首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
D A Sirbasku  R Pakala  H Sato  J E Eby 《Biochemistry》1991,30(30):7466-7477
Thyroid hormone dependent GH1 rat pituitary tumor cell growth in serum-free chemically defined medium required a serum-derived mediator (i.e., thyromedin) which was identified as transferrin [Sirbasku, D.A., Stewart, B.H., Pakala, R., Eby, J.E., Sato, H., & Roscoe, J.M. (1990) Biochemistry 30, 295-304]. The transferrin isolated was consistent with the equine R or D variants and was biologically active only as apotransferrin (apoTf). To determine if other variants of horse transferrin also were thyromedins, a purification was developed which yielded seven separate forms. Initially, only four of these had activity when assayed in standard "iron salts containing" medium (ED50 values of 290-1160 nM). To further assess activity, the iron contents of all seven were altered either by saturation with ferric ammonium citrate or by citrate/acid depletion of the metal ion. Thereafter, potencies were compared in "iron salts containing" and "iron salts reduced" media. All seven variants proved to be active as apoTf. Bioassays in which apoTf was maximized showed ED50 values of 2.1-3.8 nM. Conversely, assays in which thyromedins were converted to Tf.2Fe showed no activity. Previously, the only known physiological function of apoTf was that of a carrier/detoxifier of iron; this study indicates a new role in hormone-dependent pituitary cell growth.  相似文献   

2.
Most organisms depend on iron as a co-factor for proteins catalyzing redox reactions. Iron is, however, a difficult element for cells to deal with, as it is insoluble in its ferric (Fe3+) form and potentially toxic in its ferrous (Fe2+) form. Thus, in vertebrates iron is transported through the circulation bound to transferrin (Tf) and delivered to cells through an endocytotic cycle involving the transferrin receptor (TfR). We have previously presented a model for the Tf-TfR complex in its iron-bearing form, the diferric transferrin (dTf)-TfR complex [Cheng, Y., Zak, O., Aisen, P., Harrison, S.C., Walz, T., 2004. Structure of the human transferrin receptor-transferrin complex. Cell 116, 565-576]. We have now calculated a single particle reconstruction for the complex in its iron-free form, the apo-transferrin (apoTf)-TfR complex. The same density map was obtained by aligning raw particle images or class averages of the vitrified apoTf-TfR complex to reference models derived from the structures of the dTf-TfR or apoTf-TfR complex. We were unable to improve the resolution of the apoTf-TfR density map beyond 16A, most likely because of significant structural variability of Tf in its iron-free state. The density map does, however, support the model for the apoTf-TfR we previously proposed based on the dTf-TfR complex structure, and it suggests that receptor-bound apoTf prefers to adopt an open conformation.  相似文献   

3.
The action mechanism of vanadocene dichloride, Cp2VCl2 (Cp=eta5-C5H5), has been investigated by interaction with human serum transferrin for its promising antitumor activities. Our results have shown that Cp2VCl2 binds to transferrin and form a new complex, and the calculated apparent association constant is 1.37 x 10(5)M(-1) from the fluorescence quenching. Simultaneously, the variation of the secondary structure of transferrin occurs, most probably due to the coordination of the amino residues of protein with VIV. It was evidenced that Cp is released free in solution after VIV binding to transferrin by 1H NMR measurements. These results have shown that Cp2VCl2 forms a complex with transferrin, which may provide a possible pathway in the transport and targeted delivery of the antitumor agent.  相似文献   

4.
M E Parent  M B Zemel 《Life sciences》1989,44(15):1007-1012
The binding of iron to transferrin was studied by loading iron (III) onto apotransferrin in a chloride and a nitrilotriacetate form. When magnesium was added, a marked increase occurred in both the rate of iron binding and the maximum level of iron loaded on transferrin utilizing either iron salt. In the absence of magnesium the amount of iron required to achieve 50 percent saturation of the binding sites was 1.6 x 10(-4) M, whereas when magnesium was added, only about one-third as much iron (0.54 x 10(-4) M) was required. These data suggest an allosteric effect on transferrin by magnesium which potentiates iron (III) binding.  相似文献   

