首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The 26S proteasome is a multisubunit protease responsible for regulated proteolysis in eukaryotic cells. It is composed of one catalytic 20S proteasome and two 19S regulatory particles attached on both ends of 20S proteasomes. Here, we describe the identification of Adrm1 as a novel proteasome interacting protein in mammalian cells. Although the overall sequence of Adrm1 has weak homology with the yeast Rpn13, the amino- and carboxyl-terminal regions exhibit significant homology. Therefore, we designated it as hRpn13. hRpn13 interacts with a base subunit Rpn2 via its amino-terminus. The majority of 26S proteasomes contain hRpn13, but a portion of them does not, indicating that hRpn13 is not an integral subunit. Intriguingly, we found that hRpn13 recruits UCH37, a deubiquitinating enzyme known to associate with 26 proteasomes. The carboxyl-terminal regions containing KEKE motifs of both hRpn13 and UCH37 are involved in their physical interaction. Knockdown of hRpn13 caused no obvious proteolytic defect but loss of UCH37 proteins and decrease in deubiquitinating activity of 26S proteasomes. Our results indicate that hRpn13 is essential for the activity of UCH37.  相似文献   

2.
We sequenced five peptides from subunit 11 (S11), a 43 kDa protein of the human 26S proteasome, and used this information to clone its cDNA. The S11 cDNA encodes a 376 amino acid protein with a pI of 5.6 and a molecular mass of 42.9 kDa. Translation of S11 RNA in the presence of [35S]methionine produces a radiolabeled protein that co-migrates with S11 of the human 26S proteasome on SDS-PAGE. Polyclonal antiserum made against recombinant S11 recognizes a protein of the same size in extracts of bacteria expressing S11 and in purified 26S proteasomes from human red blood cells or rabbit reticulocytes. The S11 sequence does not contain motifs that suggest a biological function. S11 is, however, the human homolog of Rpn9, a recently identified subunit of the yeast 26S proteasome.  相似文献   

3.
Tone Y  Tanahashi N  Tanaka K  Fujimuro M  Yokosawa H  Toh-e A 《Gene》2000,243(1-2):37-45
Nob1p, which interacts with Nin1p/Rpn12, a subunit of the 19S regulatory particle (RP) of the yeast 26S proteasome, has been identified by two-hybrid screening. NOB1 was found to be an essential gene, encoding a protein of 459 amino acid residues. Nob1p was detected in growing cells but not in cells in the stationary phase. During the transition to the stationary phase, Nob1p was degraded, at least in part, by the 26S proteasome. Nob1p was found only in proteasomal fractions in a glycerol gradient centrifugation profile and immuno-coprecipitated with Rpt1, which is an ATPase component of the yeast proteasomes. These results suggest that association of Nob1p with the proteasomes is essential for the function of the proteasomes in growing cells.  相似文献   

4.
Most proteins in eukaryotic cells are degraded by 26-S proteasomes, usually after being conjugated to ubiquitin. In the absence of ATP, 26-S proteasomes fall apart into their two sub-complexes, 20-S proteasomes and PA700, which reassemble upon addition of ATP. Conceivably, 26-S proteasomes dissociate and reassemble during initiation of protein degradation in a ternary complex with the substrate, as in the dissociation-reassembly cycles found for ribosomes and the chaperonin GroEL/GroES. Here we followed disassembly and assembly of 26-S proteasomes in cell extracts as the exchange of PA700 subunits between mouse and human 26-S proteasomes. Compared to the rate of proteolysis in the same extract, the disassembly-reassembly cycle was much too slow to present an obligatory step in a degradation cycle. It has been suggested that subunit S5a (Mcb1, Rpn10), which binds poly-ubiquitin substrates, shuttles between a free state and the 26-S proteasome, bringing substrate to the complex. However, S5a was not found in the free state in HeLa cells. Besides, all subunits in PA700, including S5a, exchanged at similar low rates. It therefore seems that 26-S proteasomes function as stable entities during degradation of proteins.  相似文献   

