首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel raw-starch-digesting and cold-adapted alpha-amylases (Amy I and Amy II) from the earthworm Eisenia foetida were purified to electrophoretically homogeneous states. The molecular weights of both purified enzymes were estimated to be 60,000 by SDS-PAGE. The enzymes were most active at pH 5.5 and 50 degrees C and stable at pH 7.0-9.0 and 50-60 degrees C. Both Amy I and II exhibited activities at 10 degrees C. The enzymes were inhibited by metal ions Cu(2+), Fe(2+), and Hg(2+), and hydrolyzed raw starch into glucose, maltose and maltotriose as end products.  相似文献   

2.
Enzymes I and II, which have a high soymilk-clotting activity, produced from K-295G-7 were purified by chromatographies on Sephadex G-100, CM-cellulose, hydroxylapatite, and 2nd Sephadex G-100.

The two purified enzymes were found to be homogeneous by polyacrylamide gel elec-trophoresis (PAGE) at pH 4.3. The molecular weights of enzymes I and II were 28,000 and 29,500 by SDS-PAGE, and their isoelectric points were 9.22 and 9.45, respectively. Enzymes I and II coagulated soymilk optimally at 65°C and were stable up to 45°C. Both enzymes were most active at pH 5.8, for soymilk coagulation between pH 5.8 to 6.7, and were stable with about 50 ~ 100% of the original activity from pH 5 to 10.

Each of the purified enzymes was a serine protease with an optimum pH of 9.0 for soy protein isolate (SPI) and casein digestions, because these enzymes were inhibited completely by diisopropylfluoro-phosphate (DFP).

The soymilk-clotting activity to proteolytic activity ratio of the enzyme II was 3 times higher than that of enzyme I. Enzymes I and II were more sensitive to the calcium ion concentration in soymilk than bromelain is.  相似文献   

3.
The extracellular amylolytic system of Filobasidium capsuligenum consisted of an alpha-amylase (1,4-alpha-d-glucan glucanhydrolase, EC 3.2.1.1) and two forms of glucoamylase (1,4-alpha-d-glucan glucohydrolase, EC 3.2.1.3). The enzymes were purified by ammonium sulfate fractionation, repeated ion-exchange chromatography (DEAE-Sephadex A-50), and gel filtration (Sephadex G-25, Sephadex G-100 sf). alpha-Amylase had an optimum pH of 5.6 and an optimum temperature of 50 degrees C but was rapidly inactivated at higher temperature. The molecular weight was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 64,000. An acarbose concentration of 20 mug/ml was required for 50% inhibition of the alpha-amylase. Both glucoamylases are glycoproteins of identical molecular weight (60,000) and produce only glucose by exohydrolysis. The debranching activity of the glucoamylases was evidenced with substrates containing alpha-1,6 linkages. The pH optima were 5.0 to 5.6 for glucoamylase I and 4.8 to 5.3 for glucoamylase II. Glucoamylase I had a higher optimum temperature (55 degrees C) than glucoamylase II (50 degrees C) and was also more resistant to thermal inactivation. Only low acarbose concentrations (<0.1 mug/ml) were required to reduce the activity of the glucoamylases by 50%.  相似文献   

4.
A strain of Aspergillus giganteus cultivated in a medium with xylan produced two xylanases (xylanase I and II) which were purified to homogeneity. Their molar mass, estimated by SDS-PAGE, were 21 and 24 kDa, respectively. Both enzymes are glycoproteins with 50 degrees C temperature optimum; optimum pH was 6.0-6.5 for xylanase I and 6.0 for xylanase II. At 50 degrees C xylanase I exhibited higher thermostability than xylanase II. Hg2+, Cu2+ and SDS were strong inhibitors, 1,4-dithiothreitol stimulated the reaction of both enzymes. Both xylanases are xylan-specific; kinetic parameters indicated higher efficiency in the hydrolysis of oat spelts xylan. In hydrolysis of this substrate, xylotriose, xylotetraose and larger xylooligosaccharides were released and hence the enzymes were classified as endoxylanases.  相似文献   

