首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeTo study the effect on HRV of archer athletes one day before competition after three different abdominal respiratory frequencies.MethodsEight elite archers performed three different respiratory frequency tests, HRV were recorded in pre-, during, and post-frequency control in frequency 16 (F16 group, n = 8), 8 (F8 group, n = 8), and 5 (F5 group, n = 8) times per minute, and hoped to find a respiratory adjust way to reduce stress. RMSSD, RR_triangular index, TP, VLF, LF, HF and LF/HF were analyzed to describe the effect of respiratory frequency.ResultThe average RR separate, RR_triangular index and HF showed no significant change in three respiratory frequency (P > 0.05); LF increased significantly in F16 group, but LP of F8 and F5 group increased first then reduced (P < .05); VLF rose in F8 and F5 group (P < .05, respectively), the LF/HF has the similar change as the LF in all the groups.ConclusionThe F16 group increased equilibrium of sympathetic and pneumogastric nerve system; F8 increase excitability of sympathetic nerve; mental fatigue remission in F5.  相似文献   

2.
This study examines the acute effect of heart rate variability (HRV) biofeedback on HRV measures during and immediately after biofeedback and during the following laboratory-induced stress. Eighteen healthy males exposed to work-related stress were randomised into an HRV biofeedback group (BIO) or a comparative group (COM). Subjects completed a modified Stroop task before (Stroop 1) and after (Stroop 2) the intervention. Both groups had similar physiological responses to stress in Stroop 1. In Stroop 2, the COM group responded similarly to the way they did to Stroop 1: respiratory frequency (RF) and heart rate (HR) increased, RMSSD and high frequency (HF) power decreased or had a tendency to decrease, while low frequency (LF) power showed no change. The BIO group responded differently in Stroop 2: while RF increased and LF power decreased, HR, RMSSD and HF power showed no change. In the BIO group, RMSSD was higher in Stroop 2 compared to Stroop 1. In conclusion, HRV biofeedback induced a short term carry-over effect during both the following rest period and laboratory-induced stress suggesting maintained HF vagal modulation in the BIO group after the intervention, and maintained LF vagal modulation in the COM group.  相似文献   

3.
Heart rate variability (HRV) reflects the healthiness of autonomic nervous system, which is associated with exercise capacity. We therefore investigated whether HRV could predict the exercise capacity in the adults with cardiac syndrome X (CSX). A total of 238 subjects (57±12 years, 67.8% men), who were diagnosed as CSX by the positive exercise stress test and nearly normal coronary angiogram were enrolled. Power spectrum from the 24-hour recording of heart rate was analyzed in frequency domain using total power (TP) and spectral components of the very low frequency (VLF), low frequency (LF) and high frequency (HF) ranges. Among the study population, 129 subjects with impaired exercise capacity during the treadmill test had significantly lower HRV indices than those with preserved exercise capacity (≥90% of the age predicted maximal heart rate). After accounting for age, sex, and baseline SBP and heart rate, VLF (odds ratio per 1SD and 95% CI: 2.02, 1.19–3.42), LF (1.67, 1.10–2.55), and TP (1.82, 1.17–2.83) remained significantly associated with preserved exercise capacity. In addition, increased HRV indices were also associated with increased exercise duration, rate-pressure product, and heart rate recovery, independent of age, body mass index, and baseline SBP and heart rate. In subgroup analysis, HRV indices demonstrated similar predictive values related to exercise capacity across various subpopulations, especially in the young. In patients with CSX, HRV was independently associated with exercise capacity, especially in young subjects. The healthiness of autonomic nervous system may have a role in modulating the exercise capacity in patients with CSX.  相似文献   