5.
Previously, we cloned a carrot (Daucus carota L.) cDNA encoding a 45-kD protein, 21D7, located in the nuclei of proliferating cells. The 21D7 protein is similar to the partial sequence of a regulatory subunit of the bovine 26S proteasome, p58 (G. DeMartino, C.R. Moomaw, O.P. Zagnitko, R.J. Proske, M. Chu-Ping, S.J. Afendis, J.C. Swaffield, C.A. Slaughter [1994] J Biol Chem 269: 20878-20884) and to the deduced sequence encoded by the Saccharomyces cerevisiae gene SUN2 (M. Kawamura, K. Kominami, J. Takeuchi, A. Toh-e [1996] Mol Gen Genet 251: [146-152]). In our work, the expression of plant 21D7 cDNA rescued the yeast sun2 mutant. Fractionation of carrot and spinach (Spinacia oleracea L.) crude extracts showed that the 21D7 protein sedimented with the active 26S proteasomes. The cessation of cell proliferation in carrot suspensions at the stationary phase caused 26S proteasome dissociation and, correspondingly, the 21D7 protein sedimented together with the free regulatory complexes of the 26s proteasomes. Large-scale purification of carrot 26s proteasomes resulted in co-isolation of the 21D7 protein. Polyacrylamide gel electrophoresis under nondenaturing conditions showed that the 21D7 protein had the same mobility as the 26S proteasome and that proteasome dissociation changed the mobility of the 21D7 protein accordingly. We conclude that the 21D7 protein is a subunit of the plant 26S proteasome and that it probably belongs to the proteasome regulatory complex.  相似文献   

6.
The critical role of the ubiquitin-26S proteasome system in regulation of protein homeostasis in eukaryotes is well established. In contrast, the impact of the ubiquitin-independent proteolytic activity of proteasomes is poorly understood. Through biochemical analysis of mammalian lysates, we find that the 20S proteasome, latent in peptide hydrolysis, specifically cleaves more than 20% of all cellular proteins. Thirty intrinsic proteasome substrates (IPSs) were identified and in vitro studies of their processing revealed that cleavage occurs at disordered regions, generating stable products encompassing structured domains. The mechanism of IPS recognition is remarkably well conserved in the eukaryotic kingdom, as mammalian and yeast 20S proteasomes exhibit the same target specificity. Further, 26S proteasomes specifically recognize and cleave IPSs at similar sites, independent of ubiquitination, suggesting that disordered regions likely constitute the universal structural signal for IPS proteolysis by proteasomes. Finally, we show that proteasomes contribute to physiological regulation of IPS levels in living cells and the inactivation of ubiquitin-activating enzyme E1 does not prevent IPS degradation. Collectively, these findings suggest a significant contribution of the ubiquitin-independent proteasome degradation pathway to the regulation of protein homeostasis in eukaryotes.  相似文献   

7.
Changes in the subunit composition, phosphorylation of the subunits, and regulation of the activities of 26S proteasomes in proliferating cells undergoing programmed cell death have not been studied so far. Moreover, there are no reports on phosphorylation of proteasome subunits both in normal and in neoplastic cells during apoptosis. The data of the present study show for the first time that apoptosis inductor doxorubicin regulates subunit composition, enzymatic activities, and phosphorylation state of 26S proteasomes in neoplastic (proerythroleukemic K562) cells or, in other words, induces reprogramming of proteasome population. Furthermore, the phosphorylation state of proteasomes is found to be the mechanism controlling specificity of proteasomal proteolytic and endoribonuclease activities.  相似文献   

