首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The myelin basic proteins (MBPs) are a set of peripheral membrane polypeptides that are required for the compaction of the major dense line of central nervous system myelin. We have used primary cultures of oligodendrocytes from MBP-deficient shiverer mice as host cells for the expression by cDNA transfection of each of the four major MBP isoforms. The distributions of the encoded polypeptides were studied by immunofluorescence and confocal microscopy and compared with patterns of MBP expression in normal mouse oligodendrocytes in situ and in culture. The exon II-containing 21.5- or 17-kD MBPs were distributed diffusely in the cytoplasm and in the nucleus of the transfectants, closely resembling the patterns obtained in myelinating oligodendrocytes in 9-d-old normal mouse brains. By contrast, the distribution of the 14- and 18.5-kD MBPs in the transfectants was confined to the plasma membrane and mimicked the distribution of MBP in cultures of normal adult oligodendrocytes. Our results strongly suggest that the exon II-containing MBPs are expressed first and exclusively during oligodendrocyte maturation, where they may play a role in the early phase of implementation of the myelination program. In contrast, the 14- and 18.5-kD MBPs that possess strong affinity for the plasma membrane are likely to be the principle inducers of myelin compaction at the major dense line.  相似文献   

2.
Synthesis and incorporation of myelin polypeptides into CNS myelin   总被引:17,自引:6,他引:11       下载免费PDF全文
The distribution of newly synthesized proteolipid protein (PLP, 23 kdaltons) and myelin basic proteins (MBPs, 14-21.5 kdaltons) was determined in microsomal and myelin fractions prepared from the brainstems o1 10-30 d-old rats sacrificed at different times after an intracranial injection of 35S-methionine. Labeled MBPs were found in the myelin fraction 2 min after the injection, whereas PLP appeared first in the rough microsomal fraction and only after a lag of 30 min in the myelin fraction. Cell-free translation experiments using purified mRNAs demonstrated that PLP and MBPs are synthesized in bound and free polysomes, respectively. A mechanism involving the cotranslational insertion into the ER membrane and subsequent passage of the polypeptides through the Golgi apparatus is consistent with the lag observed in the appearance of the in vivo-labeled PLP in the myelin membrane. Newly synthesized PLP and MBPs are not proteolytically processed, because the primary translation products synthesized in vitro had the same electrophoretic mobility and N-terminal amino acid sequence as the mature PLP and MBP polypeptides. It was found that crude myelin fractions are highly enriched in mRNAs coding for the MBPs but not in mRNA coding for PLP. This suggests that whereas the bound polysomes synthesizing PLP are largely confined to the cell body, free polysomes synthesizing MBPs are concentrated in oligodendrocyte processes involved in myelination, which explains the immediate incorporation of MBPs into the developing myelin sheath.  相似文献   

3.
4.
Abstract: Myelin basic protein (MBP), a major protein of myelin, is thought to play an important role in myelination, which occurs postnatally in mouse. Here we report that the MBP gene is expressed from the 12th embryonic day in mouse brain and that most of the predominant embryonic isoforms are not those reported previously. These isoforms have a deletion of a sequence encoded by exon 5 from the well-known isoforms. These isoforms show a unique developmental profile, i.e., they peak in the embryonic stage and decrease thereafter. In jimpy, a dysmyelinating mutant, the level of these isoforms remains high even in the older ages. These results suggest that MBPs have heretofore unknown functions unrelated to myelination before myelinogenesis begins. The possible presence of 18 isoforms of MBP mRNA, which are classified into at least three groups with different developmental profiles, is also reported here.  相似文献   

5.
6.
Shiverer (shi) is an autosomal recessive mutation in mice that results in hypomyelination in the central nervous system (CNS) but normal myelination in the peripheral nervous system (PNS). Myelin basic proteins (MBPs) are virtually absent in both PNS and CNS. It is not known whether the cellular target in the PNS is the myelin-forming Schwann cell or another cell type which secondarily affects the Schwann cell. To determine the cellular target of the shi gene, we have adapted tissue culture techniques that allow co-culture of pure populations of mouse sensory neurons of one genotype with Schwann cells and fibroblasts of another genotype under conditions that permit myelin formation. These cultures were stained immunocytochemically as whole mounts to determine whether MBPs were expressed under various in vitro conditions. In single-genotype cultures, presence or absence of MBPs was consistent with earlier in vivo results: +/+ cultures were MBP-positive and shi/shi cultures were MBP-negative. In mixed-genotype cultures, visualization of MBPs in myelin accorded with the genotype of the non-neuronal Schwann cells and fibroblasts and not with the neurons--those cultures that contained +/+ non-neuronal cells were MBP-positive and those with shi/shi non-neuronal cells were MBP-negative, independent of the neuronal genotype. These results rule out neurons or circulating substances as mediators of the influence of the shi genetic locus on MBP synthesis and deposition in peripheral myelin.  相似文献   

