首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of phosphoinositide-specific phospholipase C (PI-PLC) signaling in the macrotubule-dependent protoplast volume regulation in plasmolyzed root cells of Triticum turgidum was investigated. At the onset of hyperosmotic stress, PI-PLC activation was documented. Inhibition of PI-PLC activity by U73122 blocked tubulin macrotubule formation in plasmolyzed cells and their protoplast volume regulatory mechanism. In neomycin-treated plasmolyzed cells, macrotubule formation and protoplast volume regulation were not affected. In these cells the PI-PLC pathway is down-regulated as neomycin sequesters the PI-PLC substrate, 4,5-diphosphate-phosphatidyl inositol (PtdInsP(2)). These phenomena were unaffected by R59022, an inhibitor of phosphatidic acic (PA) production via the PLC pathway. Taxol, a microtubule (MT) stabilizer, inhibited the hyperosmotic activation of PI-PLC, but oryzalin, which disorganized MTs, triggered PI-PLC activity. Taxol prevented macrotubule formation and inhibited the mechanism regulating the volume of the plasmolyzed protoplast. Neomycin partly relieved some of the taxol effects. These data suggest that PtdInspP(2) turnover via PI-PLC assists macrotubule formation and activation of the mechanism regulating the plasmolyzed protoplast volume; and the massive disorganization of MTs that is carried out at the onset of hyperosmotic treatment triggers the activation of this mechanism.  相似文献   

2.
Actin filament (AF) organization was studied during the plasmolytic cycle in leaf cells of Chlorophyton comosum Thunb. In most cells the hyperosmotic treatment induced convex or concave plasmolysis and intense reorganization of the AF cytoskeleton. Thin cortical AFs disappeared and numerous cortical, subcortical and endoplasmic AFs arranged in thick and well-organized bundles were formed. Plasmolysed cells displayed a significant increase in the overall AF content compared with the control cells. Cortical AF bundles were preferentially localized in the shrunken protoplast areas, lining the detached plasmalemma regions. The endoplasmic AF bundles were mainly found in the perinuclear cytoplasm and on the tonoplast surface. AFs also traversed some of the Hechtian strands. AF disorganization after cytochalasin B (CB) treatment induced dramatic changes in the pattern of plasmolysis, which lasted for a longer time and led to a greater decrease of the protoplast volume compared to the untreated cells. In many of the above cells the protoplasts assumed an 'amoeboid' form and were often subdivided into sub-protoplasts. Soon after the removal of the plasmolytic solution both CB-treated and untreated cells were deplasmolysed, while the AF cytoskeleton gradually reassumed the organization observed in the control cells. The findings of this study revealed for the first time in angiosperm cells that plasmolysis triggers an extensive reorganization of the AF cytoskeleton, which is involved in the regulation of protoplast shape and volume. The probable mechanism(s) leading to AF reorganization as well as the function(s) of the atypical AF arrays in plasmolysed cells are discussed.  相似文献   

3.
Summary The plasmolytic method and the triphenyltetrazolium chloride (TTC) reaction were compared as criteria of vitality inAnacharis canadensis, following treatment with 7 different types of herbicides. In general there was good agreement between the two methods. Cells that were plasmolyzable exhibited the capacity to reduce TTC, and contrariwise. Maleic hydrazide, as an exception, inhibited the TTC reaction in varying degree according to concentration.Usually formazan first appeared on the cell walls. Later, it appeared as granules deposited in the cytoplasm or on chloroplast surfaces.The walls of cells in a plasmolyzed condition did not become colored; however, formazan was produced in the cytoplasm and on chloroplasts, the amount decreasing with increasing molarity of plasmolyticum. Cells deplasmolyzed before the TTC treatment showed the same inhibition of wall coloring as plasmolyzed cells.The observations suggest that inAnacharis considerable TTC-reducing activity is located at the outer surface of the protoplast. Plasmolytic inhibition of the TTC reaction inAnacharis may be due to disruption of the structural entities in the surface responsible for the reaction.  相似文献   