8.
Eukaryotic cells contain various types of proteasomes. Core 20 S proteasomes (abbreviated 20 S below) have two binding sites for the regulatory particles, PA700 and PA28. PA700-20 S-PA700 complexes are known as 26 S proteasomes and are ATP-dependent machines that degrade cell proteins. PA28 is found both in previously described complexes of the type PA28-20 S-PA28 and in complexes that also contain PA700, as PA700-20 S-PA28. We refer to the latter as "hybrid proteasomes." The relative amounts of the various types of proteasomes in HeLa extracts were determined by a combination of immunoprecipitation and immunoblotting. Hybrid proteasomes accounted for about a fourth of all proteasomes in the extracts. Association of PA28 and proteasomes proved to be ATP-dependent. Hybrid proteasomes catalyzed ATP-dependent degradation of ornithine decarboxylase (ODC) without ubiquitinylation, as do 26 S proteasomes. In contrast, the homo-PA28 complex (PA28-20 S-PA28) was incapable of degrading ODC. Intriguingly, a major immunomodulatory cytokine, interferon-gamma, appreciably enhanced the ODC degradation in HeLa and SW620 cells through induction of the hybrid proteasome, which may also be responsible for the immunological processing of intracellular antigens. Taken together, we report here for the first time the existence of two types of ATP-dependent proteases, the 26 S proteasome and the hybrid proteasome, which appear to share the ATP-dependent proteolytic pathway in mammalian cells.  相似文献   

9.
A novel protein complex called PC530 was purified concomitantly with proteasomes from oocytes of the starfish, Asterina pectinifera, by chromatography with DEAE-cellulose, phosphocellulose, Mono Q, and Superose 6 columns. The molecular mass of this complex was estimated to be 530 kDa by Ferguson plot analysis and about 500 kDa by Superose 6 gel filtration. Since the 1500-kDa proteasome fractions contain the PC530 subunits as well as the 20S proteasomal subunits, and also since the purified PC530 and the 20S proteasome were cross-linked with a bifunctional cross-linking reagent, it is thought that PC530 is able to associate with the 20S proteasome. The PC530 comprises six main subunits with molecular masses of 105, 70, 50, 34, 30, and 23 kDa. The 70-kDa subunit showed a sequence similarity to the S3/p58/Sun2/Rpn3p subunit of the 26S proteasome, whereas the other subunits showed little or no appreciable similarity to the mammalian and yeast regulatory subunits. These results indicate that starfish oocytes contain a novel 530-kDa protein complex capable of associating with the 20S proteasome, which is distinctly different from PA700 or the 19S regulatory complex in molecular size and subunit composition.  相似文献   

10.
C Enenkel  A Lehmann    P M Kloetzel 《The EMBO journal》1998,17(21):6144-6154
26S proteasomes are the key enzyme complexes responsible for selective turnover of short-lived and misfolded proteins. Based on the assumption that they are dispersed over the nucleoplasm and cytoplasm in all eukaryotic cells, we wanted to determine the subcellular distribution of 26S proteasomes in living yeast cells. For this purpose, we generated yeast strains that express functional green fluorescent protein (GFP) fusions of proteasomal subunits. An alpha subunit of the proteolytically active 20S core complex of the 26S proteasome, Pre6/YOL038w, as well as an ATPase-type subunit of the regulatory 19S cap complex, Cim5/YOL145w, were tagged with GFP. Both chimeras were shown to be incorporated completely into active 26S proteasomes. Microscopic analysis revealed that GFP-labelled 20S as well as 19S subunits are accumulated mainly in the nuclear envelope (NE)-endoplasmic reticulum (ER) network in yeast. These findings were supported by the co-localization and co-enrichment of 26S proteasomes with NE-ER marker proteins. A major location of proteasomal peptide cleavage activity was visualized in the NE-ER network, indicating that proteasomal degradation takes place mainly in this subcellular compartment in yeast.  相似文献   

11.
Horiguchi R  Dohra H  Tokumoto T 《Proteomics》2006,6(14):4195-4202
Proteasomes are large, multi-subunit particles that act as the proteolytic machinery for most of the regulated intracellular protein degradation in eukaryotic cells. An alteration of proteasome function may be important for the regulation of the meiotic cell cycle. To study the change at the subunit level of the 26S proteasome during meiotic maturation, we purified 26S proteasomes from immature and mature oocytes of goldfish. Two-dimensional polyacrylamide gel electrophoresis was used to separate proteins. For differential analysis, whole spots of the 26S proteasome from goldfish oocytes were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and database analysis. Four spots that were different (only detected in mature oocyte 265 proteasomes and not in immature ones) and four protein spots that were up- or down-regulated were identified unambiguously. The mature-specific spots were not 26S proteasome components but rather their interacting proteins, and were identified as chaperonin-containing TCP-1 subunits and myosin light chain. Minor spots of three subunits of the 20S core particle and one of the 19S regulatory particle showed meiotic cell cycle-dependent changes. These results demonstrate that modifications of proteasomal subunits and cell cycle phase-dependent interactions of proteins with proteasomes occur during oocyte maturation in goldfish.  相似文献   

