 amplifies this apoptotic pathway via a positive feedback loop. These findings may provide a new target for therapeutic interventions in cerebral hypoxia.  相似文献   

12.
Inhibitor of apoptosis (IAP) gene products play an evolutionarily conserved role in regulating programmed cell death in diverse species ranging from insects to humans. Human XIAP, cIAP1 and cIAP2 are direct inhibitors of at least two members of the caspase family of cell death proteases: caspase-3 and caspase-7. Here we compared the mechanism by which IAPs interfere with activation of caspase-3 and other effector caspases in cytosolic extracts where caspase activation was initiated by caspase-8, a proximal protease activated by ligation of TNF-family receptors, or by cytochrome c, which is released from mitochondria into the cytosol during apoptosis. These studies demonstrate that XIAP, cIAP1 and cIAP2 can prevent the proteolytic processing of pro-caspases -3, -6 and -7 by blocking the cytochrome c-induced activation of pro-caspase-9. In contrast, these IAP family proteins did not prevent caspase-8-induced proteolytic activation of pro-caspase-3; however, they subsequently inhibited active caspase-3 directly, thus blocking downstream apoptotic events such as further activation of caspases. These findings demonstrate that IAPs can suppress different apoptotic pathways by inhibiting distinct caspases and identify pro-caspase-9 as a new target for IAP-mediated inhibition of apoptosis.  相似文献   

13.
Coxsackievirus B3 (CVB3), an enterovirus in the family Picornaviridae, induces cytopathic changes in cell culture systems and directly injures multiple susceptible organs and tissues in vivo, including the myocardium, early after infection. Biochemical analysis of the cell death pathway in CVB3-infected HeLa cells demonstrated that the 32-kDa proform of caspase 3 is cleaved subsequent to the degenerative morphological changes seen in infected HeLa cells. Caspase activation assays confirm that the cleaved caspase 3 is proteolytically active. The caspase 3 substrates poly(ADP-ribose) polymerase, a DNA repair enzyme, and DNA fragmentation factor, a cytoplasmic inhibitor of an endonuclease responsible for DNA fragmentation, were degraded at 9 h following infection, yielding their characteristic cleavage fragments. Inhibition of caspase activation by benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (ZVAD.fmk) did not inhibit the virus-induced cytopathic effect, while inhibition of caspase activation by ZVAD.fmk in control apoptotic cells induced by treatment with the porphyrin photosensitizer benzoporphyrin derivative monoacid ring A and visible light inhibited the apoptotic phenotype. Caspase activation and cleavage of substrates may not be responsible for the characteristic cytopathic effect produced by picornavirus infection yet may be related to late-stage alterations of cellular homeostatic processes and structural integrity.  相似文献   

14.
In the developing chick leg bud, massive programmed cell death occurs in the interdigital region. Previously, we reported the inhibition of cell death by separation of the interdigital region from neighboring digit cartilage. In this study, we examined the relationship between cell death and cartilaginous tissue in vitro. First, cell fate was observed with DiI that was used to examine cell movement in the distal tip of leg bud. Labeled cells in the prospective digital region were distributed only in the distal region as a narrow band, while cells in the prospective interdigital region expanded widely in the interdigit. In coculture of monolayer cells and a cell pellet tending to differentiate into cartilage, monolayer cells migrated into the cell pellet. These results suggested that digit cartilage tends to recruit neighboring cells into the cartilage during limb development. Next, we observed the relationship between cell death and chondrogenesis in monolayer culture. Apoptotic cell death that could be detected by TUNEL occurred in regions between cartilaginous nodules in mesenchymal cell culture. More apoptotic cell death was detected in the cell culture of leg bud mesenchyme of stage 25/26 than that of leg bud mesenchyme of stage 22 or that of stage 28. The most developed cartilaginous nodules were observed in the cell culture of stage 25/26. Finally, we observed Bmp expression in vitro and in vivo. Bmp-2, Bmp-4 and Bmp-7 were detected around the cartilage nodules. When the interdigit was separated from neighboring digit cartilage, Bmp-4 expression disappeared near the cut region but remained near the digit cartilage. This correlation between cell death and cartilaginous region suggests that cartilage tissue can induce apoptotic cell death in the developing chick limb bud due to cell migration accompanying chondrogenesis and Bmp expression.  相似文献   

15.
Apoptosis: checkpoint at the mitochondrial frontier.   总被引:17,自引:0,他引:17  
Apoptosis, an evolutionarily conserved form of cell death, requires a regulated program. Central to the apoptotic program is a family of cysteine proteases, known as caspases, that cleave a subset of cellular proteins, resulting in the stereotypic morphological changes of apoptotic cell death. In living cells caspases are present as inactive zymogens and become activated in response to pro-apoptotic stimuli. Mitochondria participate in the activation of caspases by releasing cytochrome c into the cytosol where it binds to the adaptor molecule Apaf-1 (apoptotic protease activating factor 1) and causes its oligomerization. This renders Apaf-1 competent to recruit and activate the cell death initiator caspase, pro-caspase-9. Once caspase-9 is activated, it cleaves and activates downstream cell death effector caspases. Bcl-2, an apoptosis inhibitor localized to mitochondrial outer membranes, prevents cytochrome c release, caspase activation and cell death. This review discusses recent advances on the role of mitochondria and cytochrome c in the central pathway leading to apoptotic cell death.  相似文献   