4.
Treatment of root-tip cells of Triticum turgidum with 1 M mannitol solution for 30 min induces microtubule (Mt) disintegration in the plasmolyzed protoplasts. Interphase plasmolyzed cells possess many cortical, perinuclear and endoplasmic macrotubules, 35 nm in mean diameter, forming prominent arrays. In dividing cells macrotubules assemble into aberrant mitotic and cytokinetic apparatuses resulting in the disturbance of cell division. Putative tubulin paracrystals were occasionally observed in plasmolyzed cells. The quantity of polymeric tubulin in plasmolyzed cells exceeds that in control cells. Root-tip cells exposed for 2-8 h to plasmolyticum recover partially, although the volume of the plasmolyzed protoplast does not change detectably. Among other events, the macrotubules are replaced by Mts, chromatin assumes its typical appearance and the cells undergo typical cell divisions. Additionally, polysaccharidic material is found in the periplasmic space. Oryzalin and colchicine treatment induced macrotubule disintegration and a significant reduction of protoplast volume in every plasmolyzed cell type examined, whereas cytochalasin B had only minor effects restricted to differentiated cells. These results suggest that Mt destruction by hyperosmotic stress, and their replacement by tubulin macrotubules and putative tubulin paracrystals is a common feature among angiosperms and that macrotubules are involved in the mechanism of protoplast volume regulation.  相似文献   

5.
A plasmolytic cycle: The fate of cytoskeletal elements   总被引:4,自引:0,他引:4  
Summary In most plant cells, transfer to hypertonic solutions causes osmotic loss of water from the vacuole and detachment of the living protoplast from the cell wall (plasmolysis). This process is reversible and after removal of the plasmolytic solution, protoplasts can re-expand to their original size (deplasmolysis). We have investigated this phenomenon with special reference to cytoskeletal elements in onion inner epidermal cells. The main processes of plasmolysis seem to be membrane dependent because destabilization of cytoskeletal elements had only minor effects on plasmolysis speed and form. In most cells, the array of cortical microtubules is similar to that found in nonplasmolyzed states except that longitudinal patterns seen in some control cells were never observed in plasmolyzed protoplasts of onion inner epidermis. As soon as deplasmolysis starts, cortical microtubules become disrupted and only slowly regenerate to form an oblique array, similar to most nontreated cells. Actin microfilaments responded rapidly to the plasmolysis-induced deformation of the protoplast and adapted to its new form without marked changes in organization and structure. Both actin microfilaments and microtubules can be present in Hechtian strands, which, in plasmolyzed cells, connect the cell wall to the protoplast. Anticytoskeletal drugs did not affect the formation of Hechtian strands.Abbreviations DIC differential interference contrast - DiOC6(3) 3,3-dihexyloxacarbocyanine iodide Dedicated to Professor Walter Gustav Url on the occasion of his 70th birthday  相似文献   

6.
Summary.  Previous work has demonstrated that some endogenous plant gene promoters are active in selective companion cells of the phloem, depending on organ types and developmental stages. Here we report that the Commelina yellow mottle virus (CoYMV) promoter is active in the companion cells of leaves, stems and roots of transgenic Nicotiana tabacum cv. Xanthi NN, using β-glucuronidase (GUS) as a reporter. Thus, the CoYMV promoter has a broad organ specificity. This promoter can be useful in molecular studies on the functions of companion cells in many aspects of phloem biology, such as regulation of long-distance transport, macromolecular traffic, plant development and interaction with pathogens. It may also be useful in engineering crops that produce specific gene products in the companion cells to block long-distance movement of pathogens. Received February 5, 2002; accepted March 27, 2002; published online July 4, 2002 RID="*" ID="*" Correspondence and reprints: Department of Plant Biology and Plant Biotechnology Center, 207 Rightmire Hall, Ohio State University, 1060 Carmack Road, Columbus, OH 43210, U.S.A.  相似文献   

7.
During the leaf movements of Albizzia julibrissin Durazzini, volume changes in the motor cells of the pulvinule (tertiary pulvinus) are closely correlated with a reversible reorganization of the vacuolar compartment. Motor cells have central vacuoles when expanded, but become multivacuolate during the time the cell volume decreases. The central vacuole reforms — apparently by fusion of small vacuoles — during motor-cell expansion. The volume changes of the vacuolar compartment account for all of the change in the size of the protoplast, while the cytoplasmic volume remains constant during the leaf movements.  相似文献   