4.
Peripheral artery disease (PAD) and low heart rate variability (HRV) are highly prevalent in hemodialysis patients, and both are associated with increased cardiovascular morbidity and mortality. This study aims to examine the suggested relationship between PAD and HRV, and the relationship of parameters before and after hemodialysis. This study enrolled 161 maintenance hemodialysis patients. PAD was defined as ABI < 0.9 in either leg. HRV was performed to assess changes before and after hemodialysis. The change in HRV (△HRV) was defined as post-hemodialysis HRV minus pre-hemodialysis HRV. Patients’ clinical parameters were collected from the dialysis records. All HRV parameters except high frequency (HF) % were lower in patients with PAD than patients without PAD, though not achieving significant level. In patients without PAD, HF (P = 0.013), low frequency (LF) % (P = 0.028) and LF/HF (P = 0.034) were significantly elevated after hemodialysis, whereas no significant HRV parameters change was noted in patients with PAD. Serum intact parathyroid hormone was independently associated with △HF (β = -0.970, P = 0.032) and △LF% (β = -12.609, P = 0.049). Uric acid level (β = -0.154, P = 0.027) was negatively associated with △LF/HF in patients without PAD. Our results demonstrated that some of the HRV parameters were significantly increased after hemodialysis in patients without PAD, but not in patients with PAD, reflecting a state of impaired sympatho-vagal equilibrium. Severity of secondary hyperparathyroidism and hyperuricemia contributed to lesser HRV parameters increase after hemodialysis in patients without PAD.  相似文献   

5.
Cardiovascular autonomic modulation during 36 h of total sleep deprivation (SD) was assessed in 18 normal subjects (16 men, 2 women, 26.0 +/- 4.6 yr old). ECG and continuous blood pressure (BP) from radial artery tonometry were obtained at 2100 on the first study night (baseline) and every subsequent 12 h of SD. Each measurement period included resting supine, seated, and seated performing computerized tasks and measured vigilance and executive function. Subjects were not supine in the periods between measurements. Spectral analysis of heart rate variability (HRV) and BP variability (BPV) was computed for cardiac parasympathetic modulation [high-frequency power (HF)], sympathetic modulation [low-frequency power (LF)], sympathovagal balance (LF/HF power of R-R variability), and BPV sympathetic modulation (at LF). All spectral data were expressed in normalized units [(total power of the components/total power-very LF) x 100]. Spontaneous baroreflex sensitivity (BRS), based on systolic BP and pulse interval powers, was also measured. Supine and sitting, BPV LF was significantly increased from baseline at 12, 24, and 36 h of SD. Sitting, HRV LF was increased at 12 and 24 h of SD, HRV HF was decreased at 12 h SD, and HRV LF/HF power of R-R variability was increased at 12 h of SD. BRS was decreased at 24 h of SD supine and seated. During the simple reaction time task (vigilance testing), the significantly increased sympathetic and decreased parasympathetic cardiac modulation and BRS extended through 36 h of SD. In summary, acute SD was associated with increased sympathetic and decreased parasympathetic cardiovascular modulation and decreased BRS, most consistently in the seated position and during simple reaction-time testing.  相似文献   

6.
While exercise heat stress and hydration status are known to independently influence heart rate variability (HRV), the combined effect of these physiological stressors is unknown. Thus, heat-acclimated subjects (n=5) performed exercise heat trials (40 °C, 20% relative humidity) in the euhydrated and hypohydrated state (3.9±0.7% body weight loss). During each trial, cardiac cycle R–R interval data were collected for 45 min at rest (pre-) and after (post-) completing 90 min of cycle ergometer exercise. Pre- and post-exercise RRI data were analyzed by Fast Fourier Power Spectral analysis to determine the high-frequency (HF), low-frequency (LF), very low-frequency (VLF), and total power (TP) components of HRV. Overall HRV was decreased by both hypohydration and exercise heat stress. Hypohydration reduced TP, LF, VLF, and LF:HF ratio (P<0.05) while HF was significantly higher. The change in both LF and HF power (pre- vs. post-exercise) were blunted during hypohydration compared to euhydration. These data suggest that dehydration alone positively influences the parasympathetic (HF) control of HRV, but the reduction in overall HRV and the blunted oscillations in LF and HF power following exercise heat stress support an overall deleterious effect of dehydration on autonomic cardiac stability.  相似文献   