5.
During iron acquisition by the cell, complete homodimeric transferrin receptor 1 in an unknown state (R1) binds iron-loaded human serum apotransferrin in an unknown state (T) and allows its internalization in the cytoplasm. T also forms complexes with metals other than iron. Are these metals incorporated by the iron acquisition pathway and how can other proteins interact with R1? We report here a four-step mechanism for cobalt(III) transfer from CoNtaCO(3)(2-) to T and analyze the interaction of cobalt-loaded transferrin with R1. The first step in cobalt uptake by T is a fast transfer of Co(3+) and CO(3)(2-) from CoNtaCO(3)(2-) to the metal-binding site in the C-lobe of T: direct rate constant, k(1)=(1.1+/-0.1) x 10(6) M(-1) s(-1); reverse rate constant, k(-1)=(1.9+/-0.6) x 10(6) M(-1) s(-1); and equilibrium constant, K=1.7+/-0.7. This step is followed by a proton-assisted conformational change of the C-lobe: direct rate constant, k(2)=(3+/-0.3) x 10(6) M(-1) s(-1); reverse rate constant, k(-2)=(1.6+/-0.3) x 10(-2) s(-1); and equilibrium constant, K(2a)=5.3+/-1.5 nM. The two final steps are slow changes in the conformation of the protein (0.5 h and 72 h), which allow it to achieve its final thermodynamic state and also to acquire second cobalt. The cobalt-saturated transferrin in an unknown state (TCo(2)) interacts with R1 in two different steps. The first is an ultra-fast interaction of the C-lobe of TCo(2) with the helical domain of R1: direct rate constant, k(3)=(4.4+/-0.6)x10(10) M(-1) s(-1); reverse rate constant, k(-3)=(3.6+/-0.6) x 10(4) s(-1); and dissociation constant, K(1d)=0.82+/-0.25 muM. The second is a very slow interaction of the N-lobe of TCo(2) with the protease-like domain of R1. This increases the stability of the protein-protein adduct by 30-fold with an average overall dissociation constant K(d)=25+/-10 nM. The main trigger in the R1-mediated iron acquisition is the ultra-fast interaction of the metal-loaded C-lobe of T with R1. This step is much faster than endocytosis, which in turn is much faster than the interaction of the N-lobe of T with the protease-like domain. This can explain why other metal-loaded transferrins or a protein such as HFE-with a lower affinity for R1 than iron-saturated transferrin but with, however, similar or higher affinities for the helical domain than the C-lobe-competes with iron-saturated transferrin in an unknown state towards interaction with R1.  相似文献   

6.
The kinetics and thermodynamics of Al(III) exchange between aluminum citrate (AlL) and human serum transferrin were investigated in the 7.2-8.9 pH range. The C-site of human serum apotransferrin in interaction with bicarbonate removes Al(III) from Al citrate with an exchange equilibrium constant K1 = (2.0 +/- 0.6) x 10(-2); a direct second-order rate constant k1 = 45 +/- 3 M(-1) x s(-1); and a reverse second-order rate constant k(-1) = (2.3 +/- 0.5) x 10(3) M(-1) x s(-1). The newly formed aluminum-protein complex loses a single proton with proton dissociation constant K1a = (15 +/- 3) nM to yield a first kinetic intermediate. This intermediate then undergoes a modification in its conformation followed by two proton losses; first-order rate constant k2 = (4.20 +/- 0.02) x 10(-2) s(-1) to produce a second kinetic intermediate, which in turn undergoes a last slow modification in the conformation to yield the aluminum-loaded transferrin in its final state. This last process rate-controls Al(III) uptake by the N-site of the protein and is independent of the experimental parameters with a constant reciprocal relaxation time tau3(-1) = (6 +/- 1) x 10(-5) x s(-1). The affinities involved in aluminum uptake by serum transferrins are about 10 orders of magnitude lower than those involved in the uptake of iron. The interactions of iron-loaded transferrins with transferrin receptor 1 occur with average dissociation constants of 3 +/- 1 and 5 +/- 1 nM for the only C-site iron-loaded and of 6.0 +/- 0.6 and 7 +/- 0.5 nM for the iron-saturated ST in the absence or presence of CHAPS, respectively. No interaction is detected between receptor 1 and aluminum-saturated or mixed C-site iron-loaded/N-site aluminum-loaded transferrin under the same conditions. The fact that aluminum can be solubilized by serum transferrin in biological fluids does not necessarily imply that its transfer from the blood stream to cytoplasm follows the receptor-mediated pathway of iron transport by transferrins.  相似文献   