7.
Expression of myelin proteins was studied in the brains of 21-day-old normal mice and three dysmyelinating mutants-jimpy, quaking, and shiverer. Total brain polyribosomes and poly(A)+ mRNA were translated in two cell-free systems and the levels of synthesis of the myelin basic proteins (MBPs) and proteolipid protein (PLP) were determined. Synthesis of the MBPs in quaking homozygotes was at or above normal levels but PLP synthesis was significantly reduced to approximately 15% of control values, indicating independent effects on the expression of these proteins in this mutant. Immunoblot analysis of 21-day-old quaking brain homogenates showed a reduction in the steady-state levels of MBPs and PLP, suggesting a failure of newly synthesized MBPs to be incorporated into a stable membrane structure such as myelin. In the shiverer mutant very little synthesis of MBPs was observed, whereas greater synthesis of PLP occurred (approximately 50% of control). Almost no MBP, and low levels of PLP, were detected in the immunoblots, suggesting the possibility of a partial failure of PLP to be assembled into myelin in shiverer. In the jimpy mutant, low levels of MBP synthesis were observed in vitro (approximately 26% of controls) and very little synthesis of PLP was evident. The immunoblots of 21-day jimpy brain homogenates revealed no appreciable steady-state levels of PLP or MBP, again indicating that most newly synthesized MBPs were not incorporated into a stable membrane structure in this mutant. In sum, the data show that in the three cases examined, the mutation appears to affect the expression of the MBPs and PLP independently. Furthermore, regardless of their absolute levels of synthesis these proteins may or may not be assembled into myelin.  相似文献   

8.
Abstract: Brains of 3-week-old C57BL/6J mice were homogenized and fractionated into several subcellular components, each of which was examined for ability to synthesize the myelin basic proteins (MBPs) in vitro. Myelin basic proteins were purified from incubation mixtures by conventional means. That the products of synthesis were the myelin basic proteins was established by solubility at pH 3, co-chromatography with authentic proteins on carboxymethylcellulose and co-migration with standards in two different polyacrylamide gel electrophoretic systems. The fractions examined for their ability to synthesize MBPs were the whole homogenate, postnuclear supernatant, postmitochondrial supernatant, crude mitochondrial pellet, free ribosomes and bound ribosomes. Although there was no requirement for exogenous energy sources for protein synthesis in the whole homogenate, as the homogenate was fractionated an increasing requirement emerged. Most of the label in the MBP preparations from whole homogenate and postnuclear supernatant incubations migrated with the large (L) and small (S) MBPs on gel electrophoresis; however, as the homogenate was subfractionated and incubated, a greater percentage of the label migrated more slowly than L and S on acetic acid-urea gels. To show synthesis of the MBPs the L and S bands were cut out of these gels and rerun on sodium dodecylsulfate gels. Alternatively, MBP preparations were subjected directly to two-dimensional gel electrophoresis and the bands corresponding to L and S were excised and counted. With this method only the whole homogenate, postnuclear supernatant, postmitochondrial supernatant and free ribosomes were observed to synthesize the MBPs in vitro. The "bound" ribosomes were not observed to synthesize significant amounts of the MBPs, incubated either intact or released from the membrane. It was concluded that the free ribosomes are the principal site of synthesis of the myelin basic proteins in the brain.  相似文献   