7.
A paradox regarding the classic power spectral analysis of heart rate variability (HRV) is whether the characteristic high- (HF) and low-frequency (LF) spectral peaks represent stochastic or chaotic phenomena. Resolution of this fundamental issue is key to unraveling the mechanisms of HRV, which is critical to its proper use as a noninvasive marker for cardiac mortality risk assessment and stratification in congestive heart failure (CHF) and other cardiac dysfunctions. However, conventional techniques of nonlinear time series analysis generally lack sufficient sensitivity, specificity and robustness to discriminate chaos from random noise, much less quantify the chaos level. Here, we apply a ‘litmus test’ for heartbeat chaos based on a novel noise titration assay which affords a robust, specific, time-resolved and quantitative measure of the relative chaos level. Noise titration of running short-segment Holter tachograms from healthy subjects revealed circadian-dependent (or sleep/wake-dependent) heartbeat chaos that was linked to the HF component (respiratory sinus arrhythmia). The relative ‘HF chaos’ levels were similar in young and elderly subjects despite proportional age-related decreases in HF and LF power. In contrast, the near-regular heartbeat in CHF patients was primarily nonchaotic except punctuated by undetected ectopic beats and other abnormal beats, causing transient chaos. Such profound circadian-, age- and CHF-dependent changes in the chaotic and spectral characteristics of HRV were accompanied by little changes in approximate entropy, a measure of signal irregularity. The salient chaotic signatures of HRV in these subject groups reveal distinct autonomic, cardiac, respiratory and circadian/sleep-wake mechanisms that distinguish health and aging from CHF.  相似文献   

8.

Aim

We investigated the relationships between the autonomic nervous system, as assessed by heart rate variability (HRV) and levels of N-terminal Pro-B-type Natriuretic Peptide (Nt-proBNP) in patients with acute myocardial infarction (MI).

Methods and Results

The mean of standard deviation of RR intervals (SDNN), the percentage of RR intervals with >50 ms variation (pNN50), square root of mean squared differences of successive RR intervals (rMSSD), and frequency domain parameters (total power (TP), high frequency and low frequency power ratio (LF/HF)) were assessed by 24 h Holter ECG monitoring. 1018 consecutive patients admitted <24 h for an acute MI were included. Plasma Nt-proBNP (Elecsys, Roche) was measured from blood samples taken on admission. The median (IQR) Nt-proBNP level was 681(159–2432) pmol/L. Patients with the highest quartile of Nt-proBNP were older, with higher rate of risk factors and lower ejection fraction. The highest Nt-proBNP quartile group had the lowest SDNN, LF/HF and total power but similar pNN50 and rMSSD levels. Nt-proBNP levels correlated negatively with SDNN (r = −0.19, p<0.001), LF/HF (r = −0.37, p<0.001), and LF (r = −0.29, p<0.001) but not HF (r = −0.043, p = 0.172). Multiple regression analysis showed that plasma propeptide levels remained predictive of LF/HF (B(SE) = −0.065(0.015), p<0.001)), even after adjustment for confounders.

Conclusions

In conclusion, our population-based study highlights the importance of Nt-proBNP levels to predict decreased HRV after acute MI.  相似文献   