5.
Two methyl viologen hydrogenase (MVH) enzymes from Methanobacterium thermoautotrophicum delta H have been separated (resolution, Rs at 1.0) on a Mono Q column after chromatography on DEAE-Sephacel and Superose 6 Prep Grade. The newly discovered MVH (MVH II) was eluted at 0.5 M NaCl with a linear gradient of 0.45 to 0.65 M NaCl (100 ml). The previously described MVH (MVH I) eluted in a NaCl gradient at 0.56 M. The specific activities of MVH I and MVH II were 184.8 and 61.3 U/mg of protein, respectively, when enzyme activity was compared at pH 7.5, the optimal pH for MVH II. Gel electrophoresis in nondenaturing systems indicated that MVH I and MVH II had a similar molecular mass of 145 kDa. Denatured MVH II showed four protein bands (alpha, 50 kDa; beta, 44 kDa; gamma, 36 kDa; delta, 15 kDa), similar to MVH I. The N-terminal amino acid sequences of the alpha, gamma, and delta subunits of MVH II were identical with the sequences of the equivalent subunits of MVH I. However, the N-terminal amino acid sequence of the beta subunit of MVH II was totally different from the sequence of the beta subunit of MVH I. Both MVH I and MVH II had the same optimal temperature of 60 degrees C for maximum activity. The pH optima of MVH I and MVH II were 9.0 and 7.5, respectively. Most of the divalent metal ions tested significantly inhibited MVH I activity, but MVH II activity was only partially inhibited by some divalent cations. Both hydrogenases were shown to be stable for over 8 days at --20 degrees C under anaerobic conditions. When exposed to air, 90% of MVH I activity was lost within 2 min; however, MVH II lost only 50% of its activity in 3 h.  相似文献   

6.
Alpha-Amylase (EC 3.2.1.1) was purified from the muscle and intestine of the parasitic helminth of pigs Ascaris suum. The enzymes from the two sources differed in their properties. Isoelectric focusing revealed one form of a-amylase from muscles with pl of 5.0, and two forms of amylase from intestine with pI of 4.7 and 4.5. SDS/PAGE suggested a molecular mass of 83 kDa and 73 kDa for isoenzymes of a-amylases from intestine and 59 kDa for the muscle enzyme. Alpha-Amylase from intestine showed maximum activity at pH 7.4, and the enzyme from muscle at pH 8.2. The muscle enzyme was more thermostabile than the intestinal alpha-amylase. Both the muscle and intestine amylase lost half of its activity after 15 min at 70 degrees C and 50 degrees C, respectively. The Km values were: for muscle amylase 0.22 microg/ml glycogen and 3.33 microg/ml starch, and for intestine amylase 1.77 microg/ml glycogen and 0.48 microg/ml starch. Both amylases were activated by Ca2+ and inhibited by EDTA, iodoacetic acid, p-chloromercuribenzoate and the inhibitor of a-amylase from wheat. No significant differences were found between the properties of a-amylases from parasites and from their hosts.  相似文献   

7.
Two distinct extracellular alpha-L-arabinofuranosidases (AFases; EC 3.2.1.55) were purified from the culture filtrate of Penicillium chrysogenum 31B. The molecular masses of the enzymes were estimated to be 79 kDa (AFQ1) and 52 kDa (AFS1) by SDS-PAGE. Both enzymes had their highest activities at 50 degrees C and were stable up to 50 degrees C. Enzyme activities of AFQ1 and AFS1 were highest at pH 4.0 to 6.5 and pH 3.3 to 5.0, respectively. Addition of 10 mg/ml arabinose to the reaction mixture decreased the AFS1 activity but hardly affected AFQ1. Both enzymes displayed broad substrate specificities; they released arabinose from branched arabinan, debranched arabinan, arabinoxylan, arabinogalactan, and arabino-oligosaccharides. AFS1 also showed low activity towards p-nitrophenyl-beta-D-xylopyranoside. An exo-arabinanase, which catalyzes the release of arabinobiose from linear arabinan at the nonreducing terminus, acted synergistically with both enzymes to produce L-arabinose from branched arabinan.  相似文献   

