首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Temperature sex-reversal in amphibians and reptiles   总被引:5,自引:0,他引:5  
The sexual differentiation of gonads has been shown to be temperature-sensitive in many species of amphibians and reptiles. In two close species of salamanders, Pleurodeles poireti and P. waltl, both displaying a ZZ/ZW mechanism of genotypic sex determination (GSD), the rearing of larvae at high temperatures (30 degrees-32 degrees C) produces opposite effects: ZZ genotypic males of Pleurodeles poireti become phenotypic females whereas ZW genotypic females of P. waltl become phenotypic males. Sex-reversal of these individuals has been irrefutably demonstrated through genetic, cytogenetic, enzymatic and immunological studies. In many turtles, both sexes differentiate only within a critical range of temperature: above this range, all the individuals become phenotypic females, whereas below it, 100% become phenotypic males. The inverse occurs in some crocodiles and lizards. In many species of these three orders of reptiles, females are obtained at low and high temperatures, and males at intermediate ones. Preliminary studies in turtles (Emys orbicularis) indicate that within the critical range of temperature, sexual phenotype conforms with GSD, but that above and below this range, GSD is overriden. Temperature shifts during larval development in salamanders and during embryonic development in reptiles allowed the determination of thermosensitive stages for gonadal differentiation. Estrogens synthesized in the gonads at these stages appear to be involved in their sexual differentiation, higher levels being produced at feminizing temperatures than at masculinizing ones. The phenomenon of temperature sensitivity of gonadal differentiation occurs in species showing a very early stage in the evolution of sex chromosomes. Its adaptive value, chiefly in reptiles, remains an open question.  相似文献   

4.
Sex Determination in Reptiles: An Update   总被引:1,自引:1,他引:0  
Sex determination and sex differentiation are two separate butrelated phenomena. Sex differentiation is a programmed cascadeof events in which the indifferent gonad develops as a testisor an ovary with the appropriate urogenital and secondary sexcharacters. Sex determination is the event that sets this cascadein motion. In placental mammals, there is good evidence thatsex is determined by a gene on the Y chromosome (SRY) that initiatestestis formation. In the absence of SRY an ovary develops. Thereare, however, examples of placental mammal that develop as normalmales with no detectable SRY. In reptiles, sex differentiationappears to be similar to mammals (i.e., the same genes and hormonesact ina similar manner), but sex determination is clearly verydifferent. Ovarian differentiation in placental mammals canoccur in the absence of estrogen or an estrogen receptor. Ovariandifferentiation in reptiles requires the presence of estrogen.In the absence of estrogen a testis develops. In TSD reptiles,embryos will develop as females when treated with estrogen evenif eggs are incubated at male-inducing temperatures, and conversely,will develop as males when estrogen synthesis is blocked ineggs incubated at female-inducing temperatures. A number ofother genes have also been shown to be important in mammaliansex determination. One of these genes, Sox9, which is expressedin differentiating mouse testis, has recently been found tobe expressed in embryonic reptile testis. Other genes that appearto be common to both mammals and reptiles in the sex determiningcascade are SF- 1, MIH, and possibly DAX-1. Current researchis now focused on how the gene that produces the enzyme necessaryfor estrogen synthesis (aromatase) is regulated in the embryosof reptiles with genetic or environmental sex determination.Controversial issues in reptilian sex determination are 1) therole of the brain in gonadal sex determination, and 2) the roleof steroid hormones in the yolk prior to sex determination  相似文献   

5.
中华鳖(Pelodiscus sinensis)性别决定的方式一直存在较大的争议,分子机制更是不清楚。在大部分脊椎动物中,雌激素在性别决定和性腺分化中扮演重要的调控作用。实验通过对性别分化前胚胎进行雌二醇(E2)和芳香化酶抑制剂(AI)处理,研究雌激素在中华鳖性腺分化中的作用及机理。实验结果显示,与对照组(雌性比例49%)相比,E2处理组中雌性中华鳖仔鳖比例显著增加,高达92.3%;而在AI处理组中,雌性比例显著下调至13.1%。HE染色分析表明,ZZ(雄性)和ZW(雌性)胚胎分别经过E2和AI处理后,ZZ和ZW性腺结构呈现明显的雌性化和雄性化特征。同时,通过RT-PCR和免疫荧光染色发现,E2能显著降低雄性性别关键因子DMRT1和SOX9 mRNA和蛋白表达水平;AI则表现相反的调节作用。综上所述,雌激素通过抑制雄性性别关键因子DMRT1和SOX9的表达来抑制雄性分化,促进雌性分化,揭示雌激素在中华鳖雌性性别分化中起着重要的调控作用。    相似文献   