9.
BackgroundDecreased heart rate variability (HRV) is associated with adverse outcomes in cardiovascular diseases and has been observed in patients with systemic lupus erythematosus (SLE). We examined the relationship of HRV with SLE disease activity and selected cytokine pathways.MethodsFifty-three patients from the Oklahoma Lupus Cohort were evaluated at two visits each. Clinical assessments included the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), British Isles Lupus Assessment Group (BILAG) index, physician global assessment (PGA), and Safety of Estrogens in Lupus Erythematosus National Assessment-SLEDAI Flare Index. HRV was assessed with a 5-minute electrocardiogram, and the following HRV parameters were calculated: square root of the mean of the squares of differences between adjacent NN intervals (RMSSD), percentage of pairs of adjacent NN intervals differing by more than 50 milliseconds (pNN50), high-frequency power (HF power), and low frequency to high frequency (LF/HF) ratio, which reflects sympathetic/vagal balance. Plasma cytokine levels were measured with a multiplex, bead-based immunoassay. Serum B lymphocyte stimulator (BLyS) and a proliferation-inducing ligand (APRIL) were measured with an enzyme-linked immunosorbent assay. Linear regression analysis was applied.ResultsBaseline HRV (pNN50, HF power, LF/HF ratio) was inversely related to disease activity (BILAG, PGA) and flare. Changes in RMSSD between visits were inversely related to changes in SLEDAI (p = 0.007). Age, caffeine, tobacco and medication use had no impact on HRV. Plasma soluble tumor necrosis factor receptor II (sTNFRII) and monokine induced by interferon gamma (MIG) were inversely related with all baseline measures of HRV (p = 0.039 to <0.001). Plasma stem cell factor (SCF), interleukin (IL)-1 receptor antagonist (IL-1RA), and IL-15 showed similar inverse relationships with baseline HRV, and weaker trends were observed for interferon (IFN)-α, interferon gamma-induced protein (IP)-10, and serum BLyS. Changes in the LF/HF ratio between visits were also associated with changes in sTNFRII (p = 0.021), MIG (p = 0.003), IFN-α (p = 0.012), SCF (p = 0.001), IL-1RA (p = 0.023), and IL-15 (p = 0.010). On the basis of multivariate linear regression, MIG was an independent predictor of baseline HRV after adjusting for plasma IL-1RA, SCF, IFN-α, IP-10, and serum BLyS. In a similar model, the sTNFRII impact remained significant after adjusting for the same variables.ConclusionsImpaired HRV, particularly the LF/HF ratio, is associated with lupus disease activity and several cytokines related to IFN type II and TNF pathways. The strongest association was with MIG and sTNFRII, expanding previous immune connections of vagal signaling.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-016-1087-x) contains supplementary material, which is available to authorized users.  相似文献   

10.
An orthostatic test with frequency-controlled breathing (with periods of 4, 6, 8, 10, and 12 s) was used to analyze frequency estimates of the heart rate variability (HRV) spectrum in the low frequency (LF) and high frequency (HF) ranges in 36 volunteers (26 men and 10 women) aged 19–21 years without signs of heart or respiratory pathology. The subjects took a breath at the moment of an auditory signal. There were no other requirements for the respiration rhythm. Variables were compared using Wilcoxon’s test for pairwise comparisons; correlations were estimated by Spearman’s rank correlation R test. The sensitivities of the LF and HF ranges of the HRV spectrum to periodic respiratory perturbations at different frequencies were demonstrated to differ from each other. Autonomous 0.10- and 0.25-Hz circuits of oscillatory processes were found in HRV. The transition zone of influence of these circuits was located in the region around 0.125 Hz. The characteristics of the 0.10- and 0.25-Hz oscillations in HRV were studied. It was demonstrated that the 0.10-Hz oscillatory process is a potent mechanism of heart rate control, is affected by external factors, and determines the dynamics of the autonomic nervous state of the body, while the 0.25-Hz process is a regulatory mechanism of medium strength, is resistant to external factors, and characterizes the adaptation reserve of the autonomic nervous control of the heart rate, as well as the autonomic nervous state of the body. Resonance responses in the HRV spec-trum can be used for studying the characteristics of the 0.10- and 0.25-Hz oscillations.__________Translated from Fiziologiya Cheloveka, Vol. 31, No. 3, 2005, pp. 76–83.Original Russian Text Copyright © 2005 by Kiselev, Kirichuk, Posnenkova, Gridnev.  相似文献   

