首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The K562 erythroleukemia cell line was used to study the molecular mechanisms regulating lineage commitment of hematopoietic stem cells. Phorbol esters, which initiate megakaryocyte differentiation in this cell line, caused a rapid increase in extracellular-signal-regulated kinase (ERK), which remained elevated for 2 h and returned to near-basal levels by 24 h. In the absence of extracellular stimuli, ERK could be activated by expression of constitutively active mutants of mitogen-activated protein (MAP) kinase kinase (MKK), resulting in cell adhesion and spreading, increased cell size, inhibition of cell growth, and induction of the platelet-specific integrin alphaIIb beta3, all hallmarks of megakaryocytic differentiation. In contrast, expression of wild-type MKK had little effect. In addition, constitutively active MKK suppressed the expression of an erythroid marker, alpha-globin, indicating the ability to suppress cellular responses necessary for alternative cell lineages. The MKK inhibitor PD98059 blocked MKK/ERK activation and cellular responses to phorbol ester, demonstrating that activation of MKK is necessary and sufficient to induce a differentiation program along the megakaryocyte lineage. Thus, the MAP kinase cascade, which promotes cell growth and proliferation in many cell types, instead inhibits cell proliferation and initiates lineage-specific differentiation in K562 cells, establishing a model system to investigate the mechanisms by which this signal transduction pathway specifies cell fate and developmental processes.  相似文献   

2.
G蛋白偶联受体激活丝裂原活化蛋白激酶的机理   总被引:2,自引:1,他引:1  
Zhu WZ  Han QD 《生理科学进展》1998,29(2):141-144
多种G蛋白偶联受体的均能激活丝裂原活化蛋白激酶。Gi蛋白偶联受体主要通过其βγ亚基,依赖Ras蛋白途径;在大多数哺乳类细胞中Gs蛋白偶联受体通过PKA途径抑制Ras依赖的MAPK活化,但在COS-7细胞,Gs蛋白偶联受体通过PKA途径使表达的MAPK活化;Gq蛋白偶联受体主要通过PKC途径依赖或非依赖于Ras使MAPK活化。MAPK信号途径中EGF受体,酪氨酸激酶及调节蛋白Shc等联级反应蛋白可能  相似文献   

3.
TAK1, a member of the mitogen-activated kinase kinase kinase family, is activated in vivo by various cytokines, including interleukin-1 (IL-1), or when ectopically expressed together with the TAK1-binding protein TAB1. However, this molecular mechanism of activation is not yet understood. We show here that endogenous TAK1 is constitutively associated with TAB1 and phosphorylated following IL-1 stimulation. Furthermore, TAK1 is constitutively phosphorylated when ectopically overexpressed with TAB1. In both cases, dephosphorylation of TAK1 renders it inactive, but it can be reactivated by preincubation with ATP. A mutant of TAK1 that lacks kinase activity is not phosphorylated either following IL-1 treatment or when coexpressed with TAB1, indicating that TAK1 phosphorylation is due to autophosphorylation. Furthermore, mutation to alanine of a conserved serine residue (Ser-192) in the activation loop between kinase domains VII and VIII abolishes both phosphorylation and activation of TAK1. These results suggest that IL-1 and ectopic expression of TAB1 both activate TAK1 via autophosphorylation of Ser-192.  相似文献   

