首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Designing a 20-residue protein   总被引:6,自引:0,他引:6  
Truncation and mutation of a poorly folded 39-residue peptide has produced 20-residue constructs that are >95% folded in water at physiological pH. These constructs optimize a novel fold, designated as the 'Trp-cage' motif, and are significantly more stable than any other miniprotein reported to date. Folding is cooperative and hydrophobically driven by the encapsulation of a Trp side chain in a sheath of Pro rings. As the smallest protein-like construct, Trp-cage miniproteins should provide a testing ground for both experimental studies and computational simulations of protein folding and unfolding pathways. Pro Trp interactions may be a particularly effective strategy for the a priori design of self-folding peptides.  相似文献   

2.
The efficient expression of small to midsize polypeptides and small marginally stable proteins can be difficult. A new protein fusion system is developed to allow the expression of peptides and small proteins. The polypeptide of interest is linked via a Factor Xa cleavage sequence to the C-terminus of the N-terminal domain of the ribosomal protein L9 (NTL9). NTL9 is a small (56 residue) basic protein. The C-terminus of the protein is part of an alpha-helix which extends away from the globular structure thus additional domains can be fused without altering the fold of NTL9. NTL9 expresses at high levels, is extremely soluble, and remains fully folded over a wide temperature and pH range. The protein has a high net positive charge, facilitating purification of fusion proteins by ion exchange chromatography. NTL9 fusions can also be easily purified by reverse phase HPLC. As a test case we demonstrate the high level expression of a small, 36 residue, three helix bundle, the villin headpiece subdomain. This protein is widely used as a model system for folding studies and the development of a simple expression system should facilitate experimental studies of the subdomain. The yield of purified fusion protein is 70 mg/L of culture and the yield of purified villin headpiece subdomain is 24 mg/L of culture. We also demonstrate the use of the fusion system to express a smaller marginally folded peptide fragment of the villin headpiece domain.  相似文献   

3.
Zhou HX 《Biochemistry》2002,41(20):6533-6538
Residual electrostatic interactions in the unfolded state of the N-terminal domain of L9 (NTL9) were found by Kuhlman et al. [(1999) Biochemistry 38, 4896-4903]. These residual interactions are analyzed here by the Gaussian-chain model [Zhou, H.-X. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 3569-3574]. The original model is made more realistic by replacing "standard" model-compound pK(a) values for ionizable groups by those measured by Kuhlman et al. in peptide fragments of NTL9. The predicted pH dependence of the unfolding free energy is in agreement with experiment over the pH range of 1-7 at ionic strengths of 100 and 750 mM. This indicates that the residual electrostatic effects in the unfolded state of NTL9 can be attributed to nonspecific nonlocal charge-charge interactions.  相似文献   

4.
5.
Aprilakis KN  Taskent H  Raleigh DP 《Biochemistry》2007,46(43):12308-12313
Fluorescence-detected stopped flow measurements are the method of choice for studies of protein folding kinetics. However, the methodology suffers from the limitation that the protein of interest either must contain an intrinsic fluorophore or can tolerate its introduction by mutagenesis. Recently, the cyano (nitrile) analogue of phenylalanine has been proposed for use as a fluorescence analogue. Here we take advantage of this new methodology to monitor the formation of the hydrophobic core during the folding of the N-terminal domain of L9 (NTL9). Phenylalanine 5, which is completely buried in the folded state of NTL9, was replaced with p-cyanophenylalanine (p-cyano-Phe). This derivative reports on the formation of the hydrophobic core. The variant adopts the same fold as wild-type NTL9 and is slightly more stable. Refolding and unfolding were monitored using both guanidine HCl and urea jump experiments. In both cases, plots of the natural log of the observed relaxation rate versus denaturant concentration, so-called chevron plots, exhibited the characteristic V shape expected for two-state folding, and no hint of deviation from linearity was observed at low denaturant concentrations. The stability calculated from the measured folding and unfolding rates is in very good agreement with the value obtained from equilibrium measurements as is the m value. The relative compactness of the transition state for folding as defined by the Tanford beta parameter is identical to that of the wild type. The results illustrate the applicability of p-cyano-Phe analogues in protein folding studies and provide further evidence of two-state folding of NTL9.  相似文献   