8.
9.
Two monofunctional NiFeS carbon monoxide (CO) dehydrogenases, designated CODH I and CODH II, were purified to homogeneity from the anaerobic CO-utilizing eubacterium Carboxydothermus hydrogenoformans. Both enzymes differ in their subunit molecular masses, N-terminal sequences, peptide maps, and immunological reactivities. Immunogold labeling of ultrathin sections revealed both CODHs in association with the inner aspect of the cytoplasmic membrane. Both enzymes catalyze the reaction CO + H(2)O --> CO(2) + 2 e(-) + 2 H(+). Oxidized viologen dyes are effective electron acceptors. The specific enzyme activities were 15,756 (CODH I) and 13,828 (CODH II) micromol of CO oxidized min(-1) mg(-1) of protein (methyl viologen, pH 8.0, 70 degrees C). The two enzymes oxidize CO very efficiently, as indicated by k(cat)/K(m) values at 70 degrees C of 1.3. 10(9) M(-1) CO s(-1) (CODH I) and 1.7. 10(9) M(-1) CO s(-1) (CODH II). The apparent K(m) values at pH 8.0 and 70 degrees C are 30 and 18 microM CO for CODH I and CODH II, respectively. Acetyl coenzyme A synthase activity is not associated with the enzymes. CODH I (125 kDa, 62.5-kDa subunit) and CODH II (129 kDa, 64.5-kDa subunit) are homodimers containing 1.3 to 1.4 and 1.7 atoms of Ni, 20 to 22 and 20 to 24 atoms of Fe, and 22 and 19 atoms of acid-labile sulfur, respectively. Electron paramagnetic resonance (EPR) spectroscopy revealed signals indicative of [4Fe-4S] clusters. Ni was EPR silent under any conditions tested. It is proposed that CODH I is involved in energy generation and that CODH II serves in anabolic functions.  相似文献   

10.
Streptomyces strain 3B constitutively secreted collagenolytic enzymes during the post-exponential growth phase. Purification is described here leading to two collagenases (I and II) with specific activity of 3350 and 3600 U/mg, respectively, the highest activity obtained as yet for any streptomycete collagenase. Analysis of the purified enzymes by the method of zymography revealed that both I and II were homogeneous, with molar mass 116 and 97 kDa, respectively. Both collagenases were identical in their pH (7.5) and temperature optimum (37 degrees C). The inhibition profile of the enzymes by EDTA and 1,10-phenanthroline confirmed these enzymes to be metalloproteinases. By testing the activity with insoluble collagen, acid soluble collagen, gelatin, casein, elastin and Pz-PLGPR it was established that I and II are very specific for insoluble collagen and gelatin, showing a high activity toward acid soluble collagen and Pz-PLGPR. However, collagenases I and II failed to hydrolyze casein and elastin; they belong to true collagenases and resemble the clostridial enzymes.  相似文献   

11.
A major beta-glucosidase I and a minor beta-glucosidase II were purified from culture filtrates of the fungus Trichoderma reesei grown on wheat straw. The enzymes were purified using CM-Sepharose CL-6B cation-exchange and DEAE Bio-Gel A anion-exchange chromatography steps, followed by Sephadex G-75 gel filtration. The isolated enzymes were homogeneous in SDS-polyacrylamide gel electrophoresis and isoelectric focusing. beta-Glucosidase I (71 kDa) was isoelectric at pH 8.7 and contained 0.12% carbohydrate; beta-glucosidase II (114 kDa) was isoelectric at pH 4.8 and contained 9.0% carbohydrate. Both enzymes catalyzed the hydrolysis of cellobiose and p-nitrophenyl-beta-D-glucoside (pNPG). The Km and kcat/Km values for cellobiose were 2.10 mM, 2.45.10(4) s-1 M-1 (beta-glucosidase I) and 11.1 mM, 1.68.10(3) s-1 M-1 (beta-glucosidase II). With pNPG as substrate the Km and kcat/Km values were 182 microM, 7.93.10(5) s-1 M-1 (beta-glucosidase I) and 135 microM, 1.02.10(6) s-1 M-1 (beta-glucosidase II). The temperature optimum was 65-70 degrees C for beta-glucosidase I and 60 degrees C for beta-glucosidase II, the pH optimum was 4.6 and 4.0, respectively. Several inhibitors were tested for their action on both enzymes. beta-Glucosidase I and II were competitively inhibited by desoxynojirimycin, gluconolactone and glucose.  相似文献   