9.
The question of developmental relationships amongst myelin-related membranes in subfractions of myelinating mouse brain (15 days) was investigated by a time-staggered double isotope protocol using [3H]leucine and [14C]leucine. Preliminary results are interpreted and discussed in the context of a mathematical conceptualization of pulse-labeling kinetic analyses of myelin proteins in subcellular membrane compartments. Differences in ratio of the two leucine labels among proteins of myelin-containing subfractions are interpreted as confirming metabolic differences relating to various stages of development rather than precursor-product relationships. The incorporation into myelin of 14K, 17K, and 18.5K basic proteins (MBPs) occurs with relatively short delay times, following their synthesis (less than 5 min), and seems to occur simultaneously into all compartments. The 21.5K MBP and the proteolipid protein, on the other hand, require 10-14 min and 14-20 min, respectively. A scheme is presented to illustrate the probable assignment of subfractions to various myelin "compartments" during myelination, and to serve as a working hypothesis for studies on precursor-product relationships.  相似文献   

10.
11.
The conduction of impulses along axons of nerves is facilitated by the myelin sheath, composed of proteins and lipid. Myelin basic proteins (MBPs) are extrinsic membrane proteins that play an important role in the structural organization of the myelin sheath. In the central nervous system, MBPs account for 30-40% of total protein. The traditional method of MBP isolation involves the use of chloroform-ethanol, which would destroy the native form of MBP. A modified method for maintaining its native form was developed. The white matter of porcine brain was directly extracted by buffers containing different concentrations of sodium chloride owing to MBP solubilized at high concentration of NaCl. The MBP was further purified by cation exchange chromatography and buffers containing glycine and salts. Purified MBP were consistently obtained by this method.  相似文献   

12.
Myelin basic protein (MBP) and P2 protein are small positively charged proteins found in oligodendrocytes of rabbit spinal cord. Both proteins become incorporated into compact myelin. We have begun investigations into the mechanisms by which MBP and P2 become incorporated into the myelin membrane. We find that P2, like the MBPs, is synthesized on free polysomes in rabbit spinal cord. Cell fractionation experiments reveal that rabbit MBP mRNAs are preferentially segregated to the peripheral myelinating regions whereas P2 mRNAs are predominantly localized within the perikaryon of the cell. In vitro synthesized rabbit MBP readily associates with membranes added to translation mixtures, whereas P2 protein does not. It is possible that P2 requires a "receptor" molecule, perhaps a membrane-anchored protein, for association with the cytoplasmic face of the myelin membrane.  相似文献   

13.
Mice ranging in age from 14 to 39 days were injected intracerebrally with [3H]lysine and rates of incorporation of the isotope were measured into total trichloroacetic acid-precipitable protein and purified myelin basic proteins (MBPs). MBPs were isolated by O-(carboxymethyl)-cellulose chromatography of pH 3 extracts prepared from chloroform-methanol insoluble residues of whole brains. The MBPs prepared in this fashion were further separated by polyacrylamide gel electrophoresis. The gels were sliced and the radioactivity incorporated into each of the two proteins was determined. Analysis of the rates of synthesis of the two basic proteins (using a 2-h labeling period) as a function of age revealed that synthesis of both proteins appeared to peak at about 18 days of age in the mouse. These data suggest that the maximum rate of MBP synthesis coincides with the age of maximal myelin deposition in the mouse. Furthermore the relative rates of synthesis of L and S changed considerably over the developmental period examined. It was observed that the ratio of the rates of synthesis of the small:large basic protein (S/L) increased by approximately 50% between 2 and 4 weeks and declined thereafter. Throughout the developmental period examined, however, the small basic protein appeared to be synthesized at a greater rate than the large protein. The latter data are consistent with previous observations by us and other workers that mouse and rat myelin becomes increasingly enriched in the small relative to the large basic protein with maturation of the membrane.  相似文献   

14.
Myelin basic proteins (MBPs) are phosphoproteins of central and peripheral nervous system myelin. We studied the phosphorylation of mouse MBPs in vivo at three different stages of development (12, 30, and 50 days) and found age-related differences in the incorporation of 32P into MBPs. At all ages studied, significant amounts of 32P were found in the MBPs as early as 1 min after intracranial injection of isotope. Incorporation of radioactive phosphate into MBPs proceeded rapidly and the resultant specific radioactivity (SA) of 32P-labeled MBPs appeared to be related to the SA of the acid-soluble phosphate pool of myelin. Changes in the SA of the myelin acid-soluble phosphate pool were observed in a 30 min time course of labeling in vivo in 50-day mice. Coincident changes were observed in the SA of the MBPs. Similar but less pronounced changes were seen in the SA of the polyphosphoinositides (PPIs) indicating that the turnover of the PPI phosphate groups is slower than the MBP phosphates or that the PPI phosphates are drawn from additional or different pools than the MBP phosphates. The phosphorylation of MBPs in developmentally related myelin fractions is investigated in a comparison paper (J. B. Ulmer and P. E. Braun (1986) Dev. Biol. 117, 502-510).  相似文献   