8.
Protoplast donor tissues (leaves of shoots in culture) from a herbaceous plant ( Solanum etuberosum ) and two woody species ( Populus alba × P. grandidentata cv. Crandon and Betula platyphylla szechuanica ) were compared during plasmolysis in a range of osmotic agents and potentials. Cells from both Solanum and Populus , species proven to be amenable to protoplast division and regeneration, plasmolyzed readily at higher osmotic potentials than cells from Betula , a species recalcitrant to prolonged culture after protoplast isolation. Betula leaf mesophyll cells exhibited persistent membrane-to-wall attachments and many failed to plasmolyze even under extreme osmolarity. Although their leaves exhibited similar photosynthetic rates, photosynthetic capacity was lost from Betula protoplasts upon isolation, and retained by Solanum protoplasts. Differential stress after isolation was not detectable through vital staining, but only Solanum and Populus gave both high protoplast yields and high plating efficiencies in continued culture.  相似文献   

9.
Plasmolysis during the division cycle of Escherichia coli   总被引:4,自引:3,他引:1       下载免费PDF全文
Cells of Escherichia coli were plasmolyzed with sucrose. They were classified according to length by way of electron micrographs taken from samples prepared by agar filtration. The percentage of plasmolyzed cells increased about two- and threefold between mean cell sizes of newborn and separating cells. However, dividing cells were less frequently plasmolyzed than nondividing cells of the same length class. Analysis of cell halves (prospective daughters) in dividing cells showed that they behaved as independent cellular units with respect to plasmolysis. The results indicate that compressibility of the protoplast (given a certain plasmolysis space) is inversely related to cell size. That a dividing cell does not react as one osmotic compartment to osmotic stress may suggest that cell size-dependent strength of the cell membrane-cell wall association, rather than variation in turgor, plays a role during the cell division cycle.  相似文献   

10.
Volk GM  Caspersen AM 《Protoplasma》2007,231(3-4):215-226
Summary. Successful cryopreservation of plant shoot tips is dependent upon effective desiccation through osmotic or physical processes. Microscopy techniques were used to determine the extent of cellular damage and plasmolysis that occurs in peppermint (Mentha × piperita) shoot tips during the process of cryopreservation, using the cryoprotectant plant vitrification solution 2 (PVS2) (30% glycerol, 15% dimethyl sulfoxide, 15% ethylene glycol, 0.4 M sucrose) prior to liquid-nitrogen exposure. The meristem cells were the smallest and least plasmolyzed cell type of the shoot tips, while the large, older leaf and lower cortex cells were the most damaged. When treated with cryoprotectant solutions, meristem cells exhibited concave plasmolysis, suggesting that this cell type has a highly viscous protoplasm, and protoplasts have many cell wall attachment sites. Shoot tip cells were most severely plasmolyzed after PVS2 treatment, liquid-nitrogen exposure, and warming in 1.2 M sucrose. Successful recovery may be dependent upon surviving the plasmolytic conditions induced by warming and diluting treated shoot tips in 1.2 M sucrose solutions. In peppermint shoot tips, clumps of young meristem or young leaf cells survive the cryopreservation process and regenerate plants containing many shoots. Cryoprotective treatments that favor survival of small, meristematic cells and young leaf cells are most likely to produce high survival rates after liquid-nitrogen exposure. Correspondence and reprints: National Center for Genetic Resources Preservation, U.S. Department of Agriculture, 1111 S. Mason Street, Fort Collins, CO 80521, U.S.A.  相似文献   

11.
Able AJ 《Protoplasma》2003,221(1-2):137-143
Summary.  The interactions between Hordeum vulgare (barley) and two fungal necrotrophs, Rhynchosporium secalis and Pyrenophora teres (causal agents of barley leaf scald and net blotch), were investigated in a detached-leaf system. An early oxidative burst specific to epidermal cells was observed in both the susceptible and resistant responses to R. secalis, and later on, a second susceptible-specific burst was observed. Time points of the first and the second burst correlated closely with pathogen contact to the plasma membrane and subsequent cell death, respectively. HO2 /O2 levels in resistant and susceptible responses to P. teres were limited in comparison. During later stages, HO2 /O2 was only detected in 2 to 3 epidermal cells immediately adjacent to phenolic browning and cell death observed during the susceptible response. However, H2O2 was detected in the majority of mesophyll cells adjacent to the observed lesion caused by P. teres. In contrast to observations during challenge with R. secalis, no direct contact between P. teres and the plasma membrane at sites of reactive oxygen species production was evident. Preinfiltration of leaves with antioxidants prior to challenge with either pathogen had no effect on resistance responses but did limit the growth of the pathogens and inhibit the extent of cell death during susceptible responses. These results suggest a possible role for reactive oxygen species in the induction of cell death during the challenge of a susceptible plant cell with a necrotrophic fungal leaf pathogen. Received May 2, 2002; accepted July 26, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Department of Plant Science, Waite Campus PMB1, University of Adelaide, Glen Osmond, South Australia 5064, Australia.  相似文献   

