共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescence-based evaluation of the partitioning of lipids and lipidated peptides into liquid-ordered lipid microdomains: a model for molecular partitioning into "lipid rafts" 总被引:1,自引:0,他引:1
下载免费PDF全文
![点击此处可从《Biophysical journal》网站下载免费的PDF全文](/ch/ext_images/free.gif)
A fluorescence-quenching assay is described that can directly monitor the relative extents of partitioning of different but structurally homologous fluorescent molecules into liquid-ordered (l(o)) domains in lipid vesicles exhibiting liquid-ordered/liquid-disordered (l(o)/l(d)) phase coexistence. Applying this assay to a series of bimane-labeled diacyl phospholipid probes in cholesterol-containing ternary lipid mixtures exhibiting l(o)/l(d) phase separation, we demonstrate that partitioning into l(o)-phase domains is negligible for diunsaturated species and greatest for long-chain disaturated species. These conclusions agree well with those derived from previous studies of the association of lipids and lipid-anchored molecules with l(o)-phase domains, using methods based on the isolation of a detergent-insoluble fraction from model or biological membranes at low temperatures. However, we also find that monounsaturated and shorter-chain saturated species partition into l(o) phases with significant, albeit modest affinities, and that the level of partitioning of these latter species into l(o)-phase domains is significantly underestimated (relative to that of their long-chain saturated counterparts) by the criterion of low-temperature detergent insolubility. Finally, applying the fluorescence-quenching method to a family of lipid-modified peptides, we demonstrate that the S-palmitoyl/S-isoprenyl dual-lipidation motif found in proteins such as H- and N-ras and yeast Ste18p does not promote significant association with l(o) domains in l(o)/l(d)-phase-separated bilayers. 相似文献
2.
Giocondi MC Besson F Dosset P Milhiet PE Le Grimellec C 《Journal of molecular recognition : JMR》2007,20(6):531-537
In plasma membranes, most of glycosylphosphatidylinositol (GPI)-anchored proteins would be associated with rafts, a category of ordered microdomains enriched in sphingolipids and cholesterol (Ch). They would be also concentrated in the detergent resistant membranes (DRMs), a plasma membrane fraction extracted at low temperature. Preferential localization of GPI-anchored proteins in these membrane domains is essentially governed by their high lipid order, as compared to their environment. Changes in the temperature are expected to modify the membrane lipid order, suggesting that they could affect the distribution of GPI-anchored proteins between membrane domains. Validity of this hypothesis was examined by investigating the temperature-dependent localization of the GPI-anchored bovine intestinal alkaline phophatase (BIAP) into model raft made of palmitoyloleoylphosphatidylcholine/sphingomyelin/cholesterol (POPC/SM/Chl) supported membranes. Atomic force microscopy (AFM) shows that the inserted BIAP is localized in the SM/Chl enriched ordered domains at low temperature. Above 30 degrees C, BIAP redistributes and is present in both the 'fluid' POPC enriched and the ordered SM/Chl domains. These data strongly suggest that in cells the composition of plasma membrane domains at low temperature differs from that at physiological temperature. 相似文献
3.
Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers 总被引:7,自引:0,他引:7
Saslowsky DE Lawrence J Ren X Brown DA Henderson RM Edwardson JM 《The Journal of biological chemistry》2002,277(30):26966-26970
Evidence is growing that biological membranes contain lipid microdomains or "rafts" that may be involved in processes such as cellular signaling and protein trafficking. In this study, we have used atomic force microscopy to examine the behavior of rafts in supported lipid bilayers. We show that bilayers composed of equimolar dioleoylphosphatidylcholine and sphingomyelin spontaneously form rafts, which are detectable as raised features. A comparison of the extents of protrusion of the rafts in monolayers and bilayers indicates that the rafts in the two leaflets of the bilayer coincide. The rafts were observed both in the absence and presence of cholesterol (33 mol %). Cholesterol reduced raft protrusion presumably by increasing the thickness of the non-raft bilayer. PLAP (glycosylphosphatidylinositol-anchored protein placental alkaline phosphatase) was purified and shown to exist as a dimer. Following its incorporation into supported lipid bilayers, PLAP was found to be targeted efficiently to rafts, both in the absence and presence of cholesterol. We suggest that atomic force microscopy provides a powerful tool for the study of raft structure and properties. 相似文献
4.