6.
The ANK repeat is a ubiquitous 33-residue motif that adopts a beta hairpin helix-loop-helix fold. Multiple tandem repeats stack in a linear manner to produce an elongated structure that is stabilized predominantly by short-range interactions between residues close in sequence. The tumor suppressor p16(INK4) consists of four repeats and represents the minimal ANK folding unit. We found from Phi value analysis that p16 unfolded sequentially. The two N-terminal ANK repeats, which are distorted from the canonical ANK structure in all INK4 proteins and which are important for functional specificity, were mainly unstructured in the rate-limiting transition state for folding/unfolding, while the two C-terminal repeats were fully formed. A sequential unfolding mechanism could have implications for the cellular fate of wild-type and cancer-associated mutant p16 proteins.  相似文献   

7.
Searle MS 《Biopolymers》2004,76(2):185-195
beta-Hairpin peptides (two anti-parallel strands linked by a reverse beta-turn) have emerged as the simplest systems for probing weak interactions in beta-sheet folding. We describe a model 16-residue hairpin system (peptide beta1: KKYTVSINGKKITVSI) designed around the anti-parallel beta-sheet DNA binding motif of the Met repressor dimer in which two beta-strand sequences are linked through an Asn-Gly type I' beta-turn. The peptide is significantly folded in aqueous solution and has a well-defined conformation as evident from an abundance of NOE data. We review a number of analogues of beta1 designed to estimate the energetic contribution of electrostatic (ion pairing) interactions to hairpin stability, to examine effects of cooperativity and preorganization in determining the energetics of weak interactions, and examine the effects on stability and conformation of incorporation of a three-histidine motif on one face of the hairpin capable of zinc complexation.  相似文献   

8.
The water-soluble domain of rat hepatic holocytochrome b5 is an alphabeta protein containing elements of secondary structure in the sequence beta1-alpha1-beta4-beta3-alpha2-alpha3-beta5- alpha4-alpha5-beta2-alpha6. The heme group is enclosed by four helices, a2, a3, a4, and a5. To test the hypothesis that a small b hemoprotein can be constructed in two parts, one forming the heme site, the other an organizing scaffold, a protein fragment corresponding to beta1-alpha1-beta4-beta3-lambda-beta2-alpha6 was prepared, where lambda is a seven-residue linker bypassing the heme binding site. The fragment ("abridged b5") was found to contain alpha and beta secondary structure by circular dichroism spectroscopy and tertiary structure by Trp fluorescence emission spectroscopy. NMR data revealed a species with spectral properties similar to those of the full-length apoprotein. This folded form is in slow equilibrium on the chemical shift time scale with other less folded species. Thermal denaturation, as monitored by circular dichroism, absorption, and fluorescence spectroscopy, as well as size-exclusion chromatography-fast protein liquid chromatography (SEC-FPLC), confirmed the coexistence of at least two distinct conformational ensembles. It was concluded that the protein fragment is capable of adopting a specific fold likely related to that of cytochrome b5, but does not achieve high thermodynamic stability and cooperativity. Abridged b5 demonstrates that the spliced sequence contains the information necessary to fold the protein. It suggests that the dominating influence to restrict the conformational space searched by the chain is structural propensities at a local level rather than internal packing. The sequence also holds the properties necessary to generate a barrier to unfolding.  相似文献   

9.
Meng W  Raleigh DP 《Proteins》2011,79(12):3500-3510
The pH dependence of protein stability is defined by the difference in the number of protons bound to the folded state and to the denatured state ensemble (DSE) as a function of pH. In many cases, the protonation behavior can be described as the sum of a set of independently titrating residues; in this case, the pH dependence of stability reflects differences in folded and DSE pK(a)'s. pH dependent stability studies have shown that there are energetically important interactions involving charged residues in the DSE of the N-terminal domain of L9 (NTL9), which affect significantly the stability of the protein. The DSE of wild type NTL9 cannot be directly characterized under native conditions because of its high stability. A destabilized double mutant of NTL9, V3AI4A, significantly populates the folded state and the DSE in the absence of denaturant. The two states are in slow exchange on the nuclear magnetic resonance time scale, and diffusion measurements indicate that the DSE is compact. The DSE pK(a)'s of all of the acidic residues were directly determined. The DSE pK(a) of Asp8 and Asp23 are depressed relative to model compounds values. Use of the mutant DSE pK(a)'s together with known native state pK(a)'s leads to a significantly improved agreement between the measured pH dependent stability and that predicted by the Tanford-Wyman linkage relationship. An analysis of the literature suggests that DSE interactions involving charged residues are relatively common and should be considered in discussions of protein stability.  相似文献   