12.
The vascular system of the leaf of Amaranthus retroflexus L. was examined quantitatively, and plasmolytic studies were carried out on it to determine the solute concentration in cells of the phloem at various locations in the leaf. The proportion of phloem occupied by sieve tubes varies considerably with vein size and leaf size. Collectively, the cross-sectional area of sieve tubes of all tributaries at their points of entry into either a secondary or midvein far exceeds the total cross-sectional area of sieve tubes at the bases of those major veins. In addition, the total volume of sieve tubes in the “catchment area” of a secondary vein is much greater than total sieve-tube volume of the secondary vein itself. The plasmolytic studies revealed the presence of positive concentration gradients in the sieve tubes of the lamina from the minor veins and tips of the secondaries to the bases of the secondaries and from the tip to the base of the midvein. The C50 (the estimated mannitol concentration plasmolyzing, on the average, 50% of the sieve-tube members) was 1.5 m for minor veins and tips of secondary veins and 1.1 m for the bases of secondaries; 1.3 m for the tip of the midvein and 0.6-0.7 m for the midvein in the basal third of the lamina.  相似文献   

13.
The plasmolytic response of Bacillus licheniformis 749/C cells to the increasing osmolarity of the surrounding medium was quantitated with stereological techniques. Plasmolysis was defined as the area (in square micrometers) of the inside surface of the bacterial wall not in association with bacterial membrane per unit volume (in cubic micrometers) of bacteria. This plasmolyzed surface area was zero when the cells were suspended in a concentration of sucrose solution lower than 0.5 M, but increased linearly when the sucrose molarity rose above 0.5 M, reaching a plateau value of 3.61 micrometers2/micrometers3 in 2 M sucrose. In contrast, when the bacterial cells were treated with lysozyme plasmolysis increased abruptly from 0.06 micrometers2/micrometers3 in 0.75 M sucrose to 4.09 micrometers2/micrometers3 in 1 M sucrose. When the time of exposure was prolonged, the degree of plasmolysis increased gradually for the duration of the experiment (30 min) after exposure to 1 M sucrose without lysozyme, whereas with lysozyme plasmolysis reached a maximum (4.09 micrograms2/micrometers3) in 2 to 5 min. The examination of ultrastructure showed that the protoplast bodies of lysozyme-treated cells in 1 M sucrose and untreated cells in 2 M sucrose are maximally retracted from the intact wall of the bacteria; hardly any retraction of protoplasts could be seen for untreated cells in 1 M sucrose. The data suggest that the B. licheniformis cells are isoosmotic to 800 to 1,100 mosM solutions, but are able to withstand much greater osmotic pressure with no signs of plasmolysis because the cell wall and the plasma membrane are held in close association, perhaps by a covalent bond. It is likely that lysozyme weakens this bond by degradation of the peptidoglycan layer. Cellular autolysis also weakens this wall-membrane association.  相似文献   