11.
It has not hitherto been clarified whether there is an association between dietary behavior and circadian variation in autonomic nervous system activity among shift workers. This study examines diurnal 24-h rhythm in heart rate variability (HRV) and dietary behavior among rotating shift workers, while taking into account the sleep-wake cycle and physical activity. The subjects were 11 female and 2 male nurses or caregivers working in a rotating 2-shift system at a health care facility. All the subjects were asked to undergo 24-h electrocardiograph and step count recordings, and to record the time of each meal and the amounts of each food and beverage consumed. Coarse graining spectral analysis was used for approximately 10-min segments of HRV to derive the total power (TOT: >0.04 Hz) of the periodic components and the integrated power of periodic components in the low-frequency (LF: 0.04–0.15 Hz) and high-frequency (HF: >0.15 Hz) ranges. Then the ratio of HF power to TOT (HF nu) and the ratio of LF power to HF power (LF/HF) were calculated to assess cardiac vagal tone and cardiac sympathovagal balance, respectively. Single cosinor analysis was used to obtain 24-h period variations in both variables of HRV. Acrophases of HF nu and LF/HF expressed in time since awakening were significantly (p<0.05) delayed for subjects having breakfast at a later time after awakening. Multivariable regression analysis indicated that the timing of breakfast, the ratio of energy intake at dinner to total energy intake, and total energy intake were correlated to the acrophases of HF nu and/or LF/HF. These results suggest that the phase angle between circadian variation in cardiac autonomic nervous system activity and the sleep-wake cycle may be associated with dietary behavior in shift workers.  相似文献   

12.

Background

Ganglionated plexuses (GP) are terminal parts of cardiac autonomous nervous system (ANS). Radiofrequency ablation (RFA) for atrial fibrillation (AF) possibly affects GP. Changes in heart rate variability (HRV) after RFA can reflect ANS modulation.

Methods

Epicardial RFA of GP on the left atrium (LA) was performed under the general anesthesia in 15 mature Romanov sheep. HRV was used to assess the alterations in autonomic regulation of the heart. A 24???hour ECG monitoring was performed before the ablation, 2 days after it and at each of the 12 following months. Ablation sites were evaluated histologically.

Results

There was an instant change in HRV parameters after the ablation. A standard deviation of all intervals between normal QRS (SDNN), a square root of the mean of the squared differences between successive normal QRS intervals (RMSSD) along with HRV triangular index (TI), low frequency (LF) power and high frequency (HF) power decreased, while LF/HF ratio increased. Both the SDNN, LF power and the HF power changes persisted throughout the 12???month follow???up. Significant decrease in RMSSD persisted only for 3 months, HRV TI for 6 months and increase in LF/HF ratio for 7 months of the follow???up. Afterwards these three parameters were not different from the preprocedural values.

Conclusions

Epicardial RFA of GP’s on the ovine left atrium has lasting effect on the main HRV parameters (SDNN, HF power and LF power). The normalization of RMSSD, HRV TI and LF/HF suggests that HRV after epicardial RFA of GPs on the left atrium might restore over time.
  相似文献   

13.
ABSTRACT

The autonomic nervous system (ANS) is one of the effector pathways for circadian variation of many physiological parameters. Autonomic tone and airways caliber have been reported to exhibit circadian variation in separate studies. A simultaneous investigation of heart rate variability (HRV) and airway caliber might ascertain how airway caliber is modulated by autonomic tone. This study was planned to identify the variations in airway caliber and autonomic function tone during a 24-hour span. A total of 56 healthy male subjects with almost similar daily routines were studied. Time domain, frequency domain and nonlinear analysis of R-R interval from 5 min electrocardiogram (ECG) was done seven times during the daytime wake span at 3-hour intervals starting at 05:00 h in the morning until 23:00 h in the night. Simultaneously peak expiratory flow rate (PEFR) was determined using a mini Wright’s peak flow meter. Rhythmometric analysis was done for PEFR and HRV parameters. Significant circadian variation in low frequency (LF) and high frequency (HF) variance was identified in this group of healthy subjects. The circadian rhythm of LF variance was characterized by a gradual increase and corresponding reciprocal change in HF variance from morning until night. The LF/HF ratio and SD2/SD1 ratio reflecting sympatho-vagal balance showed low to high values from morning to evening. The acrophase of the PEFR temporal pattern is similar to that of LF power and almost opposite in phase to that of HF power. PEFR is positively correlated with LF power. The circadian rhythm of airway caliber co-varies with cardiac autonomic tone. It appears that the temporal pattern of cardiac autonomic tone precedes in time that of airways caliber, thereby suggesting the latter operates under the modulatory effect of the 24-hour pattern in sympatho-vagal balance.  相似文献   