4.
5.
We investigated the mechanism of ligand-independent activation of the estrogen receptor (ER) by 3,3'-diindolylmethane (DIM), a promising anticancer agent derived from vegetables of the Brassica genus, in Ishikawa and HEC-1B human endometrial cancer cells. DIM stimulated the activity of an ER-responsive reporter by over 40-fold, equivalent to the maximum induction produced by estradiol (E2), whereas cotreatment of cells with the ER antagonist, ICI-182,780 (ICI), abolished the stimulatory effect of DIM. DIM also induced the expressions of the endogenous genes, TGF-alpha, alkaline phosphatase, and progesterone receptor similar to levels induced by E2. Induction of gene expression by DIM was inhibited by the protein synthesis inhibitor, cycloheximide. In addition, cotreatment of cells with the protein kinase A (PKA) inhibitor, H89, or the MAPK inhibitor, PD98059, reduced DIM activation of the ER by 75% and 50%, respectively. Simultaneous treatment of cells with both inhibitors completely abolished the effect of DIM. DIM stimulated MAPK activity and induced phosphorylation of the endogenous PKA target, cAMP response element binding protein (CREB), in a PKA-dependent manner. Expression of MCREB, a nonphosphorylatable CREB mutant, partially abolished activation of the ER by DIM. These results demonstrate that DIM is a mechanistically novel activator of the ER that requires PKA-dependent phosphorylation of CREB.  相似文献   

6.
M N Levit  Y Liu  J B Stock 《Biochemistry》1999,38(20):6651-6658
The chemotaxis receptor for aspartate, Tar, generates responses by regulating the activity of an associated histidine kinase, CheA. Tar is composed of an extracellular sensory domain connected by a transmembrane sequence to a cytoplasmic signaling domain. The cytoplasmic domain fused to a leucine zipper dimerization domain forms soluble active ternary complexes with CheA and an adapter protein, CheW. The kinetics of kinase activity within these complexes compared to CheA alone indicate approximately a 50% decrease in the KM for ATP and a 100-fold increase in the Vmax. A truncated CheA construct that lacks the phosphoaccepting H-domain and the CheY/CheB-binding domain forms an activated ternary complex that is similar to the one formed by the full-length CheA protein. The Vmax of H-domain phosphorylation by this complex is enhanced approximately 60-fold, the KM for ATP decreased to 50%, and the KM for H-domain decreased to 20% of the values obtained with the same CheA construct in the absence of receptor and CheW. The kinetic data support a mechanism of CheA regulation that involves perturbation of an equilibrium between an inactive form where the H-domain is loosely bound and an active form where the H-domain is tightly associated with the CheA active site and properly positioned for phosphotransfer. The data are consistent with an asymmetric mechanism of CheA activation [Levit, M., Liu, I., Surette, M. G., and Stock, J. B. (1996) J. Biol. Chem. 271, 32057-32063] wherein only one phosphoaccepting domain of CheA at a time can interact with an active center within a CheA dimer.  相似文献   

7.
Internalization of activated receptors from the plasma membrane has been implicated in the activation of mitogen-activated protein (MAP) kinase. However, the mechanism whereby membrane trafficking may regulate mitogenic signaling remains unclear. Here we report that dominant-negative dynamin (K44A), an inhibitor of endocytic vesicle formation, abrogates MAP kinase activation in response to epidermal growth factor, lysophosphatidic acid, and protein kinase C-activating phorbol ester. In contrast, dynamin-K44A does not affect the activation of Ras, Raf, and MAP kinase kinase (MEK) by either agonist. Through immunofluorescence and subcellular fractionation studies, we find that activated MEK is present both at the plasma membrane and in intracellular vesicles but not in the cytosol. Our findings suggest that dynamin-regulated endocytosis of activated MEK, rather than activated receptors, is a critical event in the MAP kinase activation cascade.  相似文献   

8.
Receptor tyrosine kinases (RTKs) activate downstream signaling through cognate growth factor receptor-induced dimerization and autophosphorylation. Overexpression of RTKs can lead to constitutive activation due to increased dimerization in the absence of ligand, and downstream signals are presumed to be the same as the ligand-induced signals. We have shown that the murine Ron (mRon) receptor tyrosine kinase exhibits constitutive activation of the MAP kinase pathway that is independent of the two docking site tyrosines, whereas activation of this pathway in response to ligand (macrophage-stimulating protein) is abolished in the absence of these tyrosines. Furthermore, we identified three tyrosines (Tyr-1175, Tyr-1265, and Tyr-1294) within the kinase domain that play critical but overlapping roles in controlling constitutive Erk activation by mRon. Phenylalanine mutations at these three tyrosines results in a receptor that fails to constitutively activate the Erk pathway but retains the ability to induce Erk phosphorylation in response to ligand stimulation. The ability of mRon to activate the MAP kinase pathway is dependent on c-Src activity, and we have shown that c-Src co-immunoprecipitates with mRon. c-Src fails to interact with mRon when the three tyrosines required for MAP kinase activation are mutated, whereas the presence of any one of these tyrosines alone restores Erk phosphorylation and recruitment of c-Src. Thus, the ligand-dependent and -independent activity of mRon can be uncoupled through the alteration of selective sets of tyrosines.  相似文献   