14.
Hable WE  Miller NR  Kropf DL 《Protoplasma》2003,221(3-4):193-204
Summary.  Previous work has demonstrated that actin plays important roles in axis establishment and polar growth in fucoid zygotes. Distinct actin arrays are associated with fertilization, polarization, growth, and division, and agents that depolymerize actin filaments (cytochalasins, latrunculin B) perturb these stages of the first cell cycle. Rearrangements of actin arrays could be accomplished by transport of intact filaments and/or by actin dynamics involving depolymerization of the old array and polymerization of a new array. To investigate the requirement for dynamic actin during early development, we utilized the actin-stabilizing agent jasplakinolide. Immunofluorescence of actin arrays showed that treatment with 1–10 μM jasplakinolide stabilized existing arrays and induced polymerization of new filaments. In young zygotes, a cortical actin patch at the rhizoid pole was stabilized, and in some cells supernumerary patches were formed. In older zygotes that had initiated tip growth, massive filament assembly occurred in the rhizoid apex, and to a lesser degree in the perinuclear region. Treatment disrupted polarity establishment, polar secretion, tip growth, spindle alignment, and cytokinesis but did not affect the maintenance of an established axis, mitosis, or cell cycle progression. This study suggests that dynamic actin is required for polarization, growth, and division. Rearrangements in actin structures during the first cell cycle are likely mediated by actin depolymerization within old arrays and polymerization of new arrays. Received July 15, 2002; accepted November 27, 2002; published online June 13, 2003 RID="*" ID="*" Correspondence and reprints: Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, U.S.A.  相似文献   

15.
de Grey AD 《Protoplasma》2003,221(1-2):3-9
Summary.  After a long period of frustration, many components of the mammalian plasma membrane redox system are now being identified at the molecular level. Some are apparently ubiquitous but are necessary only for a subset of electron donors or acceptors; some are present only in certain cell types; some appear to be associated with proton extrusion; some appear to be capable of superoxide production. The volume and variety of data now available have begun to allow the formulation of tentative models for the overall network of interactions of enzymes and substrates that together make up the plasma membrane redox system. Such a model is presented here. The structure discussed here is of the mammalian system, though parts of it may apply more or less accurately to fungal and plant cells too. Judging from the history of mitochondrial oxidative phosphorylation, it may be hoped that the development of models of the whole system – even if they undergo substantial revision thereafter – will markedly accelerate the pace of research in plasma membrane redox, by providing a coherent basis for the design of future experiments. Received May 4, 2002; accepted July 26, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom. E-mail: ag24@gen.cam.ac.uk  相似文献   

16.
Bacterial plasmolysis as a physical indicator of viability.   总被引:3,自引:2,他引:1       下载免费PDF全文
Bacterial plasmolytic response to osmotic stress was evaluated as a physical indicator of membrane integrity and hence cellular viability. Digital image analysis and either low-magnification dark-field, high-magnification phase-contrast, or confocal laser microscopy, in conjunction with pulse application of a 1.5 M NaCl solution, were used as a rapid, growth-independent method for quantifying the viability of attached biofilm bacteria. Bacteria were considered viable if they were capable of plasmolysis, as quantified by changes in cell area or light scattering. When viable Salmonella enteritidis biofilm cells were exposed to 1.5 M NaCl, an approximately 50% reduction in cell protoplast area (as determined by high-magnification phase-contrast microscopy) was observed. In contrast, heat- and formalin-killed S. enteritidis cells were unresponsive to NaCl treatment. Furthermore, the mean dark-field cell area of a viable, sessile population of Pseudomonas fluorescens cells (approximately 1,100 cells) increased by 50% as a result of salt stress, from 1,035 +/- 162 to 1,588 +/- 284 microns2, because of increased light scattering of the condensed, plasmolyzed cell protoplast. Light scattering of ethanol-killed control biofilm cells underwent little change following salt stress. When the results obtained with scanning confocal laser microscopy and a fluorescent viability probe were compared with the accuracy of plasmolysis as a viability indicator, it was found that the two methods were in close agreement. Used alone or in conjunction with fluorochemical probes, physical indicators of membrane integrity provided a rapid, direct, growth-independent method for determining the viability of biofilm bacteria known to undergo plasmolysis, and this method may have value during efficacy testing of biocides and other antimicrobial agents when nondestructive time course analyses are required.  相似文献   