12.
Proteasomes are large multicatalytic protease complexes which fulfil central functions in major intracellular proteolytic pathways of the eukaryotic cell. 20S proteasomes are 700 kDa cylindrically shaped particles, found in the cytoplasm and the nucleus of all eukaryotes. They are composed of a pool of 14 different subunits (MW 22–25 kDa) arranged in a stack of 4 rings with 7-fold symmetry. In the yeastSaccharomyces cerevisiae a complete set of 14 genes coding for 20S proteasome subunits have been cloned and sequenced. 26S proteasomes are even larger proteinase complexes (about 1700 kDa) which degrade ubiquitinylated proteins in an ATP-dependent fashionin vitro. The 26S proteasome is build up from the 20S proteasome as core particle and two additional 19S complexes at both ends of the 20S cylinder. Recently existence of a 26S proteasome in yeast has been demonstrated. Several 26S proteasome specific genes have been cloned and sequenced. They share similarity with a novel defined family of ATPases. 20S and 26S proteasomes are essential for functioning of the eukaryotic cell. Chromosomal deletion of 20S and 26S proteasomal genes in the yeastS. cerevisiae caused lethality of the cell. Thein vivo functions of proteasomes in major proteolytic pathways have been demonstrated by the use of 20S and 26S proteasomal mutants. Proteasomes are needed for stress dependent and ubiquitin mediated proteolysis. They are involved in the degradation of short-lived and regulatory proteins. Proteasomes are important for cell differentiation and adaptation to environmental changes. Proteasomes have also been shown to function in the control of the cell cycle.  相似文献   

13.
The participation of proteasome in the programmed cells death is now extensively investigated. Studies using selective inhibitors of proteasomes have provided a direct evidence of both pro- and anti-apoptotic functions of proteasomes. Such opposite roles of 26S proteasomes in regulation of apoptosis may be defined by the proliferative state of cell. The induction of apoptosis in K562 cells by diethylmaleate was used as a model to investigate changes in the subunit composition, phosphorylation state and enzymatic activities of 26S proteasomes undergoing the programmed cell death. Here we have shown that proteasomes isolated from the cytoplasm of control and diethylmaleate treated K562 cells differ in their subunit patterns, as well as in the phosphorylation state of subunits on threonine and tyrosine residues. It has been shown for the first time that proteolytic activity of 26S proteasomes is decreased, and endoribonuclease activity of 26S proteasomes is affected under diethylmaleate action on K562 cells. Treatment of K562 cells with an inductor of apoptosis--diethylmaleate--leads to modification of a proteasomal subunit (zeta/alpha5) associated with RNase activity of proteasomes. These data suggest the subunit composition and enzymatic activities of 26S proteasomes to be changed in K562 cells undergoing apoptosis, and that specific subtypes of 26S proteasomes participate in execution of programmed death of these cells.  相似文献   

14.
Selective proteolysis in plants is largely mediated by the ubiquitin (Ub)/proteasome system in which substrates, marked by the covalent attachment of Ub, are degraded by the 26 S proteasome. The 26 S proteasome is composed of two subparticles, the 20 S core protease (CP) that compartmentalizes the protease active sites and the 19 S regulatory particle that recognizes and translocates appropriate substrates into the CP lumen for breakdown. Here, we describe an affinity method to rapidly purify epitope-tagged 26 S proteasomes intact from Arabidopsis thaliana. In-depth mass spectrometric analyses of preparations generated from young seedlings confirmed that the 2.5-MDa CP-regulatory particle complex is actually a heterogeneous set of particles assembled with paralogous pairs for most subunits. A number of these subunits are modified post-translationally by proteolytic processing, acetylation, and/or ubiquitylation. Several proteasome-associated proteins were also identified that likely assist in complex assembly and regulation. In addition, we detected a particle consisting of the CP capped by the single subunit PA200 activator that may be involved in Ub-independent protein breakdown. Taken together, it appears that a diverse and highly dynamic population of proteasomes is assembled in plants, which may expand the target specificity and functions of intracellular proteolysis.  相似文献   