Stimulation of CD40 has been previously shown to result in a release of ceramide in small sphingolipid-enriched rafts in the cell membrane [Grassmé et al., J. Immunol. 168 (2002) 298-307]. Those rafts fused to larger signaling platforms that served to cluster CD40. Here, we defined molecular mechanisms of CD40 clustering in membrane platforms. To this end, we replaced the transmembranous domain of CD40 with that of CD45, a molecule known to be excluded from lipid rafts. Murine T cells were stably transfected with wild-type CD40 or chimeric CD40/CD45. Flow cytometry confirmed normal binding properties of the mutant to CD40 ligand. Stimulation with CD40 ligand resulted in clustering of wild-type CD40, while the chimeric CD40/45 receptor failed to cluster. This correlated with a deficiency of the chimeric receptor to activate JNK, p38 MAP kinase and SAPK, known signaling molecules of the intracellular pathway initiated by CD40. Forced crosslinking of the CD40/45 chimeric receptor restored, at least partially, these signaling events. The results suggest that the transmembranous domain of CD40 is central for the recruitment to and clustering of CD40 in membrane platforms. 相似文献
5.
Lipopolysaccharide (LPS), one of the main components of outer membranes of Gram-negative bacteria, consists of a hydrophobic lipid (lipid A) with six hydrocarbon chains and a large hydrophilic polysaccharide chain. LPS plays endotoxic roles and can stimulate macrophages and B cells. To elucidate the mechanism of the interaction of LPS with various cell membranes, it is important to investigate the interaction of wild type LPS in a buffer with lipid membranes. In this report we investigated the interaction of low concentrations of LPS in a buffer with giant unilamellar vesicles (GUVs) of dioleoylphosphatidylcholine (DOPC) membrane in the liquid-crystalline (Lα) phase and sphingomyelin (SM)/cholesterol(chol) (molar ration; 6/4) membrane in the liquid-ordered (lo) phase. We found that low concentrations (less than critical micelle concentration) of LPS in aqueous solution induced the shape changes such as the transformation from a prolate to a two-spheres-connected by a very narrow neck in the DOPC-GUVs and also in the SM/chol (6/4)-GUVs above their threshold concentrations. The analysis of the shape changes of the GUVs indicates that the monomers of LPS can insert spontaneously into the external monolayer of the lipid membranes of these GUVs from the aqueous solution. Moreover, higher concentrations of LPS induced the vesicle fission of SM/chol(6/4)-GUVs above its higher threshold concentration. The vesicle fission of GUVs is similar to those induced by single long chain amphiphiles such as lysophosphatidylcholine. On the basis of these results, we discuss the interaction of wild type LPS with lipid membranes and cell membranes. These results suggest that LPS molecules can insert spontaneously into the external monolayer of the plasma membranes composed of the Lα phase-membrane and the microdomain in the lo phase. 相似文献
6.
NrCAM coupling to the cytoskeleton depends on multiple protein domains and partitioning into lipid rafts
下载免费PDF全文
![点击此处可从《Molecular biology of the cell》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Falk J Thoumine O Dequidt C Choquet D Faivre-Sarrailh C 《Molecular biology of the cell》2004,15(10):4695-4709
NrCAM is a cell adhesion molecule of the L1 family that is implicated in the control of axonal growth. Adhesive contacts may promote advance of the growth cone by triggering the coupling of membrane receptors with the F-actin retrograde flow. We sought to understand the mechanisms leading to clutching the F-actin at the site of ligand-mediated clustering of NrCAM. Using optical tweezers and single particle tracking of beads coated with the ligand TAG-1, we analyzed the mobility of NrCAM-deletion mutants transfected in a neuroblastoma cell line. Deletion of the cytoplasmic tail did not prevent the coupling of NrCAM to the actin flow. An additional deletion of the FNIII domains to remove cis-interactions, was necessary to abolish the rearward movement of TAG-1 beads, which instead switched to a stationary behavior. Next, we showed that the actin-dependent retrograde movement of NrCAM required partitioning into lipid rafts as indicated by cholesterol depletion experiments using methyl-beta-cyclodextrin. Recruitment of the raft component caveolin-1 was induced at the adhesive contact between the cell surface and TAG-1 beads, indicating that enlarged rafts were generated. Photobleaching experiments showed that the lateral mobility of NrCAM increased with raft dispersion in these contact areas, further suggesting that TAG-1-coated beads induced the coalescence of lipid rafts. In conclusion, we propose that anchoring of NrCAM with the retrograde actin flow can be triggered by adhesive contacts via cooperative processes including interactions with the cytoplasmic tail, formation of cis-complex via the FNIII repeats, and lipid raft aggregation. 相似文献
7.