7.
Cytotoxic potential of ribonuclease and ribonuclease hybrid proteins   总被引:4,自引:0,他引:4  
Pancreatic RNase injected into Xenopus oocytes abolishes protein synthesis at concentrations comparable to the toxin ricin yet has no effect on oocyte protein synthesis when added to the extracellular medium. Therefore RNase behaves like a potent toxin when directed into a cell. To explore the cytotoxic potential of RNase toward mammalian cells, bovine pancreatic ribonuclease A was coupled via a disulfide bond to human transferrin or antibodies to the transferrin receptor. The RNase hybrid proteins were cytotoxic to K562 human erythroleukemia cells in vitro with an IC50 around 10(-7) M whereas greater than 10(-5) M native RNase was required to inhibit protein synthesis. Cytotoxicity requires both components of the conjugate since excess transferrin or ribonuclease inhibitors added to the medium protected the cells from the transferrin-RNase toxicity. Compounds that interfere with transferrin receptor cycling and compartmentalization such as ammonium chloride decreased the cytotoxicity of transferrin-RNase. After a dose-dependent lag period inactivation of protein synthesis by transferrin-RNase followed a first-order decay constant. In a clonogenic assay that measures the extent of cell death 1 x 10(-6) M transferrin-RNase killed at least 4 logs or 99.99% of the cells whereas 70 x 10(-6) M RNase was nontoxic. These results show that RNase coupled to a ligand can be cytotoxic. Human ribonucleases coupled to antibodies also may exhibit receptor-mediated toxicities providing a new approach to selective cell killing possibly with less systemic toxicity and importantly less immunogenicity than the currently employed ligand-toxin conjugates.  相似文献   

8.
The kinetics and thermodynamics of Bi(III) exchange between bismuth mononitrilotriacetate (BiL) and human serum transferrin as well as those of the interaction between bismuth-loaded transferrin and transferrin receptor 1 (TFR) were investigated at pH 7.4-8.9. Bismuth is rapidly exchanged between BiL and the C-site of human serum apotransferrin in interaction with bicarbonate to yield an intermediate complex with an effective equilibrium constant K(1) of 6 +/- 4, a direct second-order rate constant k(1) of (2.45 +/- 0.20) x 10(5) M(-1) s(-1), and a reverse second-order rate constant k(-1) of (1.5 +/- 0.5) x 10(6) M(-1) s(-1). The intermediate complex loses a single proton with a proton dissociation constant K(1a) of 2.4 +/- 1 nM to yield a first kinetic product. This product then undergoes a modification in its conformation followed by two proton losses with a first-order rate constant k(2) = 25 +/- 1.5 s(-1) to produce a second kinetic intermediate, which in turn undergoes a last modification in the conformation to yield the bismuth-saturated transferrin in its final state. This last process rate-controls Bi(III) uptake by the N-site of the protein and is independent of the experimental parameters with a constant reciprocal relaxation time tau(3)(-1) of (3 +/- 1) x 10(-2) s(-1). The mechanism of bismuth uptake differs from that of iron and probably does not involve the same transition in conformation from open to closed upon iron uptake. The interaction of bismuth-loaded transferrin with TFR occurs in a single very fast kinetic step with a dissociation constant K(d) of 4 +/- 0.4 microM, a second-order rate constant k(d) of (2.2 +/- 1.5) x 10(8) M(-1) s(-1), and a first-order rate constant k(-d) of 900 +/- 400 s(-1). This mechanism is different from that observed with the ferric holotransferrin and implies that the interaction between TFR and bismuth-loaded transferrin probably takes place on the helical domain of the receptor which is specific for the C-site of transferrin and HFE. The relevance of bismuth incorporation by the transferrin receptor-mediated iron acquisition pathway is discussed.  相似文献   