14.
The autonomic nervous system (ANS) plays an important role in regulating the metabolic homeostasis and controlling immune function. ANS alterations can be detected by reduced heart rate variability (HRV) in conditions like diabetes and sepsis. We determined the effects of experimental conditions mimicking inflammation and hyperlipidemia on HRV and heart rate (HR) in relation to the immune, metabolic, and hormonal responses resulting from these interventions. Sixteen lean healthy subjects received intravenous (i.v.) low-dose endotoxin (lipopolysaccharide [LPS]), i.v. fat, oral fat, and i.v. glycerol (control) for 6 hours, during which immune, metabolic, hormonal, and five HRV parameters (pNN50, RMSSD, low-frequency (LF) and high-frequency (HF) power, and LF/HF ratio) were monitored and energy metabolism and insulin sensitivity (M-value) were assessed. LPS infusion induced an increase (AUC) in HR and LF/HF ratio and decline in pNN50 and RMSSD, while oral fat resulted in elevated HR and a transient (hours 1-2) decrease in pNN50, RMSSD, and HF power. During LPS infusion, ΔIL-1ra levels and ΔIL-1ra and ΔIL-1ß gene expression correlated positively with ΔLF/HF ratio and inversely with ΔRMSSD. During oral fat intake, ΔGLP-1 tended to correlate positively with ΔHR and inversely with ΔpNN50 and ΔRMSSD. Following LPS infusion, lipid oxidation correlated positively with HR and inversely with pNN50 and RMSSD, whereas HRV was not related to M-value. In conclusion, suppression of vagal tone and sympathetic predominance during endotoxemia are linked to anti-inflammatory processes and lipid oxidation but not to insulin resistance, while weaker HRV changes in relation to the GLP-1 response are noted during oral fat load.

Trial Registration

ClinicalTrials.gov NCT01054989  相似文献   

15.

Background

Non-alcoholic fatty liver disease (NAFLD) is associated with cardiovascular atherosclerosis independent of classical risk factors. This study investigated the influence of NAFLD on autonomic changes, which is currently unknown.

Methods

Subjects without an overt history of cardiovascular disease were enrolled during health checkups. The subjects diagnosed for NAFLD using ultrasonography underwent 5-min heart rate variability (HRV) measurements that was analyzed using the following indices: (1) the time domain with the standard deviation of N-N (SDNN) intervals and root mean square of successive differences between adjacent N-N intervals (rMSSD); (2) the frequency domain with low frequency (LF) and high frequency (HF) components; and (3) symbolic dynamics analysis. Routine blood biochemistry data and serum leptin levels were analyzed. Homeostasis model assessment of insulin resistance (HOMA-IR) was measured.

Results

Of the 497 subjects (mean age, 46.2 years), 176 (35.4%) had NAFLD. The HRV indices (Ln SDNN, Ln rMSSD, Ln LF, and Ln HF) were significantly decreased in the NAFLD group (3.51 vs 3.62 ms, 3.06 vs 3.22 ms, 5.26 vs 5.49 ms2, 4.49 vs 5.21 ms2, respectively, all P<0.05). Ln SDNN was significantly lower in the NAFLD group after adjustment for age, sex, hypertension, dyslipidemia, metabolic syndrome, body mass index, smoking, estimated glomerular filtration rate, HOMA-IR, and leptin (P<0.05). In the symbolic dynamic analysis, 0 V percentage was significantly higher in the NAFLD group (33.8% vs 28.7%, P = 0.001) and significantly correlated with linear HRV indices (Ln SDNN, Ln rMSSD, and Ln HF).