Spontaneous transmembrane insertion of membrane proteins into lipid vesicles facilitated by short-chain lecithins 总被引:1,自引:0,他引:1
N A Dencher 《Biochemistry》1986,25(5):1195-1200
Functional reconstitution of the membrane protein bacteriorhodopsin into lipid vesicles is achieved by mixing aqueous suspensions of long-chain lecithins and purple membrane with the short-chain lecithin diheptanoylphosphatidylcholine (20 mol % of total lipid). The membrane protein is transmembranously inserted in the lipid bilayer of the vesicle and highly active as a light-energized proton pump. This rapid, easy, and gentle procedure might allow functional reconstitution of other membrane systems and isolated membrane proteins as well. 相似文献
8.
Myelin-associated glycoprotein (MAG) has been implicated in inhibition of nerve regeneration in the CNS. This results from interactions between MAG and the Nogo receptor and gangliosides on the apposing axon, which generates intracellular inhibitory signals in the neuron. However, because myelin-axon signaling is bidirectional, we undertook an analysis of potential MAG-activated signaling in oligodendrocytes (OLs). In this study, we show that antibody cross-linking of MAG on the surface of OLs (to mimic axonal binding) leads to the redistribution of MAG into detergent (TX-100)-insoluble complexes, hyperphosphorylation of Fyn, dephosphorylation of serine and threonine residues in specific proteins, including lactate dehydrogenase and the beta subunit of the trimeric G-protein-complex, and cleavage of alpha-fodrin followed by a transient depolymerization of actin. We propose that these changes are part of a signaling cascade in OLs associated with MAG function as a mediator of axon-glial communication which might have implications for the mutual regulation of the formation and stability of axons and myelin. 相似文献
9.
Solute partitioning into lipid bilayer membranes 总被引:7,自引:0,他引:7
We have measured the membrane/water partition coefficients of benzene into lipid bilayers as a function of the surface density of the phospholipid chains. A simple 2H NMR method was used for the measurement of surface densities; it is shown to give results similar to those obtained from more demanding X-ray diffraction measurements. We observe that benzene partitioning into the bilayer is dependent not only on the partitioning chemistry, characterized by the oil/water partition coefficient, but also on the surface density of the bilayer chains. Increasing surface density leads to solute exclusion: benzene partitioning decreases by an order of magnitude as the surface density increases from 50% to 90% of its maximum value, a range readily accessible in bilayers and biomembranes under physiological conditions. This effect is independent of the nature of the agent used to alter surface density: temperature, cholesterol, and phospholipid chain length were tested here. These observations support the recent statistical thermodynamic theory of solute partitioning into chain molecule interphases, which predicts that the expulsion of solute is due to entropic effects of the orientational ordering among the phospholipid chains. We conclude that the partitioning of solutes into bilayer membranes, which are interfacial phases, is of a fundamentally different nature than partitioning into bulk oil and octanol phases. 相似文献
10.
The plasma membranes of the divergent eukaryotic parasites, Leishmania and Trypanosoma, are highly specialised, with a thick coat of glycoconjugates and glycoproteins playing a central role in virulence. Unusually, the majority of these surface macro-molecules are attached to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. In mammalian cells and yeast, many GPI-anchored molecules associate with sphingolipid and cholesterol-rich detergent-resistant membranes, known as lipid rafts. Here we show that GPI-anchored parasite macro-molecules (but not the dual acylated Leishmania surface protein (hydrophilic acylated surface protein) or a subset of the GPI-anchored glycoinositol phospholipid glycolipids) are enriched in a sphingolipid/sterol-rich fraction resistant to cold detergent extraction. This observation is consistent with the presence of functional lipid rafts in these ancient, highly polarised organisms. 相似文献
11.