10.
Liu Y  Liu Z  Androphy E  Chen J  Baleja JD 《Biochemistry》2004,43(23):7421-7431
The E6 protein from HPV type 16 binds proteins containing a seven-residue leucine-containing motif. Previous work demonstrated that peptides containing the consensus sequence are a mixture of alpha-helix and unstructured conformations. To design monomeric E6-binding peptides that are stable in aqueous solution, we used a protein grafting approach where the critical residues of the E6-binding motif of E6-associated protein, E6AP, LQELLGE, were incorporated into exposed helices of two stably folded peptide scaffolds. One series was built using the third zinc finger of the Sp1 protein, which contains a C-terminal helix. A second series was built using a Trp-cage scaffold, which contains an N-terminal helix. The chimeric peptides had very different activities in out-competing the E6-E6AP interaction. We characterized the peptides by circular dichroism spectroscopy and determined high-resolution structures by NMR methods. The E6-binding consensus motif was found to be helical in the high-quality structures, which had backbone root-mean-square deviations of less than 0.4 A. We have successfully grafted the E6-binding motif into two parent peptides to create ligands that have biological activity while preserving the stable, native fold of their scaffolds. The data also indicate that conformational change is common in E6-binding proteins during the formation of the complex with the viral E6 protein.  相似文献   

11.
A Heitz  D Le-Nguyen  L Chiche 《Biochemistry》1999,38(32):10615-10625
Small disulfide-rich proteins provide examples of simple and stable scaffolds for design purposes. The cystine-stabilized beta-sheet (CSB) motif is one such elementary structural motif and is found in many protein families with no evolutionary relationships. In this paper, we present NMR structural studies and stability measurements of two short peptides of 21 and 23 residues that correspond to the isolated CSB motif taken from a 28-residue squash trypsin inhibitor. The two peptides contain two disulfide bridges instead of three for the parent protein, but were shown to fold in a native-like fashion, indicating that the CSB motif can be considered an autonomous folding unit. The 23-residue peptide was truncated at the N-terminus. It has a well-defined conformation close to that of the parent squash inhibitor, and although less stable than the native protein, it still exhibits a high T(m) of about 100 degrees C. We suggest that this peptide is a very good starting building block for engineering new bioactive molecules by grafting different active or recognition sites onto it. The 21-residue peptide was further shortened by removing two residues in the loop connecting the second and third cysteines. This peptide exhibited a less well-defined conformation and is less stable by about 1 kcal mol(-)(1), but it might be useful if a higher flexibility is desired. The lower stability of the 21-residue peptide is supposed to result from inadequate lengths of segments connecting the first three cysteines, thus providing new insights into the structural determinants of the CSB motif.  相似文献   

12.
13C alpha chemical shifts and site-specific unfolding curves are reported for 12 sites on a 33-residue, GCN4-like leucine zipper peptide (GCN4-lzK), ranging over most of the chain and sampling most heptad positions. Data were derived from NMR spectra of nine synthetic, isosequential peptides bearing 99% 13C alpha at sites selected to avoid spectral overlap in each peptide. At each site, separate resonances appear for unfolded and folded forms, and most sites show resonances for two folded forms near room temperature. The observed chemical shifts suggest that 1) urea-unfolded GCN4-lzK chains are randomly coiled; 2) thermally unfolded chains include significant transient structure, except at the ends; 3) the coiled-coli structure in the folded chains is atypical near the C-terminus; 4) only those interior sites surrounded by canonical interchain salt bridges fail to show two folded forms. Local unfolding curves, obtained from integrated resonance intensities, show that 1) sites differ in structure content and in melting temperature, so the equilibrium population must comprise more than two molecular conformations; 2) there is significant end-fraying, even at the lowest temperatures, but thermal unfolding is not a progressive unwinding from the ends; 3) residues 9-16 are in the lowest melting region; 4) heptad position does not dictate stability; 5) significant unfolding occurs below room temperature, so the shallow, linear decline in backbone CD seen there has conformational significance. It seems that only a relatively complex array of conformational states could underlie these findings.  相似文献   