12.
Syncephalastrum racemosum Cohn. produces an extracellular xylanase that was shown to potentially bleach pulp at pH 10 and 50 degrees C. The enzyme was found to be a dimer with an apparent molecular weight of 29 kDa as determined by SDS-PAGE. The optimum activity was found at two pH values 8.5 and 10.5; however the activity sharply decreased below pH 6 and above pH 10.5. The enzyme was stable for 72 h at pH 10.5 and at 50 degrees C. Kinetic experiments at 50 degrees C gave V(max) and K(m) of 1,400 U/ml min(-1) mg(-1) protein and 0.05 mg/ml respectively. The enzyme had no apparent requirement for cofactors, and its activity was strongly inhibited by group II b metal ions like Zn2+, Hg2+, etc. Xylan completely protected the enzyme from being inactivated by N-bromosuccinimide.  相似文献   

13.
Two types of alkaline serine proteases were isolated from the culture filtrate of an alkalophilic actinomycete, Nocardiopsis dassonvillei OPC-210. The enzymes (protease I and protease II) were purified by acetone precipitation, DEAE-Sephadex A-50, CM-Sepharose CL-6B, Sephadex G-75 and phenyl-Toyopearl 650 M column chromatography. The purified enzymes showed a single band on sodium dodecyl sulphate polyacrylamide gel electrophoresis. The molecular weights of proteases I and II were 21,000 and 36,000, respectively. The pIs were 6.4 (protease I) and 3.8 (protease II). The optimum pH levels for the activity of two proteases were pH 10-12 (protease I) and pH 10.5 (protease II). The optimum temperture for the activity of protease I was 70 degrees C and that for protease II was 60 degrees C. Protease I was stable in the range of pH 4.0-8.0 up to 60 degrees C and protease II was stable in the range of pH 6.0-12.0 up to 50 degrees C.  相似文献   

14.
Five endoglucanases (1,4-beta-D-glucan-glucanohydrolase, EC 3.2.1.4) were isolated from Fusarium lini. Endo I and II were purified by preparative gel electrophoresis and Endo III, IV, and V were purified in a single-step procedure involving preparative flat-bed isoelectric focusing. All the endoglucanases were homogenous on disk gel electrophoresis and analytical isoelectric focusing in polyacrylamide gel. The pi values were between 6 and 6.6 for Endo III, IV, and V; for Endo I, the pi value was 8. The molecular weights of the enzymes were between 4 x 10(4) and 6.5 x 10(4). The K(m) values for endoglucanases using carboxymethyl cellulose (CM-cellulose) as the substrate were 2-12 mg/mL. The specificity of the enzymes was restricted to beta-1, 4-linkages. All the enzymes showed activity towards D-xylan. The endoglucanases had high viscosity reducing activity with CM-cellulose. Striking synergism was observed for the hydrolysis of CM-cellulose by endoglucanases. Endo II, IV, and V attacked cellopentaose and cellotetraose more readily than cellotriose. Endo II and V hydrolyzed cellotriose, cellotetraose, and cellopentaose, yielding a mixture of cellobiose with a trace amount of glucose; endo IV produced only cellobiose.  相似文献   