9.
Disruption of the actin cytoskeleton in subconfluent mesenchymal cells induces chondrogenic differentiation via protein kinase C (PKC) alpha signaling. In this study, we investigated the role of p38 mitogen-activated protein (MAP) kinase in the chondrogenic differentiation of mesenchymal cells that is induced by depolymerization of the actin cytoskeleton. Treatment of mesenchymal cells derived from chick embryonic limb buds with cytochalasin D (CD) disrupted the actin cytoskeleton with concomitant chondrogenic differentiation. The chondrogenesis was accompanied by an increase in p38 MAP kinase activity and inhibition of p38 MAP kinase with SB203580 blocked chondrogenesis. Together these results suggest an essential role for p38 MAP kinase in chondrogenesis. In addition, inhibition of p38 MAP kinase did not alter CD-induced increased expression and activity of PKC alpha, whereas down-regulation of PKC by prolonged exposure of cells to phorbol ester inhibited CD-induced p38 MAP kinase activation. Our results therefore suggest that PKC is involved in the regulation of chondrogenesis induced by disruption of the actin cytoskeleton via a p38 MAP kinase signaling pathway.  相似文献   

10.
Sakurai H  Miyoshi H  Mizukami J  Sugita T 《FEBS letters》2000,474(2-3):141-145
TAK1 is a mitogen-activated protein kinase kinase kinase (MAP3K) that is involved in the c-Jun N-terminal kinase/p38 MAPKs and NF-kappaB signaling pathways. Here, we characterized the molecular mechanisms of TAK1 activation by its specific activator TAB1. Autophosphorylation of two threonine residues in the activation loop of TAK1 was necessary for TAK1 activation. Association with TAK1 and induction of TAK1 autophosphorylation required the C-terminal 24 amino acids of TAB1, but full TAK1 activation required additional C-terminal Ser/Thr rich sequences. These results demonstrated that the association between the kinase domain of TAK1 and the C-terminal TAB1 triggered the phosphorylation-dependent TAK1 activation mechanism.  相似文献   

11.
We examined the upstream kinases for mitogen-activated protein kinase (MAPK) activation during ischemic hypoxia and reoxygenation using H9c2 cells derived from rat cardiomyocytes. Protein kinase C (PKC)zeta, an atypical PKC isoform mainly expressed in rat heart, has been shown to act as an upstream kinase of MAPK during ischemic hypoxia and reoxygenation by analyses with PKC inhibitors, antisense DNA, a dominant negative kinase defective mutant, and constitutively active mutants of PKCzeta. Immunocytochemical observations show PKCzeta staining in the nucleus during ischemic hypoxia and reoxygenation when phosphorylated MAPK is also detected in the nucleus. This nuclear localization of PKCzeta is inhibited by treatment with wortmannin, a phosphoinositide 3-kinase inhibitor that also inhibits MAPK activation in a dose-dependent manner. This is supported by the inhibition of MAPK phosphorylation by another blocker of phosphoinositide 3-kinase, LY294002. An upstream kinase of MAPK, MEK1/2, is significantly phosphorylated 15 min after reoxygenation and observed mainly in the nucleus, whereas it is present in the cytoplasm in serum stimulation. The phosphorylation of MEK is blocked by PKC inhibitors and phosphoinositide 3-kinase inhibitors, as observed in the case of MAPK phosphorylation. These observations indicate that PKCzeta, which is activated by phosphoinositide 3-kinase, induces MAPK activation through MEK in the nucleus during reoxygenation after ischemic hypoxia.  相似文献   