6.
Red-eared slider turtles are genetically bipotential for sex determination. In this species, as in many other reptiles, incubation temperature of the egg determines gonadal sex. At higher incubation temperatures females are produced and increasing temperature appears to increase estrogen production in the embryonic brain. Treatment of eggs incubating at a male-producing temperature with exogenous estrogen causes ovaries to form. At a female-biased incubation temperature, prevention of estrogen biosynthesis or administration of nonaromatizable androgens results in the development of testes. In mammals, steroidogenic factor 1 (SF-1) regulates most genes required for estrogen biosynthesis, including aromatase. In both mammals and red-eared sliders, SF-1 is differentially expressed in males and females during gonadogenesis. We have examined both SF-1 gene expression and aromatase activity in embryos incubating at different temperatures and after manipulation to change the course of gonadal development. Our findings indicate a central role for SF-1 in enacting the effect of estrogen. Estrogen treatment directly or indirectly downregulates SF-1 and, ultimately, causes development of females. The inhibition of estrogen results in upregulation of SF-1 and male hatchlings. Thus, SF-1 may lie at the center of one molecular crossroad in male versus female differentiation of the red-eared slider.  相似文献   

7.
In the newt Pleurodeles waltl, genetic sex determination obeys female heterogamety (female ZW, male ZZ). In this species as in most of non-mammalian vertebrates, steroid hormones play a key role in sexual differentiation of gonads. In that context, male to female sex reversal can be obtained by treatment of ZZ larvae with estradiol. Male to female sex reversal has also been observed following treatment of ZZ larvae with testosterone, a phenomenon that was called the "paradoxical effect". Female to male sex reversal occurs when ZW larvae are reared at 32 degrees C during a thermosensitive period (TSP) that takes place from stage 42 to stage 54 of development. Since steroids play an important part in sex differentiation, we focussed our studies on the estrogen-producing enzyme aromatase during normal sex differentiation as well as in experimentally induced sex reversal situations. Our results based on treatment with non-aromatizable androgens, aromatase activity measurements and aromatase expression studies demonstrate that aromatase (i) is differentially active in ZZ and ZW larvae, (ii) is involved in the paradoxical effect and (iii) might be a target of temperature. Thus, the gene encoding aromatase might be one of the master genes in the process leading to the differentiation of the gonad in Pleurodeles waltl.  相似文献   

8.
To clarify the importance of endogenous estrogens during sex differentiation in a teleost fish, the Nile tilapia, we examined the target events for endogenous estrogens and their role during gonadal sex differentiation. The expression of CYP19a (P450arom) precedes any morphological gonadal sex differentiation. Further to these findings, the treatment of XX fry with non-steroidal aromatase inhibitor (AI), Fadrozole, from seven to 14 days after hatching caused complete sex reversal to functional males. The XX sex reversal induced by AI was rescued completely with simultaneous estrogen treatment. We also found that XY fry treated with estrogen, before the appearance of morphological sex differences, caused complete sex reversal from males to females. Taken together, these results suggest that endogenous estrogens are required for ovarian differentiation. To identify the down-stream gene products of estrogen during ovarian differentiation, we performed subtractive hybridization using mRNA derived from normal and estrogen treated XY gonads. Two out of ten gene products were expressed in germ cells, whereas the others were expressed in somatic cells.  相似文献   

9.
10.
The formation of estrogens from androgens in all vertebrates is catalyzed by the "aromatase" complex, which consists of a membrane bound P(450) enzyme, P(450) aromatase (which binds the androgen substrate and inserts an oxygen into the molecule), and a flavoprotein (NADPH-cytochrome P450 reductase). Among vertebrates, the two major sites of aromatase expression are the brain and gonads. Given the importance of estrogen in reptile sex determination, we set out to examine whether P450arom was involved in the initiation and/or stabilization of sex determination in turtles. We examined the expression of aromatase activity in the brain and gonads of two turtle species exhibiting temperature dependent sex determination (TSD), the diamondback terrapin (Malaclemys terrapin), and the common snapping turtle (Chelydra serpentina). Estradiol when applied at stage 14 of the terrapin induces expression of aromatase in the gonad of embryos incubated at male temperatures (26.5 degrees C). The level of expression is similar to that of a normal embryonic ovary. When applied at stage 22, estradiol does not induce aromatase expression in the terrapin. The xenoestrogen, nonylphenol, sex reverses terrapin embryos at 26.5 degrees C. Letrazole, a nonsteroidal aromatase inhibitor, suppresses aromatase activity in the brain at either incubation temperature. Ovotestes are produced by letrazole administration in the terrapin when incubated at 30.5 degrees C. In the snapping turtle at stage 23, gonadal and brain aromatase activity in embryos incubated at female temperatures (30.5 degrees C) is nearly half that exhibited in terrapin embryos at the same temperature. Moreover, letrazole administration suppresses aromatase expression to nearly basal levels. At male incubation temperatures (26.5 degrees ), brain aromatase expression is nearly three times higher than at female temperatures, while gonadal expression levels are nearly one third lower. However, the gonadal expression levels at male temperatures in the snapping turtle are nearly 25 times higher than that found in the terrapin. Estradiol administration elevates this level nearly three fold. These data suggest that is not merely the expression of aromatase that is important for ovarian development, but that the level of expression may be more important.  相似文献   