15.
探索获得优良的新型普鲁兰酶基因,丰富普鲁兰酶理论,对实现普鲁兰酶国产化具有重要意义。分析GenBank数据库中蜡样芽胞杆菌假定Ⅰ型、Ⅱ型普鲁兰酶基因序列,从实验室保藏的蜡样芽胞杆菌Bacilluscereus GXBC-3中克隆得到3个普鲁兰酶基因pulA、pulB、pulC,并分别导入大肠杆菌进行胞内诱导表达。纯化重组酶酶学性质研究表明重组酶PulA能水解α-l,6-和α-l,4-糖苷键,为Ⅱ型普鲁兰酶,以普鲁兰糖为底物时,最适反应温度及pH分别为40℃和6.5,比活力为32.89 U/mg;以可溶性淀粉为底物时,最适反应温度及pH分别为50℃和7.0,比活力为25.71 U/mg。重组酶PulB和PulC二者均只能水解α-l,6-糖苷键,为I型普鲁兰酶,以普鲁兰糖为底物时,其最适反应温度及pH分别为45℃、7.0和45℃、6.5,比活力分别为228.54 U/mg和229.65 U/mg。  相似文献   

16.
Two acetyl esterases (EC 3.1.1.6) were purified to gel electrophoretic homogeneity from Thermoanaerobacterium sp. strain JW/SL-YS485, an anaerobic, thermophilic endospore former which is able to utilize various substituted xylans for growth. Both enzymes released acetic acid from chemically acetylated larch xylan. Acetyl xylan esterases I and II had molecular masses of 195 and 106 kDa, respectively, with subunits of 32 kDa (esterase I) and 26 kDa (esterase II). The isoelectric points were 4.2 and 4.3, respectively. As determined by a 2-min assay with 4-methylumbelliferyl acetate as the substrate, the optimal activity of acetyl xylan esterases I and II occurred at pH 7.0 and 80 degrees C and at pH 7.5 and 84 degrees C, respectively. Km values of 0.45 and 0.52 mM 4-methylumbelliferyl acetate were observed for acetyl xylan esterases I and II, respectively. At pH 7.0, the temperatures for the 1-h half-lives for acetyl xylan esterases I and II were 75 degrees and slightly above 100 degrees C, respectively.  相似文献   

17.
Six endoglucanases (Endo I; II; III; IV; V; VI), three exoglucanases (Exo I; II; III) and a beta-glucosidase (beta-gluc I) were isolated from a commercial cellulase preparation derived from Trichoderma viride, using gel filtration on Bio-Gel, anion exchange on DEAE-Bio-Gel A, cation exchange on SE-Sephadex and affinity chromatography on crystalline cellulose. Molecular masses were determined by polyacrylamide gel electrophoresis. One group of endoglucanases (Endo I, Endo II and Endo IV) with Mr of 50 000, 45 000 and 23 500 were more random in their attack on carboxymethylcellulose than another group (Endo III, Endo V and Endo VI) showing Mr of 58 000, 57 000 and 53 000 respectively. Endo III was identified as a new type of endoglucanase with relatively high activity on crystalline cellulose and moderate activity on carboxymethylcellulose. Exo II and Exo III with Mr of 60 500 and 62 000 respectively showed distinct adsorption affinities on a column of crystalline cellulose and could be eluted by a pH gradient to alkaline regions. These enzymes were cellobiohydrolases as judged by high-pressure liquid chromatography of the products obtained from incubation with H3PO4-swollen cellulose. It was concluded that these exoglucanases are primarily active on newly generated chain ends. Exo I was essentially another type of exoglucanase which in the first instance was able to split off a cellobiose molecule from a chain end and then hydrolyse this molecule in a second step to two glucose units beta-Gluc I was a new type of aryl-beta-D-glucosidase which had no activity on cellobiose. The enzyme had a Mr of 76 000 and was moderately active on CM-cellulose, crystalline cellulose and xylan and highly active on p-nitrophenyl-beta-D-glucose and p-nitrophenyl-beta-D-xylose.  相似文献   