15.
We have investigated the site of synthesis of the 2',3'-cyclic nucleotide 3'-phosphodiesterases (CNPs I and II) in rat brain. Rapid kinetics of incorporation of CNPs into oligodendrocyte plasma membrane in the intact brain are consistent with their synthesis on free polysomes. This hypothesis was confirmed by the translation in vitro of RNA isolated from free and bound polysomes, respectively. Unlike myelin basic protein (MBP) mRNAs, CNP mRNAs are not enriched in a myelin-associated pool of RNA. MBPs, but not CNPs, were found to readily associate in vitro with membrane vesicles derived from rough endoplasmic reticulum. The avidity of MBPs in binding to membranes is probably related to the previously observed spatial segregation of MBP mRNAs into actively myelinating cellular processes of the oligodendrocyte. Such a segregation would ensure that newly synthesized MBPs are immediately incorporated into myelin. In contrast, the CNPs probably associate with the cytoplasmic surface of the oligodendrocyte plasma membrane through interaction with a membrane-bound receptor.  相似文献   

16.
Characterization of Basic Proteins from Goldfish Myelin   总被引:1,自引:0,他引:1  
Abstract: Myelin basic protein (MBP) from common goldfish ( Carassius auratus ) myelin was extracted with dilute mineral acid. Immunological cross-reactivity of the goldfish MBP, with polyclonal antisera raised against bovine MBP, suggested that the goldfish protein has epitopes for these antibodies. It also reacted with a monoclonal antibody specific for a seven amino acid epitope (130–137) conserved in the MBP of most mammalian species. To characterize the charge heterogeneity of this protein, we iodinated the protein with 125I and chromatographed it on a carboxymethyl cellulose-52 column together with a nonlabeled acid soluble fraction prepared from human white matter as a carrier protein. All of the goldfish protein was recovered in the unbound fraction, demonstrating that it was less cationic than the carrier protein (human MBP). We have also examined the urea alkaline gel profile of the goldfish MBP together with the human C-1, C-2, C-3, C-4, and C-8 components. The results from these experiments indicated that this MBP extracted from goldfish brain myelin lacked the microhet-erogeneity that is associated with MBPs from higher vertebrates. The MBPs from goldfish myelin were separated into their isoforms by reversed-phase HPLC. Amino acid compositions were determined for both the 17- and 14-kDa goldfish proteins. Amino acid analysis revealed similarities with the compositions of other MBPs; however, the serine content in both the 17- and 14-kDa proteins was higher than that of the human C-1, the mouse C-1 protein, and the shark proteins. The HPLC-purified 14-kDa goldfish protein was chemically cleaved with CNBr for partial sequence analysis. Even from the limited sequence obtained, the sequence ATAST was found in goldfish, which is also present in human, rabbit, and guinea pig MBPs.  相似文献   

17.
Abstract— Developmental changes of myelin proteins in chick sciatic nerve were studied at the stage of myelination by sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis. The myelin of adult hen peripheral nervous system (PNS) contained two glycoproteins (BR-P0 and PASII), both of which are unique to PNS myelin, in addition to the basic encephalitogenic protein, BP, which is common to CNS and PNS myelin. The other basic protein (BF-P2) found in the PNS of other species was not definitely detectable in hen PNS. At the early stages of myelination (from 14 to 18 embryonic days) the amounts of myelin proteins increased rapidly in parallel with the increase in number of layers of the myelin sheath of the PNS. At 14 embryonic days high molecular weight proteins were dominant, while myelin specific proteins were barely detectable in the PNS myelin fraction. At 18 embryonic days, however, BR-PO, BP and PASII proteins became the main protein components of the PNS myelin, whereas high molecular weight proteins decreased in quantitative importance during development. At the early stage of myelination other glycoproteins were also detectable in the PNS myelin. Radioactive fucose was actively incorporated into the two glycoproteins, BR-P0 and PASII, at the early stage of myelination in vivo. These results suggested that myelin proteins especially glycoproteins, may play an important role in PNS myelin formation.  相似文献   