Inspired by recent suggestions that the Alzheimer's amyloid beta peptide (Abeta) can insert into cell membranes and form harmful ion channels, we model insertion of the 40- and 42-residue forms of the peptide into cell membranes using a Monte Carlo code which is specific at the amino acid level. We examine insertion of the regular Abeta peptide as well as mutants causing familial Alzheimer's disease, and find that all but one of the mutants change the insertion behavior by causing the peptide to spend more simulation steps in only one leaflet of the bilayer. We also find that Abeta42, because of the extra hydrophobic residues relative to Abeta40, is more likely to adopt this conformation than Abeta40 in both wild-type and mutant forms. We argue qualitatively why these effects happen. Here, we present our results and develop the hypothesis that this partial insertion increases the probability of harmful channel formation. This hypothesis can partly explain why these mutations are neurotoxic simply due to peptide insertion behavior. We further apply this model to various artificial Abeta mutants which have been examined experimentally, and offer testable experimental predictions contrasting the roles of aggregation and insertion with regard to toxicity of Abeta mutants. These can be used through further experiments to test our hypothesis. 相似文献
12.
Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles 总被引:4,自引:0,他引:4
Much attention has recently been drawn to the hypothesis that cellular membranes organize in functionalized platforms called rafts, enriched in sphingolipids and cholesterol. The notion that glycosylphosphatidylinositol (GPI)-anchored proteins are strongly associated with rafts is based on their insolubility in nonionic detergents. However, detergent-based methodologies for identifying raft association are indirect and potentially prone to artifacts. On the other hand, rafts have proven to be difficult to visualize and investigate in living cells. A number of studies have demonstrated that model membranes provide a valuable tool for elucidating some of the raft properties. Here, we present a model membrane system based on domain-forming giant unilamellar vesicles (GUVs), in which the GPI-anchored protein, human placental alkaline phosphatase (PLAP), has been functionally reconstituted. Raft morphology, protein raft partitioning, and dynamic behavior have been characterized by fluorescence confocal microscopy and fluorescence correlation spectroscopy (FCS). Approximately 20-30% of PLAP associate with sphingomyelin-enriched domains. The affinity of PLAP for the liquid-ordered (l(o)) phase is compared to that of a nonraft protein, bacteriorhodopsin. Next, detergent extraction was carried out on PLAP-containing GUVs as a function of temperature, to relate the lipid and protein organization in distinct phases of the GUVs to the composition of detergent resistant membranes (DRMs). Finally, antibody-mediated cross-linking of PLAP induces a shift of its partition coefficient in favor of the l(o) phase. 相似文献
13.
Cell membranes are composed of a lipid bilayer, containing proteins that span the bilayer and/or interact with the lipids on either side of the two leaflets. Although recent advances in lipid analytics show that membranes in eukaryotic cells contain hundreds of different lipid species, the function of this lipid diversity remains enigmatic. The basic structure of cell membranes is the lipid bilayer, composed of two apposing leaflets, forming a two-dimensional liquid with fascinating properties designed to perform the functions cells require. To coordinate these functions, the bilayer has evolved the propensity to segregate its constituents laterally. This capability is based on dynamic liquid-liquid immiscibility and underlies the raft concept of membrane subcompartmentalization. This principle combines the potential for sphingolipid-cholesterol self-assembly with protein specificity to focus and regulate membrane bioactivity. Here we will review the emerging principles of membrane architecture with special emphasis on lipid organization and domain formation. 相似文献
14.
GPI-anchored proteins and lipid rafts 总被引:2,自引:0,他引:2
Several proteins are anchored to membranes via a post-translational lipid modification, the glycosylphosphatidylinositol (GPI) anchor. In mammals and other vertebrates, GPI-anchored proteins have been found in almost all tissues and cells examined. Several studies have provided significant insight into the functions of this ubiquitous modification. An intriguing relevant feature of GPI-anchored proteins is their association with lipid rafts, specialized regions of elevated cholesterol and sphingolipid content, that are present within most cell membranes. In addition to the structure and biosynthesis of the GPI-anchor, recent researches have focused on its molecular interaction with lipid rafts and the biological meaning of such interaction. The aim of this review is to examine the emerging evidences of association between lipid rafts and GPI-anchored proteins, and their relationship with the modulation of important cellular functions such as protein/lipid sorting, signaling mechanisms and with human disease. 相似文献
15.