9.
We have shown that triiodothyronine-dependent GH1 rat pituitary cell growth in serum-free defined culture required apotransferrin (apoTf) (D. A. Sirbasku, et al., Biochemistry 30, 295-304, 7466-7477, 1991). These studies were done in "low-Fe" medium without Fe(III)/Fe(II) salts. Nonetheless, significant concentrations of iron may have been contributed by other components, making this medium unsuitable for study of the differential effects of apoTf and diferric transferrin (2Fe.Tf). Measuring residual iron in culture medium has been troublesome because the most sensitive method (i.e., atomic absorption) detected levels only in excess of 10 ng/ml and did not distinguish between the forms of iron present. To estimate the Fe(III) available to bind to apoTf, we developed a more sensitive and specific method. Urea-polyacrylamide gel electrophoresis (PAGE) separates apoTf, the two monoferric transferrins, and 2Fe.Tf. [125I]apoTf was incubated with medium, or components, and the formation of [125I]-2Fe.Tf was monitored by urea-PAGE/autoradiography. By this method, the concentration of Fe(III) in low-Fe medium was estimated at 8.4 to 20 ng/ml and the sources were identified. We next sought to remove the Fe(III). Standard chelators were ineffective or cytotoxic. In contrast, an affinity method with deferoxamine-Sepharose depleted greater than or equal to 90% of the Fe(III). In this medium, apoTf and 2Fe.Tf showed differential effects with GH1 cells and with MCF-7, MTW9/PL2, an MDCK cells. With the methods described here, the effects of apoTf and 2Fe.Tf on growth can be studied separately.  相似文献   

10.
Interference of aluminium on iron metabolism in erythroleukaemia K562 cells   总被引:1,自引:0,他引:1  
It has been suggested that aluminium (Al) has a deleterious effect on erythropoiesis. However, there is still uncertainty as to its action mechanism. The present work was designed to determine how Al could affect the iron (Fe) metabolism in the human erythroleukaemia cell line K562. These cells, that express surface transferrin receptors (TfRs), were induced to erythroid differentiation by either haemin or hydroxyurea in 72 h cultures in media containing apotransferrin (apoTf). In the presence of aluminium citrate, the number of benzidine-positive cells decreased 18% when the cultures were induced by haemin, and 30% when hydroxyurea was the inducer. Cell viability was always unaffected. From competition assays, surface binding of 125I-Tf-Fe2 was found to be inversely related (p < 0.05) to Tf-Al2 concentration (from 2.5 to 10 nM). The dissociation constants (Kd) of the binding reaction between TfRs and the ligands Tf-Fe2 and Tf-Al2 were calculated. Kd values of the same order of magnitude demonstrated that TfR has a similar affinity for Tf-Fe2 (Kd = 1.75 x 10(-9) M) and Tf-Al2 (Kd = 1.37 x 10(-9) M). The number of surface TfRs, measured by kinetic 125I-Tf-Fe2 binding assays, was higher in induced cells cultured in the presence of Al. Nevertheless, in spite of the inhibition of cell haemoglobinization observed, 59Fe incorporation values were not different from those measured in control cultures for 72 h. As a consequence, it can be suggested that cellular Fe utilisation, and not Fe uptake, might be the main metabolic pathway impaired by Al.  相似文献   