18.
The phosphorylation of myelin basic proteins (MBPs) was studied in developing mouse brain. Based on our previous work we postulated that phosphorylation of MBPs takes place prior to their appearance in the myelin compartment as well as within the myelin sheath. To further test this hypothesis we utilized a subfractionation protocol that yields brain fractions enriched in myelin membranes of differing developmental stages. Incorporation of radioactive phosphate into MBPs was studied in each of the subcellular fractions. After 5- and 15-min incubations of isotope in vivo the highest specific radioactivities (SAs) of MBPs were found in the least mature myelin fractions. Incorporation of 32P in MBPs was greater into serine residues than threonine residues in all of the subcellular fractions studied. The relative turnover of MBP phosphates was studied in each of the subcellular myelin fractions using a time-staggered, double isotope methodology. The most rapid equilibration of MBP phosphates with the trichloroacetic acid (TCA)-soluble phosphate pool occurred in the most mature myelin fractions indicating that the highest turnover of MBP phosphates occurs in the most mature myelin fractions. The SAs and turnover rates of each of the four commonly observed mouse MBPs (14, 17, 18.5, and 21.5 kDa) were similar in any particular subfraction demonstrating that the MBP phosphotransferase system(s) acts on each of the MBPs in a similar manner.  相似文献   

19.
Incubation of myelin purified from rat spinal cord with CaCl2 (1-5 mM) in 10-50 mM Tris-HCl buffer at pH 7.6 containing 2 mM dithiothreitol resulted in the loss of both the large and small myelin basic proteins (MBPs), whereas incubation of myelin with Triton X-100 (0.25-0.5%) and 5 mM EGTA in the absence of calcium produced preferential extensive loss of proteolipid protein (PLP) relative to MBP. Inclusion of CaCl2 but not EGTA in the medium containing Triton X-100 enhanced degradation of both PLP and MBPs. The Ca2+-activated neutral proteinase (CANP) activity is inhibited by EGTA (5 mM) and partially inhibited by leupeptin and/or E-64c. CANP is active at pH 5.5-9.0, with the optimum at 7-8. The threshold of Ca2+ activation is approximately 100 microM. The 150K neurofilament protein (NFP) was progressively degraded when incubated with purified myelin in the presence of Ca2+. These results indicate that purified myelin is associated with and/or contains a CANP whose substrates include MBP, PLP, and 150K NFP. The degradation of PLP (trypsin-resistant) in the presence of detergent suggests either release of enzyme from membrane and/or structural alteration in the protein molecule rendering it accessible to proteolysis. The myelin-associated CANP may be important not only in the turnover of myelin proteins but also in myelin breakdown in brain diseases.  相似文献   

20.

Background

The quaking viable (qkv) mice have uncompacted myelin in their central and peripheral nervous system (CNS, PNS). The qk gene encodes 3 major alternatively spliced isoforms that contain unique sequence at their C-terminus dictating their cellular localization. QKI-5 is a nuclear isoform, whereas QKI-6 and QKI-7 are cytoplasmic isoforms. The qkv mice harbor an enhancer/promoter deletion that prevents the expression of isoforms QKI-6 and QKI-7 in myelinating cells resulting in a dysmyelination phenotype. It was shown that QKI regulates the differentiation of oligodendrocytes, the myelinating cells of the CNS, however, little is known about the role of the QKI proteins, or RNA binding proteins in PNS myelination.

Methodology/Principal Findings

To define the role of the QKI proteins in PNS myelination, we ectopically expressed QKI-6 and QKI-7 in primary rat Schwann cell/neuron from dorsal root ganglia cocultures. We show that the QKI isoforms blocked proliferation and promoted Schwann cell differentiation and myelination. In addition, these events were coordinated with elevated proteins levels of p27KIP1 and myelin basic protein (MBP), markers of Schwann cell differentiation. QKI-6 and QKI-7 expressing co-cultures contained myelinated fibers that had directionality and contained significantly thicker myelin, as assessed by electron microscopy. Moreover, QKI-deficient Schwann cells had reduced levels of MBP, p27KIP1 and Krox-20 mRNAs, as assessed by quantitative RT-PCR.

Conclusions/Significance

Our findings suggest that the QKI-6 and QKI-7 RNA binding proteins are positive regulators of PNS myelination and show that the QKI RNA binding proteins play a key role in Schwann cell differentiation and myelination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号