Conclusions

NAFLD is associated with decreased Ln SDNN and increased 0 V percentage. The former association was independent of conventional cardiovascular risk factors and serum biomarkers (insulin resistance and leptin). Further risk stratification of autonomic dysfunction with falls or cardiovascular diseases by these HRV parameters is required in patients with NAFLD.  相似文献   

16.
Objective: To investigate the cardiovascular autonomic function in pediatric obesity of different duration by using standard time domain, spectral heart rate variability (HRV), and nonlinear methods. Research Methods and Procedures: Fifty obese children (13.9 ± 1.7 years) were compared with 12 lean subjects (12.9 ± 1.6 years). Obese children were classified as recent obese (ROB) (<4 years), intermediate obese (IOB) (4 to 7 years), and long‐term obese (OB) (>7 years). In all participants, we performed blood pressure (BP) measurements, laboratory tests, and 24‐hour electrocardiogram/ambulatory BP monitoring. The spectral power was quantified in total power, very low‐frequency (LF) power, high‐frequency (HF) power, and LF to HF ratio. Total, long‐term, and short‐term time domain HRV were calculated. Poincaré plot and quadrant methods were used as nonlinear techniques. Results: All obese groups had higher casual and ambulatory BP and higher glucose, homeostasis model assessment, and triglyceride levels. All parameters reflecting parasympathetic tone (HF band, root mean square successive difference, proportion of successive normal‐to‐normal intervals, and scatterplot width) were significantly and persistently reduced in all obese groups in comparison with lean controls. LF normalized units, LF/HF, and cardiac acceleration (reflecting sympathetic activation) were significantly increased in the ROB group. In IOB and OB groups, LF, but not nonlinear, measures were similar to lean controls, suggesting biphasic behavior of sympathetic tone, whereas nonlinear analysis showed a decreasing trend with the duration of obesity. Long‐term HRV measures were significantly reduced in ROB and IOB. Discussion: Autonomic nervous system changes in adolescent obesity seem to be related to its duration. Nonlinear methods of scatterplot and quadrant analysis permit assessment of autonomic balance, despite measuring different aspects of HRV.  相似文献   

17.
The hydroponic bio-filter method (HBFM) was adopted to purify eutrophic surface water. The average removal efficiency of total nitrogen (TN) and total phosphorus (TP) was 16.8% and 30.8%, respectively, at the hydraulic loading rate (HLR) of 3.0 m3 (m2 d)−1. The mass removal rate of TN and TP accordingly reached 1.0 and 0.1 g (m2 d)−1 separately. The sedimentation of particulate nitrogen and phosphorus played a major role in removal of nitrogen and phosphorus, which contribute 62.2% and 75.9%, respectively. The optimal HLR of HBFM ranged from 3.0 to 4.0 m3 (m2 d)−1. The sediment in midstream reached a maximum nitrification potential of 4.76 × 10−6 g (g h)−1, while upstream it reached a maximum denitrification potential of 8.1 × 10−7 g (g h)−1. The distribution of nitrification potential corresponded to the ammonium-oxidizing bacteria density. The key for improving nitrogen removal efficacy of HBFM system consisted of changing the nitrification/denitrification region distribution and accordingly enhancing the denitrification process. The sum of dissolved nitrogen removed by denitrification and plant assimilation was nearly equal to the amount released by sediment. Secateur length of Nasturtium officinale had some effect on its uptake rate. The length of cut should be less than 10 cm at a time. The harvesting frequency of once a month for N. officinale had no influence on nitrogen and phosphorus removal.  相似文献   

18.
In this study, the hydraulic conductivity (Lp), Me2SO permeability ( Me2SO), and the reflection coefficients (ς) and their activation energies were determined for Metaphase II (MII) mouse oocytes by exposing them to 1.5 M Me2SO at temperatures of 30, 20, 10, 3, 0, and −3°C. These data were then used to calculate the intracellular concentration of Me2SO at given temperatures. Individual oocytes were immobilized using a holding pipette in 5 μl of an isosmotic PBS solution and perfused with precooled or prewarmed 1.5 M Me2SO solutions. Oocyte images were video recorded. The cell volume changes were calculated from the measurement of the diameter of the oocytes, assuming a spherical shape. The initial volume of the oocytes in the isoosmotic solution was considered 100%, and relative changes in the volume of the oocytes after exposure to the Me2SO were plotted against time. Mean (means ± SEM) Lpvalues in the presence of Me2SO ( Me2SOp) at 30, 20, 10, 3, 0, and −3°C were determined to be 1.07 ± 0.03, 0.40 ± 0.02, 0.18 ± 0.01, 7.60 × 10−2± 0.60 × 10−2, 5.29 × 10−2± 0.40 × 10−2, and 3.69 × 10−2± 0.30 × 10−2μm/min/atm, respectively. The Me2SOvalues were 3.69 × 10−3± 0.3 × 10−3, 1.07 × 10−3± 0.1 × 10−3, 2.75 × 10−4± 0.15 × 10−4, 7.83 × 10−5± 0.50 × 10−5, 5.24 × 10−5± 0.50 × 10−5, and 3.69 × 10−5± 0.40 × 10−5cm/min, respectively. The ς values were 0.70 ± 0.03, 0.77 ± 0.04, 0.81 ± 0.06, 0.91 ± 0.05, 0.97 ± 0.03, and 1 ± 0.04, respectively. The estimated activation energies (Ea) for Me2SOp, Me2SO, and ς were 16.39, 23.24, and −1.75 Kcal/mol, respectively. These data may provide the fundamental basis for the development of more optimal cryopreservation protocols for MII mouse oocytes.  相似文献   