15.
16.
Proteasomes play an important role in protein turnover in living cells. The inhibition of proteasomes affects cell cycle processes and induces apoptosis. Thus, 20 S proteasomal inhibitors are potential tools for the modulation of neoplastic growth. Based on MG132, a potent but nonspecific 20 S proteasome inhibitor, we designed and synthesized 22 compounds and evaluated them for the inhibition of proteasomes. The majority of the synthesized compounds reduced the hydrolysis of LLVY-7-aminomethylcoumarin peptide substrate in cell lysates, some of them drastically. Several compounds displayed inhibitory effects when tested in vitro on isolated 20 S proteasomes, with lowest IC(50) values of 58 nm (chymotrypsin-like activity), 53 nm (trypsin-like activity), and 100 nm (caspase-like activity). Compounds 16, 21, 22, and 28 affected the chymotrypsin-like activity of the beta5 subunit exclusively, whereas compounds 7 and 8 inhibited the beta2 trypsin-like active site selectively. Compounds 13 and 15 inhibited all three proteolytic activities. Compound 15 was shown to interact with the active site by x-ray crystallography. The potential of these novel inhibitors was assessed by cellular tolerance and biological response. HeLa cells tolerated up to 1 microm concentrations of all substances. Intracellular reduction of proteasomal activity and accumulation of polyubiquitinated proteins were observed for compounds 7, 13, 15, 22, 25, 26, 27, and 28 on HeLa cells. Four of these compounds (7, 15, 26, and 28) induced apoptosis in HeLa cells and thus are considered as promising leads for anti-tumor drug development.  相似文献   

17.
M Tokumoto  R Horiguchi  Y Nagahama  T Tokumoto 《Gene》1999,239(2):301-308
The proteasomes are large, multi-subunit particles that act as the proteolytic machinery for most of the regulated intracellular protein degradation in eukaryotic cells. To investigate the regulatory mechanism for the 26S proteasome in cell-cycle events, we purified this proteasome from immature and mature oocytes, and compared its subunits. Immunoblot analysis of 26S proteasomes showed a difference in the subunit of the 20S proteasome. A monoclonal antibody, GC3beta, cross-reacted with two bands in the 26S proteasome from immature oocytes (in G2-phase); however, the upper band was absent in the 26S proteasome from mature oocytes (in M-phase). These results suggest that changes in the subunits of 26S proteasomes are involved in the regulation of the meiotic cell cycle. Here we describe the molecular cloning of one of the alpha subunits of the 20S proteasome from a Xenopus ovarian cDNA library using an anti-GC3beta monoclonal antibody. From the screening, two types of cDNA are obtained, one 856bp, the other 984bp long. The deduced amino-acid sequences comprise 247 and 248 residues, respectively. These deduced amino-acid sequences are highly homologous to those of alpha4 subunits of other vertebrates. Phosphatase treatment of 26S proteasome revealed the upper band to be a phosphorylated form of the lower band. These results suggest that a part of the alpha4 subunit of the Xenopus 20S proteasome, alpha4_xl, is phosphorylated in G2-phase and dephosphorylated in M-phase.  相似文献   