Alamethicin adsorbs on the membrane surface at low peptide concentrations. However, above a critical peptide-to-lipid ratio (P/L), a fraction of the peptide molecules insert in the membrane. This critical ratio is lipid dependent. For diphytanoyl phosphatidylcholine it is about 1/40. At even higher concentrations P/L > or = 1/15, all of the alamethicin inserts into the membrane and forms well-defined pores as detected by neutron in-plane scattering. A previous x-ray diffraction measurement showed that alamethicin adsorbed on the surface has the effect of thinning the bilayer in proportion to the peptide concentration. A theoretical study showed that the energy cost of membrane thinning can indeed lead to peptide insertion. This paper extends the previous studies to the high-concentration region P/L > 1/40. X-ray diffraction shows that the bilayer thickness increases with the peptide concentration for P/L > 1/23 as the insertion approaches 100%. The thickness change with the percentage of insertion is consistent with the assumption that the hydrocarbon region of the bilayer matches the hydrophobic region of the inserted peptide. The elastic energy of a lipid bilayer including both adsorption and insertion of peptide is discussed. The Gibbs free energy is calculated as a function of P/L and the percentage of insertion phi in a simplified one-dimensional model. The model exhibits an insertion phase transition in qualitative agreement with the data. We conclude that the membrane deformation energy is the major driving force for the alamethicin insertion transition. 相似文献
16.
The partition equilibria of sodium dodecyl sulfate (SDS) and lithium dodecyl sulfate between water and bilayer membranes were investigated with isothermal titration calorimetry and spectroscopic methods (light scattering, (31)P-nuclear magnetic resonance) in the temperature range of 28 degrees C to 56 degrees C. The partitioning of the dodecyl sulfate anion (DS(-)) into the bilayer membrane is energetically favored by an exothermic partition enthalpy of Delta H(O)(D) = -6.0 kcal/mol at 28 degrees C. This is in contrast to nonionic detergents where Delta H(O)(D) is usually positive. The partition enthalpy decreases linearly with increasing temperature and the molar heat capacity is Delta C(O)(P) = -50 +/- 3 cal mol(-1) K(-1). The partition isotherm is nonlinear if the bound detergent is plotted versus the free detergent concentration in bulk solution. This is caused by the electrostatic repulsion between the DS(-) ions inserted into the membrane and those free in solution near the membrane surface. The surface concentration of DS(-) immediately above the plane of binding was hence calculated with the Gouy-Chapman theory, and a strictly linear relationship was obtained between the surface concentration and the extent of DS(-) partitioning. The surface partition constant K describes the chemical equilibrium in the absence of electrostatic effects. For the SDS-membrane equilibrium K was found to be 1.2 x 10(4) M(-1) to 6 x 10(4) M(-1) for the various systems and conditions investigated, very similar to data available for nonionic detergents of the same chain length. The membrane-micelle phase diagram was also studied. Complete membrane solubilization requires a ratio of 2.2 mol SDS bound per mole of total lipid at 56 degrees C. The corresponding equilibrium concentration of SDS free in solution is C (sat)(D,F) approximately 1.7 mM and is slightly below the critical micelles concentration (CMC) = 2.1 mM (at 56 degrees C and 0.11 M buffer). Membrane saturation occurs at approximately 0.3 mol SDS per mol lipid and the equilibrium SDS concentration is C (sat)(D,F)approximately equal 2.2 mM +/- 0.6 mM. SDS translocation across the bilayer is slow at ambient temperature but increases at high temperatures. 相似文献
17.
Leaky guts and lipid rafts 总被引:2,自引:0,他引:2
The intestinal epithelium functions as a physical barrier separating luminal microorganisms from the underlying immune system. There is compelling evidence that several intestinal diseases are associated with the translocation of commensal bacteria across the epithelial barrier. Recent work has identified a novel mechanism by which normally non-invasive enteric bacteria breach the intestinal epithelium during periods of inflammation. 相似文献
18.