19.
A biosensor based on the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMI·Tf2N) and a novel source of peroxidase (tissue from the pine nuts of Araucaria angustifolia) was constructed. This enzyme was immobilized on chitosan crosslinked with citrate and the biosensor used for the determination of rosmarinic acid by square-wave voltammetry. The peroxidase in the presence of hydrogen peroxide catalyzes the oxidation of rosmarinic acid to quinone and the electrochemical reduction of the product was obtained at a potential of +0.15 V vs. Ag/AgCl. Different analytical parameters influencing the biosensor response, that is, peroxidase units, pH, hydrogen peroxide concentration and parameters for the square-wave voltammetry (frequency, pulse amplitude and scan increment), were investigated. The best performance was observed for the biosensor under the following conditions: 1000 units mL−1 peroxidase, pH 7.0 and 8.3 × 10−4 mol L−1 hydrogen peroxide with a frequency of 30 Hz, pulse amplitude of 100 mV and scan increment of 5.0 mV. The biosensor gave a linear response to rosmarinic acid over the concentration range of 9.07 × 10−7 to 4.46 × 10−6 mol L−1 with a detection limit of 7.25 × 10−8 mol L−1. The recovery of rosmarinic acid in plant extracts ranged from 97.0% to 109.6% and the determination of this substance in these samples using the biosensor compared favorably with that using the capillary electrophoresis method.  相似文献   

20.

Background

Musical performance is a skilled activity performed under intense pressure, thus is often a profound source of anxiety. In other contexts, anxiety and its concomitant symptoms of sympathetic nervous system arousal have been successfully ameliorated with HRV biofeedback (HRV BF), a technique involving slow breathing which augments autonomic and emotional regulatory capacity. Objective: This randomised-controlled study explored the impact of a single 30-minute session of HRV BF on anxiety in response to a highly stressful music performance.

Methods

A total of 46 trained musicians participated in this study and were randomly allocated to a slow breathing with or without biofeedback or no-treatment control group. A 3 Group×2 Time mixed experimental design was employed to compare the effect of group before and after intervention on performance anxiety (STAI-S) and frequency domain measures of HRV.

Results

Slow breathing groups (n = 30) showed significantly greater improvements in high frequency (HF) and LF/HF ratio measures of HRV relative to control (n = 15) during 5 minute recordings of performance anticipation following the intervention (effect size: η2 = 0.122 and η2 = 0.116, respectively). The addition of biofeedback to a slow breathing protocol did not produce differential results. While intervention groups did not exhibit an overall reduction in self-reported anxiety, participants with high baseline anxiety who received the intervention (n = 15) displayed greater reductions in self-reported state anxiety relative to those in the control condition (n = 7) (r = 0.379).

Conclusions

These findings indicate that a single session of slow breathing, regardless of biofeedback, is sufficient for controlling physiological arousal in anticipation of psychosocial stress associated with music performance and that slow breathing is particularly helpful for musicians with high levels of anxiety. Future research is needed to further examine the effects of HRV BF as a low-cost, non-pharmacological treatment for music performance anxiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号