11.
12.
13.
14.
15.
Aromatase inhibitors administered before sexual differentiation of the gonads can induce sex reversal in female chickens. To analyze the process of sex reversal, we have followed for several months the changes induced by Fadrozole, a nonsteroidal aromatase inhibitor, in gonadal aromatase activity and in morphology and structure of the female genital system. Fadrozole was injected into eggs on day four of incubation, and its effects were examined during the embryonic development and for eight months after hatching. In control females, aromatase activity in the right and the left gonad was high in the middle third of embryonic development, and then decreased up to hatching. After hatching, aromatase activity increased in the left ovary, in particular during folliculogenesis, whereas in the right regressing gonad, it continued to decrease to reach testicular levels at one month. In treated females, masculinization of the genital system was characterized by the maintenance of the right gonad and its differentiation into a testis, and by the differentiation of the left gonad into an ovotestis or a testis; however, in all individuals, the left Müllerian duct and the posterior part of the right Müllerian duct were maintained. In testes and ovotestes, aromatase activity was lower than in gonads of control females (except in the right gonad as of one month after hatching) but remained higher than in testes of control and treated males. Moreover, in ovotestes, aromatase activity was higher in parts displaying follicles than in parts devoid of follicles. The main structural changes in the gonads during sex reversal were partial (in ovotestes) or complete (in testes) degeneration of the cortex in the left gonad, and formation of an albuginea and differentiation of testicular cords/tubes in the two gonads. Testicular cords/tubes transdifferentiated from ovarian medullary cords and lacunae whose epithelium thickened and became Sertolian. Transdifferentiation occurred all along embryonic and postnatal development; thus, new testicular cords/tubes were continuously formed while others degenerated. The sex reversed gonads were also characterized by an abundant fibrous interstitial tissue and abnormal medullary condensations of lymphoid-like cells; in the persisting testicular cords/tubes, spermatogenesis was delayed and impaired. Related to aromatase activity, persistence of too high levels of estrogens can explain the presence of oviducts, gonadal abnormalities and infertility in sex reversed females.  相似文献   

16.
To investigate whether a female sex steroid, estrogen, acts as a natural inducer of female gonadal sex determination (or ovary formation) in the medaka fish, Oryzias latipes, the effects of an aromatase inhibitor and anti-estrogens on sexual differentiation of gonads were examined. We found that both drugs did not show any discernible effects on the genetically determined sex differentiation in both sexes. However, the aromatase inhibitor impaired the paradoxical effects of androgen (a male sex steroid), and the anti-estrogens inhibited the male-to-female sex reversal caused by estrogen. Treatments of the fertilized eggs with androgen disturbed the gonadal sex developments in both sexes, suggesting that sex steroid synthesis is detrimental to the gonadal sex developments in the medaka embryos. These results are consistent with the previous observation that sex steroids are not synthesized before the onset of gonadal sex differentiation, and suggest that ovary formation in the genetic females of the medaka fish is not dependent on estrogen.  相似文献   

17.
In embryos of the European pond turtle, sexual differentiation of gonads is temperature-dependent. Production of oestrogens appears to play a key role in this phenomenon. Gonadal aromatase activity was measured in embryos incubated at 25°C (masculinizing temperature) and at 30°C (feminizing temperature). At the beginning of the thermosensitive period, the aromatase activity was low at both temperatures but was somewhat higher at 30 than at 25°C. Afterwards, it remained low in differentiating testes at 25°C, whereas it increased in differentiating ovaries at 30°C to form a marked peak when germ cells underwent meiotic prophase. Eggs were shifted either from 25 to 30°C (highly feminizing) or from 30 to 35°C for 6 days at different stages of embryonic development. The 25–35°C shifts performed during the thermosensitive period strongly increased the aromatase activity but were ineffective after this period. The 30–35°C shifts increased the aromatase activity at all stages. Altogether, results indicate that, in differentiating gonads of turtle embryos, temperature acts on the regulation of synthesis (and therefore activity) of cytochrome P-450 aromatase (P-450-aro). The expression of the P-450-aro gene itself could be temperature-dependent. However, temperature could also act upon the expression of another gene involved in P-450-aro regulation.  相似文献   