11.
The Synechocystis PCC 6803 katG gene encodes a dual-functional catalase-peroxidase (EC 1.11.1.7). We have established a system for the high level expression of a fully active recombinant form of this enzyme. Its entire coding DNA was extended using a synthetic oligonucleotide encoding a hexa-histidine tag at the C-terminus and expressed in Escherichia coli [BL21-(DE3)pLysS] using the pET-3a vector. Hemin was added to the culture medium to ensure its proper association with KatG upon induction. The expressed protein was purified to homogeneity by two chromatography steps including a metal chelate affinity and hydrophobic interaction chromatography. The homodimeric acidic protein (pl = 5.4) had a molecular mass of 170 kDa and a Reinheitszahl (A406/A280) of 0.64. The recombinant protein contained high catalase activity (apparent Km = 4.9 +/- 0.25 mM and apparent kcat = 3500 s(-1)) and an appreciable peroxidase activity with o-dianisidine, guaiacol and pyrogallol, but not with NAD(P)H, ferrocytochrome c, ascorbate or glutathione as electron donors. By using both conventional and sequential stopped-flow spectroscopy, formation of compound I with peroxoacetic acid was calculated to be (8.74 +/- 0.26) x 10(3) M(-1) s(-1), whereas compound I reduction by o-dianisidine, pyrogallol and ascorbate was determined to be (2.71 +/- 0.03) x 10(6) M(-1) S(-1), (8.62 +/- 0.21) x 10(4) M(-1) S(-1), and (5.43 +/- 0.19) x 10(3) M(-1) S(-1), respectively. Cyanide binding studies on native and recombinant enzyme indicated that both have the same heme environment. An apparent second-order rate constant for cyanide binding of (4.8 +/- 0.1) x 10(5) M(-1) S(-1) was obtained.  相似文献   

12.
BackgroundTransferrin is an iron-binding blood plasma glycoprotein that controls the level of free iron in biological fluids. This protein has been deeply studied in the past few years because of its potential use as a strategy of drug targeting to tumor tissues. Chromium complex, [Cr(phen)3]3+ (phen = 1,10-phenanthroline), has been proposed as photosensitizers for photodynamic therapy (PDT). Thus, we analyzed the binding of chromium complex, [Cr(phen)3]3+, to transferrin for a potential delivery of this diimine complex to tumor cells for PDT.MethodsThe interaction between [Cr(phen)3]3+ and holotransferrin (holoTf) was studied by fluorescence quenching technique, circular dichroism (CD) and ultraviolet (UV)–visible spectroscopy.Results[Cr(phen)3]3+ binds strongly to holoTf with a binding constant around 105 M−1, that depends on the pH. The thermodynamic parameters indicated that hydrophobic interactions played a major role in the binding processes. The CD studies showed that there are no conformational changes in the secondary and tertiary structures of the protein.ConclusionsThese results suggest that the binding process would occur in a site different from the specific iron binding sites of the protein and would be the same in both protein states. As secondary and tertiary structures of transferrin do not show remarkable changes, we propose that the TfR could recognize the holoTf despite having a chromium complex associated.General significanceUnderstanding the interaction between [Cr(phen)3]3+ with transferrin is relevant because this protein could be a delivery agent of Cr(III) complex to tumor cells. This can allow us to understand further the role of Cr(III) complex as sensitizer in PDT.  相似文献   