18.
Analysis of Drosophila 26 S proteasome using RNA interference.   总被引:9,自引:0,他引:9  
We have utilized double-stranded RNA interference (RNAi) to examine the effects of reduced expression of individual subunits of the 26 S proteasome in Drosophila S2 cells. RNAi significantly decreased mRNA and protein levels of targeted subunits of both the core 20 S proteasome and the PA700 regulatory complex. Cells deficient in any of several 26 S proteasome subunits (e.g. d beta 5, dRpt1, dRpt2, dRpt5, dRpn2, and dRpn12) displayed decreased proteasome activity (as judged by hydrolysis of succinyl-Leu-Leu-Val-Tyr-aminomethylcoumarin), increased apoptosis, decreased cell proliferation without a specific block of the cell cycle, and accumulation of ubiquitinated cellular proteins. RNAi of many individual 26 S proteasome subunits promoted increased expression of many non-targeted subunits. This effect was not mimicked by chemical proteasome inhibitors such as lactacystin. Reduced expression of most targeted subunits disrupted the assembly of the 26 S proteasome. RNAi of six of eight targeted PA700 subunits disrupted that structure and caused accumulation of increased levels of uncapped 20 S proteasome. Notable exceptions included RNAi of dRpn10, a polyubiquitin binding subunit, and dUCH37, a ubiquitin isopeptidase. dRpn10-deficient cells showed a significant increase in succinyl-Leu-Leu-Val-Tyr-aminomethylcoumarin hydrolyzing activity of the 26 S proteasomes but accumulated polyubiquitinated proteins. d beta 5-Deficient cells had a phenotype similar to that of most PA700-deficient cells but also accumulated low molecular mass complexes containing subunits of the 20 S proteasome, probably representing unassembled precursors of the 20 S proteasomes. Cells deficient in several of the 26 S proteasome subunits were more resistant to otherwise toxic concentrations of various proteasome inhibitors. Our data suggest that those cells adapted to grow in conditions of impaired ubiquitin and proteasome-dependent protein degradation.  相似文献   

19.
Ubiquitin (Ub)-mediated proteasome-dependent proteolysis is critical in regulating multiple biological processes including apoptosis. We show that the unstructured BH3-only protein, NOXA, is degraded by an Ub-independent mechanism requiring 19S regulatory particle (RP) subunits of the 26S proteasome, highlighting the possibility that other unstructured proteins reported to be degraded by 20S proteasomes in vitro may be bona fide 26S proteasome substrates in vivo. A lysine-less NOXA (NOXA-LL) mutant, which is not ubiquitinated, is degraded at a similar rate to wild-type NOXA. Myeloid cell leukemia 1, but not other anti-apoptotic BCL-2 family proteins, stabilizes NOXA by interaction with the NOXA BH3 domain. Depletion of 19S RP subunits, but not alternate proteasome activator REG subunits, increases NOXA half-life in vivo. A NOXA-LL mutant, which is not ubiquitinated, also requires an intact 26S proteasome for degradation. Depletion of the 19S non-ATPase subunit, PSMD1 induces NOXA-dependent apoptosis. Thus, disruption of 26S proteasome function by various mechanisms triggers the rapid accumulation of NOXA and subsequent cell death strongly implicating NOXA as a sensor of 26S proteasome integrity.  相似文献   

20.
The proteasome is a multi-catalytic protein degradation enzyme that is regulated by ethanol-induced oxidative stress; such suppression is attributed to CYP2E1-generated metabolites. However, under certain conditions, it appears that in addition to oxidative stress, other mechanisms are also involved in proteasome regulation. This study investigated whether impaired protein methylation that occurs during exposure of liver cells to ethanol, may contribute to suppression of proteasome activity. We measured the chymotrypsin-like proteasome activity in Huh7CYP cells, hepatocytes, liver cytosols and nuclear extracts or purified 20S proteasome under conditions that maintain or prevent protein methylation. Reduction of proteasome activity of hepatoma cell and hepatocytes by ethanol or tubercidin was prevented by simultaneous treatment with S-adenosylmethionine (SAM). Moreover, the tubercidin-induced decline in proteasome activity occurred in both nuclear and cytosolic fractions. In vitro exposure of cell cytosolic fractions or highly purified 20S proteasome to low SAM:S-adenosylhomocysteine (SAH) ratios in the buffer also suppressed proteasome function, indicating that one or more methyltransferase(s) may be associated with proteasomal subunits. Immunoblotting a purified 20S rabbit red cell proteasome preparation using methyl lysine-specific antibodies revealed a 25 kDa proteasome subunit that showed positive reactivity with anti-methyl lysine. This reactivity was modified when 20S proteasome was exposed to differential SAM:SAH ratios. We conclude that impaired methylation of proteasome subunits suppressed proteasome activity in liver cells indicating an additional, yet novel mechanism of proteasome activity regulation by ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号