18.
The Japanese flounder (Paralichthys olivaceus) is a teleost fish with an XX/XY sex determination system. XX flounder can be induced to develop into phenotypic females or males, by rearing them at 18°C or 27°C, respectively, during the sex differentiation period. Therefore, the flounder provides an excellent model to study the molecular mechanisms underlying temperature-dependent sex determination. We previously showed that cortisol, the major glucocorticoid produced by the interrenal cells in teleosts, causes female-to-male sex reversal by directly suppressing mRNA expression of ovary-type aromatase (cyp19a1), a steroidogenic enzyme responsible for the conversion of androgens to estrogens in the gonads. Furthermore, an inhibitor of cortisol synthesis prevented masculinization of XX flounder at 27°C, suggesting that masculinization by high temperature is due to the suppression of cyp19a1 mRNA expression by elevated cortisol levels during gonadal sex differentiation in the flounder. In the present study, we found that exposure to high temperature during gonadal sex differentiation upregulates the mRNA expression of retinoid-degrading enzyme (cyp26b1) concomitantly with masculinization of XX gonads and delays meiotic initiation of germ cells. We also found that cortisol induces cyp26b1 mRNA expression and suppresses specific meiotic marker synaptonemal complex protein 3 (sycp3) mRNA expression in gonads during the sexual differentiation. In conclusion, these results suggest that exposure to high temperature induces cyp26b1 mRNA expression and delays meiotic initiation of germ cells by elevating cortisol levels during gonadal sex differentiation in Japanese flounder.  相似文献   

19.
In nonmammalian vertebrates, steroids have been hypothesized to induce somatic sex differentiation, since manipulations of the steroidal environment of gonads have led to various degrees of sex reversal. Whereas the critical role of estrogens in ovarian differentiation is well documented, studies on androgens have produced a perplexing variety of results depending upon species variations and nature of androgens used. In this way, testosterone induces masculinization of females in some species but provokes paradoxical feminization of males in many other species such as the urodelan Pleurodeles waltl. In reptiles this phenomenon could be interpreted by conversion of exogenous testosterone to estradiol by aromatase. Treatments of Pleurodeles larvae with nonaromatizable androgens bring support to this hypothesis and suggest a role of androgens in sex differentiation. Dihydrotestosterone (DHT) could not induce the paradoxical feminization of ZZ larvae. In addition, DHT as well as 11beta-hydroxy-androstenedione could drive a functional male differentiation of ZW larvae. Moreover, other 5alpha reduced androgens also induced sex reversal of female larvae. Yet, the 5alpha reductase inhibitor CGP 53133 and antiandrogens such as flutamide or cyproterone acetate did not exert any effect on male sex differentiation of ZZ larvae. Though the precise role of androgens is still unknown, especially for 11-oxygenated androgens, our results suggest an implication in male sex differentiation. In this way, testosterone could play a pivotal role in being metabolized either into other androgens during testis differentiation or into estradiol during ovarian differentiation.  相似文献   

20.
In vitro studies show that estrogens acutely modulate synaptic function in both sexes. These acute effects may be mediated in vivo by estrogens synthesized within the brain, which could fluctuate more rapidly than circulating estrogens. For this to be the case, brain regions that respond acutely to estrogens should be capable of synthesizing them. To investigate this question, we used quantitative real-time PCR to measure expression of mRNA for the estrogen-synthesizing enzyme, aromatase, in different brain regions of male and female rats. Importantly, because brain aromatase exists in two forms, a long form with aromatase activity and a short form with unknown function, we targeted a sequence found exclusively in long-form aromatase. With this approach, we found highest expression of aromatase mRNA in the amygdala followed closely by the bed nucleus of the stria terminalis (BNST) and preoptic area (POA); we found moderate levels of aromatase mRNA in the dorsal hippocampus and cingulate cortex; and aromatase mRNA was detectable in brainstem and cerebellum, but levels were very low. In the amygdala, gonadal/hormonal status regulated aromatase expression in both sexes; in the BNST and POA, castration of males down-regulated aromatase, whereas there was no effect of estradiol in ovariectomized females. In the dorsal hippocampus and cingulate cortex, there were no differences in aromatase levels between males and females or effects of gonadal/hormonal status. These findings demonstrate that long-form aromatase is expressed in brain regions that respond acutely to estrogens, such as the dorsal hippocampus, and that gonadal/hormonal regulation of aromatase differs among different brain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号