13.
We report the determination in cell-free assays of the mechanism of iron release from the N-lobe and C-lobe of human serum transferrin in interaction with intact transferrin receptor 1 at 4.3< or =pH< or =6.5. Iron is first released from the N-lobe in the tens of milliseconds range and then from the C-lobe in the hundreds of seconds range. In both cases, iron loss is rate-controlled by slow proton transfers, rate constant for the N-lobe k(1)=1.20(+/-0.05)x10(6)M(-1)s(-1) and for the C-lobe k(2)=1.6(+/-0.1)x10(3)M(-1)s(-1). This iron loss is subsequent to a fast proton-driven decarbonation and is followed by two proton gains, (pK(1a))/2=5.28 per proton for the N-lobe and (pK(2a))/2=5.10 per proton for the C-lobe. Under similar experimental conditions, iron loss is about 17-fold faster from the N-lobe and is at least 200-fold faster from the C-lobe when compared to holotransferrin in the absence of receptor 1. After iron release, the apotransferrin-receptor adduct undergoes a slow partial dissociation controlled by a change in the conformation of the receptor; rate constant k(3)=1.7(+/-0.1)x10(-3)s(-1). At endosomic pH, the final equilibrated state is attained in about 1000 s, after which the free apotransferrin, two prototropic species of the acidic form of the receptor and apotransferrin interacting with the receptor coexist simultaneously. However, since recycling of the vesicle containing the receptor to the cell surface takes a few minutes, the major part of transferrin will still be forwarded to the biological fluid in the form of the apotransferrin-receptor protein-protein adduct.  相似文献   

14.
Bifunctional catalase-peroxidases are the least understood type of peroxidases. A high-level expression in Escherichia coli of a fully active recombinant form of a catalase-peroxidase (KatG) from the cyanobacterium Anacystis nidulans (Synechococcus PCC 6301) is reported. Since both physical and kinetic characterization revealed its identity with the wild-type protein, the large quantities of recombinant KatG allowed the examination of both the spectral characteristics and the reactivity of its redox intermediates by using the multi-mixing stopped-flow technique. The homodimeric acidic protein (pI = 4.6) contained high catalase activity (apparent K(m) = 4.8 mM and apparent k(cat) = 8850 s(-1)). Cyanide is shown to be an effective inhibitor of the catalase reaction. The second-order rate constant for cyanide binding to the ferric protein is (6.9 +/- 0.2) x 10(5) M(-1 )s(-1) at pH 7.0 and 15 degrees C and the dissociation constant of the cyanide complex is 17 microM. Because of the overwhelming catalase activity, peroxoacetic acid has been used for compound I formation. The apparent second-order rate constant for formation of compound I from the ferric enzyme and peroxoacetic acid is (1.3 +/- 0.3) x 10(4 )M(-1 )s(-1) at pH 7.0 and 15 degrees C. The spectrum of compound I is characterized by about 40% hypochromicity, a Soret region at 406 nm, and isosbestic points between the native enzyme and compound I at 355 and 428 nm. Rate constants for reduction of KatG compound I by o-dianisidine, pyrogallol, aniline and isoniazid are shown to be (7.3 +/- 0.4) x 10(6) M(-1 )s(-1), (5.4 +/- 0.3) x 10(5) M(-1 )s(-1), (1.6 +/- 0.3) x 10(5) M(-1 )s(-1) and (4.3 +/- 0.2) x 10(4) M(-1 )s(-1), respectively. The redox intermediate formed upon reduction of compound I did not exhibit the classical red-shifted peroxidase compound II spectrum which characterizes the presence of a ferryl oxygen species. Its spectral features indicate that the single oxidizing equivalent in KatG compound II is contained on an amino acid which is not electronically coupled to the heme.  相似文献   

15.
Complete inhibition of transferrin recycling by monensin in K562 cells   总被引:17,自引:0,他引:17  
Monensin blocks human transferrin recycling in a dose-dependent and reversible manner in K562 cells, reaching 100% inhibition at a noncytocidal dose of 10(-5) M, whereas transferrin recycling is virtually unaffected by noncytocidal doses of chloroquine. The intracellular pathway of human transferrin in K562 cells, both in the presence and absence of 10(-5) M monensin, was localized by indirect immunofluorescence. Monensin blocks transferrin recycling by causing internalized ligand to accumulate in the perinuclear region of the cell. The effect of 10(-5) M monensin on human transferrin kinetics was quantitatively measured by radioimmunoassay and showed a positive correlation with immunofluorescent studies. Immunoelectron microscopic localization of human transferrin as it cycles through K562 cells reveals the appearance of perinuclear transferrin-positive multivesicular bodies within 3 min of internalization, with subsequent exocytic delivery of the ligand to the cell surface via transferrin-staining vesicles arising from these perinuclear structures within 5 min of internalization. Inhibition of ligand recycling with 10(-5) M monensin causes dilated transferrin-positive multivesicular bodies to accumulate within the cell with no evidence of recycling vesicles. A coordinated interaction between multivesicular bodies and the Golgi apparatus appears to be involved in the recycling of transferrin in K562 cells. Cell-surface-binding sites for transferrin were reduced by 50% with 10(-5) M monensin treatment; however, this effect was not attenuated by 80% protein synthesis inhibition with cycloheximide, supporting the idea that the transferrin receptor is also recycled through the Golgi.  相似文献   