18.
A protease-producing, crude oil degrading marine isolate was identified as Nocardiopsis sp. on the basis of the morphology, cell wall composition, mycolic acid analysis and DNA base composition. The Nocardiopsis produces two extracellular proteases, both of which are alkaline serine endopeptidases. Protease I was purified to homogeneity by chromatography on CM-Sephadex at pH 5.0 and pH 9.0. Protease II was purified using DEAE-cellulose, Sephadex G-50, phenyl-Sepharose and hydroxyapatite chromatography. Protease I and II had almost similar M(r) of 21 kDa (Protease I) and 23 kDa (Protease II), pI of 8.3 and 7.0 respectively with pH and temperature optima for activity between 10.0 and 11.0 and about 60 degrees C. Specific activities were 152 and 14 U/mg respectively on casein. However, Protease I was antigenically unrelated to Protease II. Both proteases were endopeptidases and required extended substrate binding for catalysis. Both proteases had collagenolytic and fibrinolytic activity but only Protease I had elastinolytic activity. The proteases were chymotrypsin-like with respect to their amino acid compositions and N-terminal sequences.  相似文献   

19.
A beta-galactosidase isoenzyme, beta-Gall, from Bifidobacterium infantis HL96, was expressed in Escherichia coli and purified to homogeneity. The molecular mass of the beta-Gall subunit was estimated to be 115 kDa by SDS-PAGE. The enzyme appeared to be a tetramer, with a molecular weight of about 470 kDa by native PAGE. The optimum temperature and pH for o-nitrophenyl-beta-D-galactopyranoside (ONPG) and lactose were 60 degrees C, pH 7.5, and 50 degrees C, pH 7.5, respectively. The enzyme was stable over a pH range of 5.0-8.5, and remained active for more than 80 min at pH 7.0, 50 degrees C. The enzyme activity was significantly increased by reducing agents. Maximum activity required the presence of both Na+ and K+, at a concentration of 10 mM. The enzyme was strongly inhibited by p-chloromercuribenzoic acid, divalent metal cations, and Cr3+, and to a lesser extent by EDTA and urea. The hydrolytic activity using lactose as a substrate was significantly inhibited by galactose. The Km, and Vmax values for ONPG and lactose were 2.6 mM, 262 U/mg, and 73.8 mM, 1.28 U/mg, respectively. beta-Gall possesses strong transgalactosylation activity. The production rate of galactooligosaccharides from 20% lactose at 30 and 60 degrees C was 120 mg/ml, and this rate increased to 190 mg/ml when 30% lactose was used.  相似文献   

20.
Three kinds of prenylated flavonols, icariside I, icariside II, and icaritin, were isolated from an icariin hydrolysate and their effects on melanogenesis evaluated based on mushroom tyrosinase inhibition and quantifying the melanin contents in melanocytes. Although none of the compounds had an effect on tyrosinase activity, icariside II and icaritin both effectively inhibited the melanin contents with an IC50 of 10.53 and 11.13 MM, respectively. Whereas icariside II was obtained from a reaction with beta-glucosidase and cellulase, the icariin was not completely converted into icariside II. Thus, for the high-purity production of icariside II, the reaction was optimized using the response surface methodology, where an enzyme concentration of 5.0 mg/ml, pH 7, 37.5 degrees C;, and 8 h reaction time were selected as the central conditions for the central composite design (CCD) for the enzymatic hydrolysis of icariin into icariside II using cellulase. Empirical models were developed to describe the relationships between the operating factors and the response (icariside II yield). A statistical analysis indicated that all four factors had a significant effect (p<0.01) on the icariside II production. The coefficient of determination (R2) was good for the model (0.9853), and the optimum production conditions for icariside II was an enzyme concentration of 7.5 mg/ml, pH 5, 50 degrees C, and 12 h reaction time. A good agreement between the predicted and experimental data under the designed optimal conditions confirmed the usefulness of the model. A laboratory pilot scale was also successful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号