Sui Z Kovács AD Maggirwar SB 《Biochemical and biophysical research communications》2006,345(4):1643-1648
Glycogen synthase kinase (GSK)-3beta has emerged as a key molecule that regulates neuronal apoptosis. To examine the molecular mechanism(s) through which GSK-3beta regulates this process, we studied the subcellular localization of GSK-3beta following exposure of the cells to well-characterized apoptotic stimuli. Here, we report that the induction of apoptosis by withdrawal of serum and potassium triggers dephosphorylation of GSK-3beta at serine 9 and subsequent translocation of these molecules into neuronal lipid raft microdomains. Inhibition of GSK-3beta by small molecule inhibitors blocks specific phosphorylation of lipid raft associated protein Tau. Consistent with the notion that the lipid raft domains may serve as a platform for the cellular signaling complexes, disruption of lipid rafts protected neurons from apoptosis induced by withdrawal of serum and potassium as well as by HIV-1 Tat. Our observations reveal novel interaction of GSK-3beta and raft domains, and suggest that such interaction could contribute to neuronal apoptosis. 相似文献
19.
Dynamic partitioning into lipid rafts controls the endo-exocytic cycle of the alphaL/beta2 integrin, LFA-1, during leukocyte chemotaxis
下载免费PDF全文
![点击此处可从《Molecular biology of the cell》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Fabbri M Di Meglio S Gagliani MC Consonni E Molteni R Bender JR Tacchetti C Pardi R 《Molecular biology of the cell》2005,16(12):5793-5803
Cell migration entails the dynamic redistribution of adhesion receptors from the cell rear toward the cell front, where they form new protrusions and adhesions. This process may involve regulated endo-exocytosis of integrins. Here we show that in primary neutrophils unengaged alphaL/beta2 integrin (LFA-1) is internalized and rapidly recycled upon chemoattractant stimulation via a clathrin-independent, cholesterol-sensitive pathway involving dynamic partitioning into detergent-resistant membranes (DRM). Persistent DRM association is required for recycling of the internalized receptor because 1) >90% of endocytosed LFA-1 is associated with DRM, and a large fraction of the internalized receptor colocalizes intracellularly with markers of DRM and the recycling endocytic compartment; 2) a recycling-defective mutant (alphaL/beta2Y735A) dissociates rapidly from DRM upon being endocytosed and is subsequently diverted into a late endosomal pathway; and 3) a dominant negative Rab11 mutant (Rab11S25N) induces intracellular accumulation of endocytosed alphaL/beta2 and prevents its enrichment in chemoattractant-induced lamellipodia. Notably, chemokine-induced migration of neutrophils over immobilized ICAM-1 is abrogated by cholesterol-sequestering agents. We propose that DRM-associated endocytosis allows efficient retrieval of integrins, as they detach from their ligands, followed by polarized recycling to areas of the plasma membrane, such as lamellipodia, where they establish new adhesive interactions and promote outside-in signaling events. 相似文献
20.
Targeting Src homology 2 domain-containing tyrosine phosphatase (SHP-1) into lipid rafts inhibits CD3-induced T cell activation 总被引:5,自引:0,他引:5
To study the mechanism by which protein tyrosine phosphatases (PTPs) regulate CD3-induced tyrosine phosphorylation, we investigated the distribution of PTPs in subdomains of plasma membrane. We report here that the bulk PTP activity associated with T cell membrane is present outside the lipid rafts, as determined by sucrose density gradient sedimentation. In Jurkat T cells, approximately 5--10% of Src homology 2 domain-containing tyrosine phosphatase (SHP-1) is constitutively associated with plasma membrane, and nearly 50% of SHP-2 is translocated to plasma membrane after vanadate treatment. Similar to transmembrane PTP, CD45, the membrane-associated populations of SHP-1 and SHP-2 are essentially excluded from lipid rafts, where other signaling molecules such as Lck, linker for activation of T cells, and CD3 zeta are enriched. We further demonstrated that CD3-induced tyrosine phosphorylation of these substrates is largely restricted to lipid rafts, unless PTPs are inhibited. It suggests that a restricted partition of PTPs among membrane subdomains may regulate protein tyrosine phosphorylation in T cell membrane. To test this hypothesis, we targeted SHP-1 into lipid rafts by using the N-terminal region of Lck (residues 1--14). The results indicate that the expression of Lck/SHP-1 chimera inside lipid rafts profoundly inhibits CD3-induced tyrosine phosphorylation of CD3 zeta/epsilon, IL-2 generation, and nuclear mobilization of NF-AT. Collectively, these results suggest that the exclusion of PTPs from lipid rafts may be a mechanism that potentiates TCR/CD3 activation. 相似文献