12.
G-protein-coupled receptors (GPCRs) typically activate c-Jun N-terminal kinase (JNK) through the G protein betagamma subunit (Gbetagamma), in a manner dependent on Rho family small GTPases, in mammalian cells. Here we show that JNK activation by the prototypic Gq-coupled alpha1B-adrenergic receptor is mediated by the alpha subunit of Gq (Galphaq), not by Gbetagamma, using a transient transfection system in human embryonic kidney cells. JNK activation by the alpha1B-adrenergic receptor/Galphaq was selectively mediated by mitogen-activated protein kinase kinase 4 (MKK4), but not MKK7. Also, MKK4 activation by the alpha1B-adrenergic receptor/Galphaq required c-Src and Rho family small GTPases. Furthermore, activation of the alpha1B-adrenergic receptor stimulated JNK activity through Src family tyrosine kinases and Rho family small GTPases in hamster smooth muscle cells that natively express the alpha1B-adrenergic receptor. Together, these results suggest that the alpha1B-adrenergic receptor/Galphaq may up-regulate JNK activity through a MKK4 pathway dependent on c-Src and Rho family small GTPases in mammalian cells.  相似文献   

13.
The mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are negative regulators of MAPKs. In dicotyledons such as Arabidopsis and tobacco, MKPs have been shown to play pivotal roles in abiotic stress responses, hormone responses and microtubule organization. However, little is known about the role of MKPs in monocotyledons such as rice. Database searches identified five putative MKPs in rice. We investigated their expression in response to wounding, and found that the expression of OsMKP1 is rapidly induced by wounding. In this study, we functionally characterized the involvement of OsMKP1 in wound responses. The deduced amino acid sequence of OsMKP1 shows strong similarity to Arabidopsis AtMKP1 and tobacco NtMKP1. Moreover, OsMKP1 bound calmodulin in a manner similar to NtMKP1. To determine the biological function of OsMKP1, we obtained osmkp1, a loss-of-function mutant, in which retrotransposon Tos17 was inserted in the second exon of OsMKP1. Unlike the Arabidopsis atmkp1 loss-of-function mutant, which shows no abnormal phenotype without stimuli, osmkp1 showed a semi-dwarf phenotype. Exogenous supply of neither gibberellin nor brassinosteroid complemented the semi-dwarf phenotype of osmkp1. Activities of two stress-responsive MAPKs, OsMPK3 and OsMPK6, in osmkp1 were higher than those in the wild type both before and after wounding. Microarray analysis identified 13 up-regulated and eight down-regulated genes in osmkp1. Among the up-regulated genes, the expression of five genes showed clear responses to wounding, indicating that wound responses are constitutively activated in osmkp1. These results suggest that OsMKP1 is involved in the negative regulation of rice wound responses.  相似文献   

14.
15.
16.
Environmental or occupational exposure to arsenic is associated with a greatly increased risk of skin, urinary bladder, and respiratory tract cancers in arseniasis-endemic areas throughout the world. Arsenic shares many properties of tumor promoters by affecting specific cell signal transduction pathways responsible for cell proliferation. The activation of the epidermal growth factor receptor (EGFR)-extracellular signal-regulated protein kinase (ERK) pathway is important in mediating gene expression related to regulation of cellular growth. In the current studies, we demonstrate that arsenic activates EGFR and ERK in a human uroepithelial cell line. The EGFR phosphorylation by arsenic is ligand-independent and does not involve the major autophosphorylation site Tyr(1173). c-Src activity is also induced by arsenic and is a prerequisite for the EGFR and ERK activation. Consistent with these in vitro observations, exposure of mice to arsenic in drinking water, which has been found previously to be associated with AP-1 activation and epithelial proliferation, induces EGFR and ERK activation in the urinary bladder. This response is also accompanied with an increase in c-Src levels interacting with EGFR. These findings represent a potential pathway for mediating arsenic-induced phenotypic changes in the uroepithelium.  相似文献   