17.
Zhang Q  Sodmergen 《Protoplasma》2003,221(3-4):211-216
Summary.  Following 4′,6-diamidino-2-phenylindole staining of mature pollen grains of Chlorophytum comosum, fluorescence microscopy confirmed that cytoplasmic nucleoids (DNA aggregates) were present in the generative cells, which indicated the possibility of biparental cytoplasmic inheritance. Electron and immuno-electron microscopy showed that both plastids and mitochondria were present in the generative cells, and both organelles contained DNA. These results indicate that mitochondria and plastids of C. comosum have the potential for biparental inheritance. Similar results were obtained with mature pollen grains of C. chinense. Therefore, we conclude the coincident biparental inheritance for mitochondria and plastids in the members of the genus Chlorophytum. Received June 28, 2002; accepted September 26, 2002; published online April 2, 2003 RID="*" ID="*" Correspondence and reprints: College of Life Science, Peking University, Bejing 100871, People's Republic of China.  相似文献   

18.
The stages of the early morphogenesis of simple (unbranched) and complex (branched) unicellular trichomes are studied in two species of the genus DrabaD. sibirica (Pall.) Thell. and D. daurica DC. The geometry of morphogenesis is estimated by analyzing intraindividual variation of quantitative morphological characteristics of the developing leaf blade and peduncle trichomes. The surface of all types of trichome cells first acquires a spherical shape, followed by a U-shaped configuration with cylindrical proximal and spherical distal regions. In the development of complex trichomes, the area of the distal zone grows at a higher rate, which leads to separation of its volume into individual spherical regions, the morphogenesis of which repeats the early morphogenetic stages of the overall trichome cell, forming simple (unbranched) or complex (branched) trichome rays. As a rule, the lateral polarity of a trichome cell coincides with the proximodistal polarity of the leaf. Quantitative morphological data make it possible to infer an algorithm of the changes in shape common for all trichome cells, namely, the growth cycle comprising alternation of the phases of increase and decrease in the curvature of the outer cell surface. This surface is an active membrane expanded by the internal pressure and concurrently capable of actively increasing its area by incorporation of new structural elements. A distinctive feature of the proposed model is the geometrical inhomogeneity of the surface movement, changing the radius of curvature and creating internal (active) mechanical stresses in this membrane. A decrease in the ratio of the membrane surface area to the volume deprives the spatially homogeneous shape of its stability; correspondingly, the transition from elastic resistance to internal pressure to active resistance with the help of curvature differentiation becomes more energetically favorable. The source for growth and morphogenesis of the active membrane is alternation of the phases of local curvature leveling, which “charges” the membrane with active mechanical stresses and “discharge” of these stresses, leading to differentiation of the membrane’s local curvatures.  相似文献   

19.
Cell Division and Expansion in the Growth of the Leaf   总被引:1,自引:0,他引:1  
Volumes and numbers of cells were determined at different stagesof development of the fifth leaf of Lupinus albus, and eachof the second pair and the tenth leaf of Helianthus annuus.In the case of the second pair of sunflower leaves the valuescover the whole life of the leaf from initiation to senescence. During both primordial development and the ensuing ‘grandperiod of growth’ division is the determinant of growth.About 10 per cent. of the cells in the fully grown leaf arelaid down before leaf-emergence; the remaining 90 per cent.are formed during unfolding. Division does not cease in thelupin leaf or the second pair of sunflower leaves until theyhave reached half their maximum area. The tenth leaf, on theother hand, is as much as three-quarters fully grown beforedivision ceases. Cell expansion commences soon after leaf initiation and continuesthroughout the life of the leaf. With lupin and the second pairof sunflower leaves there is a fourfold increase in the averagevolume of the cells before emergence from the apical region.During unfolding, there is a further tenfold increase in theaverage volume of the cells of the lupin leaf, and a twentyfoldincrease with the second pair of sunflower leaves. Expansioncontinues after the cessation of division but this further increasein volume is comparatively small. The data are discussed in relation to the ‘two phase’hypothesis of leaf development.  相似文献   

20.
 The morphological features and fine structure of wheat egg cell protoplasts isolated from premature (3 days prior to anthesis) and overaged (12 days after anthesis) caryopses were compared. Except for shape, the young egg cell protoplast showed the same morphological characteristics as the egg cell in planta at the time of anthesis. Young and adult egg cell protoplasts were spherical in shape. Polarity could not be identified exactly with the methods used. During aging, the egg cell increased considerably in volume. The adult egg showed the typical features (membrane blebbing, autophagous vacuoles) of programmed cell death. It appears that after a long life-span (about18 days) cells of the female gametophyte undergo apoptosis. Received: 19 August 1998 / Revision accepted 2 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号