13.
Tang Y  Rigotti DJ  Fairman R  Raleigh DP 《Biochemistry》2004,43(11):3264-3272
The villin headpiece subdomain is a cooperatively folded 36-residue, three-alpha-helix protein. The domain is one of the smallest naturally occurring sequences which has been shown to fold. Recent experimental studies have shown that it folds on the 10-micros time scale. Its small size, simple topology, and very rapid folding have made it an attractive target for computational studies of protein folding. We present temperature-dependent NMR studies that provide evidence for significant structure in the denatured state of the headpiece subdomain. A set of peptide fragments derived from the headpiece were also characterized in order to determine if there is a significant tendency to form a locally stabilized structure in the denatured state. Peptides corresponding to each of the three isolated helices and to the connection between the first and second helices were largely unstructured. A longer peptide fragment which contains the first and second helices shows considerable structure, as judged by NMR and CD. Concentration-dependent CD measurements and analytical ultracentrifugation experiments indicate that the structure is not due to self-association. NMR studies indicate that the structure is stabilized by tertiary interactions involving phenylalanines and Val 50. A peptide in which two of the three phenylalanines are changed to leucine is considerably less structured, confirming the importance of the phenylalanines. This work indicates that there is significant structure in the denatured state of this rapidly folding protein.  相似文献   

14.
Gnanakaran S  García AE 《Proteins》2005,59(4):773-782
The force fields used in classical modeling studies are semiempirical in nature and rely on their validation by comparison of simulations with experimental data. The all-atom replica-exchange molecular dynamics (REMD) methodology allows us to calculate the thermodynamics of folding/unfolding of peptides and small proteins, and provides a way of evaluating the reliability of force fields. We apply the REMD to obtain equilibrium folding/unfolding thermodynamics of a 21-residue peptide containing only alanine residues in explicit aqueous solution. The thermodynamics of this peptide is modeled with both the OPLS/AA/L and the A94/MOD force fields. We find that the helical content and the values for the helix propagation and nucleation parameters for this alanine peptide are consistent with measurements on similar peptides and with calculations using the modified AMBER force field (A94/MOD). The nature of conformations, both folded and unfolded, that contributes to the helix-coil transition profile, however, is quite different between these two force fields.  相似文献   

15.
The interleukin-1beta (IL-1beta) structural motif is a beta-trefoil super fold created by six two-stranded beta-hairpins. Turns are thus particularly important in creating the topology and the arrangement of beta-strands in this structural motif. In contrast to the signals observed in optical studies, real-time NMR kinetic investigations of the denaturant-induced unfolding of interleukin-1beta provide direct, global, and residue-specific information on the structural nature of the unfolding reaction. Heterogeneity in the individual amino acid residue kinetics reveals a rugged unfolding landscape. The relative kinetic stability of native-like turns supports low temperature molecular dynamics predictions of turn-controlled unfolding.  相似文献   

16.
Experiments point to appreciable variations in folding cooperativity among natural proteins with approximately 40 residues, indicating that the behaviors of these proteins are valuable for delineating the contributing factors to cooperative folding. To explore the role of native topology in a protein's propensity to fold cooperatively and how native topology might constrain the degree of cooperativity achievable by a given set of physical interactions, we compared folding/unfolding kinetics simulated using three classes of native-centric Cα chain models with different interaction schemes. The approach was applied to two homologous 45-residue fragments from the peripheral subunit-binding domain family and a 39-residue fragment of the N-terminal domain of ribosomal protein L9. Free-energy profiles as functions of native contact number were computed to assess the heights of thermodynamic barriers to folding. In addition, chevron plots of folding/unfolding rates were constructed as functions of native stability to facilitate comparison with available experimental data. Although common Gō-like models with pairwise Lennard-Jones-type interactions generally fold less cooperatively than real proteins, the rank ordering of cooperativity predicted by these models is consistent with experiment for the proteins investigated, showing increasing folding cooperativity with increasing nonlocality of a protein's native contacts. Models that account for water-expulsion (desolvation) barriers and models with many-body (nonadditive) interactions generally entail higher degrees of folding cooperativity indicated by more linear model chevron plots, but the rank ordering of cooperativity remains unchanged. A robust, experimentally valid rank ordering of model folding cooperativity independent of the multiple native-centric interaction schemes tested here argues that native topology places significant constraints on how cooperatively a protein can fold.  相似文献   

17.
The Tat system catalyzes the transport of folded globular proteins across the bacterial plasma membrane and the chloroplast thylakoid. It recognizes cleavable signal peptides containing a critical twin-arginine motif but little is known of the overall structure of these peptides. In this report, we have analyzed the secondary structure of the SufI signal peptide, together with those of two nonfunctional variants in which the region around the twin-arginine, RRQFI, is replaced by KKQFI or RRQAA. Circular dichroism studies show that the SufI peptide exists as an unstructured peptide in aqueous solvent with essentially no stable secondary structure. In membrane-mimetic environments such as SDS micelles or water/trifluoroethanol, however, the peptide adopts a structure containing up to about 40% alpha-helical content. Secondary structure predictions and molecular modelling programs strongly suggest that the helical region begins at, or close to, the twin-arginine motif. Studies on the thermal stability of the helix demonstrate a sharp transition between the unstructured and helical states, suggesting that the peptide exists in one of two distinct states. The two nonfunctional peptides exhibit almost identical spectra and properties to the wild-type SufI peptide, indicating that it is the arginine sidechains, and not their contribution to the helical structure, that are critical in this class of peptide.  相似文献   