17.
18.
The mitogen-activated protein kinase phosphatase 3 (MKP3)-catalyzed hydrolysis of aryl phosphates in the absence and presence of extracellular signal-regulated kinase 2 (ERK2) was investigated in order to provide insights into the molecular basis of the ERK2-induced MKP3 activation. In the absence of ERK2, the MKP3-catalyzed hydrolysis of simple aryl phosphates does not display any dependence on pH, viscosity, and the nature of the leaving group. Increased catalytic activity and enhanced affinity for oxyanions are observed for MKP3 in the presence of ERK2. In addition, normal bell-shaped pH dependence on the reaction catalyzed by MKP3 is restored in the presence of ERK2. Collectively, these results suggest that the rate-limiting step in the absence of ERK2 for the MKP3 reaction corresponds to a substrate-induced conformational change in MKP3 involving active site rearrangement and general acid loop closure. The binding of ERK2 to the N-terminal domain of MKP3 facilitates the repositioning of active site residues and speeds up the loop closure in MKP3 such that chemistry becomes rate-limiting in the presence of ERK2. Remarkably, it is found that the extent of ERK2-induced MKP3 activation is substrate dependent, with smaller activation observed for bulkier substrates. Unlike simple aryl phosphates, the MKP3-catalyzed hydrolysis of bulky polycyclic substrates exhibits bell-shaped pH rate profiles in the absence of ERK2. Furthermore, it is found that glycerol can also activate the MKP3-catalyzed reaction, increase the affinity of MKP3 for oxyanion, and restore the bell-shaped pH rate profile for the MKP3-catalyzed reaction. Thus, the rate of repositioning of catalytic groups and the reorienting of the electrostatic environment in the MKP3 active site can be enhanced not only by ERK2 but also by high affinity substrates or by glycerol.  相似文献   

19.
Activation of AMP-activated protein kinase (AMPK) has been recently demonstrated to be associated with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR)-stimulated glucose transport mediated by both GLUT1 and GLUT4 transporters. However, signaling events upstream and downstream of AMPK are unknown. Here we report that 1) p38 mitogen-activated protein kinase (MAPK) and mitogen-activated protein kinase kinase 3 (MKK3) were activated by AICAR in Clone 9 cells, which express only the GLUT1 transporters, and 2) activation of p38 was required for AICAR-stimulated glucose transport since treatment of the cells with p38 inhibitor SB203580 or overexpression of dominant negative p38 mutant inhibited glucose transport. Moreover, we found that overexpression of the constitutively active form of AMPK mutant also resulted in a significant activation of p38, and inhibition of p38 activity by SB203580 did not affect AICAR-stimulated activation of AMPK. These findings demonstrate that AICAR-stimulated activation of p38 is indeed mediated by AMPK, and the p38 MAPK cascade is downstream of AMPK in the signaling pathway of AICAR-stimulated glucose transport in Clone 9 cells.  相似文献   

20.
Desai S  Ashby B 《FEBS letters》2001,501(2-3):156-160
We examined the pathway of prostaglandin E(2) (PGE(2))-induced internalization of the prostaglandin EP4 receptor in HEK 293 cells. Co-expression of dominant negative beta-arrestin (319-418) or dynamin I (K44A) with the EP4 receptor reduced internalization. The activated receptor co-localized with GFP-arrestin 2 and GFP-arrestin 3, confirming the requirement for beta-arrestins in internalization. Inhibition of clathrin-coated vesicle-mediated internalization resulted in inhibition of sequestration, whereas inhibition of caveola-mediated internalization had no effect. PGE(2) stimulation of the EP4 receptor resulted in rapid mitogen-activated protein (MAP) kinase activation. Examination of an internalization-resistant mutant and co-expression of mutant accessory proteins with EP4 revealed that MAP kinase activation proceeds independently of internalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号