16.
Nicotera P 《IUBMB life》2000,49(5):421-425
The execution of the apoptotic programme involves a relatively few pathways that converge on activation of the caspase family of proteases. However, increasing evidence indicates that apoptotic-like features can be found also when cells are treated with inhibitors of caspases. This has posed questions as to whether death with apoptotic features can still occur in a caspase-independent way, and whether caspase inhibitors may then be used to prevent excess apoptosis in disease. Metabolic defects, loss of neuronal connectivity and cell loss characterise several neurodegenerative diseases. Targeting excessive cell demise may be one therapeutic strategy. However, loss of connectivity and neurite regression may not be part of the apoptotic programme, and degenerating neurons might use multiple execution pathways. In addition, metabolic defects leading to ATP depletion can preclude caspase activation and consequently switch execution of cell death towards necrosis. The possibility of inhibiting apoptosis as strategy to treat neurodegenerative disease is discussed in this review.  相似文献   

17.
The amyloid beta-protein precursor (APP) is proteolytically cleaved to generate the amyloid beta-protein (Abeta), the principal constituent of senile plaques found in Alzheimer's disease (AD). In addition, Abeta in its oligomeric and fibrillar forms have been hypothesized to induce neuronal toxicity. We and others have previously shown that APP can be cleaved by caspases at the C-terminus to generate a potentially cytotoxic peptide termed C31. Furthermore, this cleavage event and caspase activation were increased in the brains of AD, but not control, cases. In this study, we show that in cultured cells, Abeta induces caspase cleavage of APP in the C-terminus and that the subsequent generation of C31 contributes to the apoptotic cell death associated with Abeta. Interestingly, both Abeta toxicity and C31 pathway are dependent on the presence of APP. Both APP-dependent Abeta toxicity and C31-induced apoptotic cell death involve apical or initiator caspases-8 and -9. Our results suggest that Abeta-mediated toxicity initiates a cascade of events that includes caspase activation and APP cleavage. These findings link C31 generation and its potential cell death activity to Abeta cytotoxicity, the leading mechanism proposed for neuronal death in AD.  相似文献   

18.
Sequential activation of caspases is critical for the execution of apoptosis. Recent evidence suggests caspase 2 is a significant upstream caspase capable of initiating mitochondrial events, such as the release of cytochrome c. In particular, in vitro studies using recombinant proteins have shown that cleaved caspase 2 can induce mitochondrial outer membrane permeabilization directly or by cleaving the BH3-only protein BID (BH3 interacting domain death agonist). However, whether interchain cleavage or activation of procaspase 2 occurs prior to Apaf-1-mediated procaspase 9 activation under more natural conditions remains unresolved. In the present study, we show that Apaf-1-deficient Jurkat T-lymphocytes and mouse embryonic fibroblasts were highly resistant to DNA-damage-induced apoptosis and failed to cleave or activate any apoptotic procaspase, including caspase 2. Significantly, drug-induced cytochrome c release and loss of mitochondrial membrane potential were inhibited in cells lacking Apaf-1. By comparison, procaspase proteolysis and apoptosis were only delayed slightly in Apaf-1-deficient Jurkat cells upon treatment with anti-Fas antibody. Our data support a model in which Apaf-1 is necessary for the cleavage or activation of all procaspases and the promotion of mitochondrial apoptotic events induced by genotoxic drugs.  相似文献   

19.
Activation of pro-caspase-3 is a central event in the execution phase of apoptosis and appears to serve as the convergence point of different apoptotic signaling pathways. Recently, mitochondria were found to play a central role in apoptosis through release of cytochrome c and activation of caspases. Moreover, a sub-population of pro-caspase-3 has been found to be localized to this organelle. In the present study, we demonstrate that pro-caspase-3 is present in the mitochondrial fraction of Jurkat T cells in a complex with the chaperone proteins Hsp60 and Hsp10. Induction of apoptosis with staurosporine led to the activation of mitochondrial pro-caspase-3 and its dissociation from the Hsps which were released from mitochondria. The release of Hsps occurred simultaneously with the release of other mitochondrial intermembrane space proteins including cytochrome c and adenylate kinase, prior to a loss of mitochondrial transmembrane potential. In in vitro systems, recombinant Hsp60 and Hsp10 accelerated the activation of pro-caspase-3 by cytochrome c and dATP in an ATP-dependent manner, consistent with their function as chaperones. This finding suggests that the release of mitochondrial Hsps may also accelerate caspase activation in the cytoplasm of intact cells.  相似文献   

20.
The developing limb bud provides one of the best examples in which programmed cell death exerts major morphogenetic functions. In this work, we revise the distribution and the developmental significance of cell death in the embryonic vertebrate limb and its control by the BMP signalling pathway. In addition, paying special attention to the interdigital apoptotic zones, we review current data concerning the intracellular death machinery implicated in mesodermal limb apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号