18.
The folding of polypeptides associated with biomembranes is a ubiquitous phenomenon, yet the thermodynamics underlying the process are poorly understood. In the present work we examine the unfolding of a series of alpha-helical amphipathic membrane-associated peptides using guanidine hydrochloride as a denaturant. The peptides are based on the class A amphipathic helix motif, and each contains a single tryptophan at sequence position 2, 3, 7, 12, or 14. The isothermal unfolding process was monitored by circular dichroism ellipticity at 222 nm to monitor changes in the helical structure of the peptide. Tryptophan fluorescence was used to probe the local changes in the environment about the indole fluorophore. The unfolding curves generated from the two experimental techniques for each peptide-lipid complex were non-coincidental, suggesting the presence of stable intermediate(s) in the unfolding. A three-state model could adequately account for the data and yielded parameters which were consistent with the presence of a partially folded intermediate structure which (i) is closer in Gibb's free energy to the folded state than the unfolded state and (ii) retains much of the interfacial and amphipathic character of the folded state. Denaturant-induced peptide dissociation from the peptide-lipid complexes was found to be negligible as confirmed by size exclusion chromatography. The results are compared with related thermodynamic data and discussed in terms of current models of peptide folding at membrane interfaces.  相似文献   

19.
There is a great deal of interest in developing small stably folded miniature proteins. A limited number of these molecules have been described, however they typically have not been characterized in depth. In particular, almost no detailed studies of the thermodynamics and folding kinetics of these proteins have been reported. Here we describe detailed studies of the thermodynamics and kinetics of folding of a 39 residue mixed alpha-beta protein (NTL9(1-39)) derived from the N-terminal domain of the ribosomal protein L9. The protein folds cooperatively and rapidly in a two-state fashion to a native state typical of those found for normal globular proteins. At pH 5.4 in 20mM sodium acetate, 100mM NaCl the temperature of maximum stability is 6 degrees C, the t(m) is 65.3 degrees C, deltaH degrees (t(m)) is between 24.6 kcalmol(-1) and 26.3 kcalmol(-1), and deltaC(p) degrees is 0.38 kcalmol(-1)deg(-1). The thermodynamic parameters are in the range expected on the basis of per residue values determined from databases of globular proteins. H/2H exchange measurements reveal a set of amides that exchange via global unfolding, exactly as expected for a normal cooperatively folded globular protein. Kinetic measurements show that folding is two-state folding. The folding rate is 640 s(-1) and the value of deltaG degrees calculated from the folding and unfolding rates is in excellent agreement with the equilibrium value. A designed thermostable variant, generated by mutating K12 to M, was characterized and found to have a t(m) of 82 degrees C. Equilibrium and kinetic measurements demonstrate that its folding is cooperative and two-state.  相似文献   

20.
We demonstrated that amyloid-forming peptides could be selected from phage-displayed library via proteolysis-based selection protocol. The library of 28-residue peptides based on a sequence of the second zinc finger domain of Zif268, and computationally designed betabetaalpha peptide, FSD-1, was presented monovalently on the surface of M13 phage. The library coupled the infectivity of phage particles to proteolytic stability of a peptide introduced into the coat protein III linker. It was designed to include variants with a strong potential to fold into betabetaalpha motif of zinc finger domains, as expected from secondary structure propensities, but with no structure stabilization via zinc ion coordination. As our primary goal was to find novel monomeric betabetaalpha peptides, the library was selected for stable domains with the assumption that folded proteins are resistant to proteolysis. After less than four rounds of proteolytic selection with trypsin, chymotrypsin, or proteinase K, we obtained a number of proteolysis-resistant phage clones containing several potential sites for proteolytic attack with the proteinases. Eight peptides showing the highest proteolysis resistance were expressed and purified in a phage-free form. When characterized, the peptides possessed proteolytic resistance largely exceeding that of the second zinc finger domain of Zif268 and FSD-1. Six of the characterized peptides formed fibrils when solubilized at high concentrations. Three of them assembled into amyloids as determined through CD measurements, Congo red and thioflavin T binding, and transmission electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号