16.
A glycoprotein of 78,000 molecular mass (78 kDa), associated with the membrane of Leishmania infantum promastigotes, was identified and immunopurified by monoclonal antibody (mAb) LD9 produced against isolated membrane preparations. mAb LD9 was subsequently found to bind to human transferrin, also of 78 kDa. Binding of LD9 to transferrin was completely abolished when the mAb was preabsorbed by Leishmania membranes, thereby indicating that the 78-kDa Leishmania membrane-associated glycoprotein and transferrin have common antigenic epitope(s). The 78-kDa Leishmania membrane-associated protein was released in soluble nonaggregated form by mild treatment with acetic acid saline. Anti-transferrin polyclonal antibodies, recognized both the membrane-associated and the soluble form of the 78-kDa glycoprotein. The 78-kDa soluble form was characterized further as an iron-containing protein. The above data combined with iron uptake by promastigotes as demonstrated by the Prussian blue reaction indicate that the 78-kDa Leishmania membrane-associated glycoprotein is transferrin. The binding of 125I-human transferrin to Leishmania-purified membrane preparations was then investigated. The results indicate the presence of a high affinity saturable binding site (Kd = 2.2 10(-8) M) that is specific for transferrin. We suggest that the 78-kDa glycoprotein recognized by mAb LD9 is transferrin that binds to the surface of Leishmania promastigotes via a transferrin receptor.  相似文献   

17.
Spectral and kinetic features of the redox intermediates of human recombinant unprocessed monomeric myeloperoxidase (recMPO), purified from an engineered Chinese hamster ovary cell line, were studied by the multi-mixing stopped-flow technique. Both the ferric protein and compounds I and II showed essentially the same kinetic behavior as the mature dimeric protein (MPO) isolated from polymorphonuclear leukocytes. Firstly, hydrogen peroxide mediated both oxidation of ferric recMPO to compound I (1.9 x 10(7) M(-1) s(-1), pH 7 and 15 degrees C) and reduction of compound I to compound II (3.0 x 10(4) M(-1) s(-1), pH 7 and 15 degrees C). With chloride, bromide, iodide and thiocyanate compound I was reduced back to the ferric enzyme (3.6 x 10(4) M(-1) s(-1), 1.4 x 10(6) M(-1) s(-1), 1.4 x 10(7) M(-1) s(-1) and 1.4 x 10(7) M(-1) s(-1), respectively), whereas the endogenous one-electron donor ascorbate mediated transformation of compound I to compound II (2.3 x 10(5) M(-1) s(-1)) and of compound II back to the resting enzyme (5.0 x 10(3) M(-1) s(-1)). Comparing the data of this study with those known from the mature enzyme strongly suggests that the processing of the precursor enzyme (recMPO) into the mature form occurs without structural changes at the active site and that the subunits in the mature dimeric enzyme work independently.  相似文献   

18.
Guanylyl cyclase (GC)-C, a single-transmembrane receptor protein for heat-stable enterotoxin, guanylin, and uroguanylin, and its N-terminal extracellular domain were prepared at a high level of expression from a system constructed of Sf21 insect cells and recombinant baculovirus. The recombinant GC-C, containing the complete sequence, retained its binding affinity to heat-stable enterotoxin with a KD value (6.2 x 10(-10) M) and cyclase catalytic activity at a level similar to those of GC-C expressed in mammalian cell lines, such as COS-7. The N-terminal extracellular domain was prepared in a form which contained the hexahistidine tail at its C-terminus and was purified as a homogenous protein by Con A and Ni-chelating affinity chromatography from the culture medium of the insect cells. The purified N-terminal extracellular domain of GC-C exhibited the high (KD = 4 x 10(-10) M) and low (KD = 7 x 10(-8) M) affinity sites in binding to heat-stable enterotoxin. These results clearly indicate that the N-terminal extracellular domain of GC-C possesses the same biochemical characteristics as the complete GC-C protein even in the membrane-free form. Moreover, the extracellular domain is able to form an oligomer in a ligand-dependent manner, suggesting that the N-terminal extracellular domains interact with one another in binding to ligands.  相似文献   

19.
Iron uptake by transferrin from triacetohydroxamatoFe(III) (Fe(AHA)3) in the presence of bicarbonate has been investigated between pH 7 and 8.2. The protein transits from the opened apo- to the closed holoform by several steps with the accumulation of at least three kinetic intermediates. All these steps are accompanied by proton losses, probably occurring from the protein ligands and the side-chains involved in the interdomain H-bonding nets. The minor bihydroxamatoFe(III) species Fe(AHA)2 exchanges its iron with the C-site of apotransferrin in interaction with bicarbonate without detectable formation of any intermediate protein-iron-ligand mixed complex; direct second-order rate constant k1=4.15(+/-0.05)x10(7) M(-1) s(-1). The kinetic product loses a single proton and undergoes a modification in its conformation followed by the loss of two or three protons; first-order rate constant k2=3.25(+/-0.15) s(-1). This induces a new modification in the conformation; first-order rate constant k3=5.90(+/-0.30)x10(-2) s(-1). This new modification in conformation rate controls iron uptake by the N-site of the protein and is followed by a single proton loss; K3a=6.80 nM. Finally, the holoprotein or the monoferric transferrin in its thermodynamic equilibrated state is produced by a last modification in the conformation occurring in about 4000 seconds. But for the Fe(AHA)3 dissociation and the involvement of Fe(AHA)2 in the first step of iron uptake, this mechanism is identical to that reported for iron uptake from FeNAc3. This implies that the exchange of iron between a chelate and serum-transferrin occurs by a single general mechanism. The nature of the iron-providing chelate is only important for the first kinetic step of the exchange, which can be slowed to such an extent that it rate limits the exchange of iron.  相似文献   

20.
The mammalian molecule melanotransferrin (mTf), also called p97, is a member of the transferrin family of molecules. It exists in both secreted and glycosylphosphatidylinositol-anchored forms and is thought to play a role in angiogenesis and in transporting iron across the blood brain barrier. The binding affinity of iron to this molecule has not been formally established. Here, the binding of ferric ion (chelated with a 2-fold molar ratio of nitrilotriacetate) to mTf has been studied using isothermal titration calorimetry and differential scanning calorimetry. One iron-binding site was determined for mTf with similar binding characteristics to other transferrins. In the absence of bicarbonate, binding occurs quickly with an apparent association constant of 2.6 x 10(7) M(-1) at 25 degrees C. The presence of bicarbonate introduces kinetic effects that prevent direct determination of the apparent binding constant by isothermal titration calorimetry. Differential scanning calorimetry thermograms of mTf unfolding in the presence and absence of iron were therefore used to determine the apparent binding constant in the bicarbonate-containing system; at pH 7.5 and 25 degrees C, iron binding occurs in a 1:1 ratio with a K(app) of 4.4 x 10(17) M(-1). This affinity is intermediate between the high and low affinity lobes of transferrin and suggests that mTf is likely to play a significant role in iron transport where the high affinity lobe of transferrin is occupied or where transferrin is in proportionally low concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号