首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The peripheral blood mononuclear cells (PBMC) of woodchucks experimentally infected by woodchuck hepatitis virus (WHV) were examined simultaneously for the presence of membrane associated WHV antigens by cytofluorometry, and for WHV DNA and RNA sequences by the polymerase chain reaction (PCR). Four woodchucks were inoculated: two with a well-defined infectious inoculum and two with an inoculum obtained from an animal at the late incubation phase, which was positive for WHV DNA by PCR but still devoid of WHV markers. Infection was demonstrated in all four inoculated woodchucks by the appearance at different times of WHV DNA and WHV antigens in both leucocytes and serum. WHV DNA was first detected by PCR either in the serum (two cases) or in leucocytes (two cases). The mean percentage of cells positive for membrane associated WHsAg or WHcAg detected by cytofluorometry were 37%±25 and 17%±15 respectively. After 8 weeks, all inoculated animals were WHsAg positive in serum. These data suggest that PBMC are involved in the early events of hepadnavirus infection. They also show that sera which are positive by PCR for WHV DNA may transmit viral infection even while still seronegative for WHV markers and for WHV DNA by dot blot.  相似文献   

2.
Woodchuck hepatitis virus (WHV) mutants with core internal deletions (CID) occur naturally in chronically WHV-infected woodchucks, as do hepatitis B virus mutants in humans. We studied the replication of WHV deletion mutants in primary woodchuck hepatocyte cultures and in vivo after transmission to naive woodchucks. By screening 14 wild-caught, chronically WHV-infected woodchucks, two woodchucks, WH69 and WH70, were found to harbor WHV CID mutants. Consistent with previous results, WHV CID mutants from both animals had deletions of variable lengths (90 to 135 bp) within the middle of the WHV core gene. In woodchuck WH69, WHV CID mutants represented a predominant fraction of the viral population in sera, normal liver tissues, and to a lesser extent, in liver tumor tissues. In primary hepatocytes of WH69, the replication of wild-type WHV and CID mutants was maintained at least for 7 days. Although WHV CID mutants were predominant in fractions of cellular WHV replicative intermediates, mutant covalently closed circular DNAs (cccDNAs) appeared to be a small part of cccDNA-enriched fractions. Analysis of cccDNA-enriched fractions from liver tissues of other woodchucks confirmed that mutant cccDNA represents only a small fraction of the total cccDNA pool. Four naive woodchucks were inoculated with sera from woodchuck WH69 or WH70 containing WHV CID mutants. All four woodchucks developed viremia after 3 to 4 weeks postinoculation (p.i.). They developed anti-WHV core antigen (WHcAg) antibody, lymphoproliferative response to WHcAg, and anti-WHV surface antigen. Only wild-type WHV, but no CID mutant, was found in sera from these woodchucks. The WHV CID mutant was also not identified in liver tissue from one woodchuck sacrificed in week 7 p.i. Three remaining woodchucks cleared WHV. Thus, the presence of WHV CID mutants in the inocula did not significantly change the course of acute self-limiting WHV infection. Our results indicate that the replication of WHV CID mutants might require some specific selective conditions. Further investigations on WHV CID mutants will allow us to have more insight into hepadnavirus replication.  相似文献   

3.
Chronic infection with hepatitis B viruses (hepadnaviruses) is a major cause of hepatocellular carcinoma (HCC), but the incubation time varies from 1 to 2 years to several decades in different host species infected with indigenous viruses. To discern the influence of viral and host factors on the kinetics of induction of HCC, we exploited the recent observation that ground squirrel hepatitis virus (GSHV) is infectious in woodchucks (C. Seeger, P. L. Marion, D. Ganem, and H. E. Varmus, J. Virol. 61:3241-3247, 1987) to compare the pathogenic potential of GSHV and woodchuck hepatitis virus (WHV) in chronically infected woodchucks. Chronic GSHV infection in woodchucks produces mild to moderate portal hepatitis, similar to that observed in woodchucks chronically infected with WHV. However, HCC developed in GSHV carriers about 18 months later than in WHV carriers. Thus, although both viruses are oncogenic in woodchucks, GSHV and WHV differ in oncogenic determinants that can affect the kinetics of appearance of HCC in chronically infected animals.  相似文献   

4.
DNA vaccination can induce humoral and cellular immune response to viral antigens and confer protection to virus infection. In woodchucks, we tested the protective efficacy of immune response to woodchuck hepatitis core antigen (WHcAg) and surface antigen (WHsAg) of woodchuck hepatitis virus (WHV) elicited by DNA-based vaccination. Plasmids pWHcIm and pWHsIm containing WHV c- or pre-s2/s genes expressed WHcAg and WHsAg in transient transfection assays. Pilot experiments in mice revealed that a single intramuscular injection of 100 μg of plasmid pWHcIm DNA induced an anti-WHcAg titer over 1:300 that was enhanced by boost injections. However, two injections of 100 μg of pWHcIm did not induce detectable anti-WHcAg in woodchucks. With an increase in the dose to 1 mg of pWHcIm per injection, transient anti-WHcAg response and WHcAg-specific proliferation of peripheral mononuclear blood cells (PMBCs) appeared in woodchucks after repeated immunizations. Four woodchucks vaccinated with pWHcIm were challenged with 104 or 105 of the WHV 50% infective dose. They remained negative for markers of WHV replication (WHV DNA and WHsAg) in peripheral blood and developed anti-WHs in week 5 after challenge. In contrast, woodchucks not immunized or immunized with the control vector pcDNA3 developed acute WHV infection. Two woodchucks immunized with 1 mg of pWHsIm developed WHsAg-specific proliferative response of PBMCs but no measurable anti-WHsAg response. A rapid anti-WHsAg response developed during week 2 after virus challenge. Neither woodchuck developed any signs of WHV infection. These data indicate that DNA-based vaccination with WHcAg and WHsAg can elicit immunity to WHV infection.  相似文献   

5.
The kinetic patterns of woodchuck hepatitis virus (WHV) infection were monitored in the pancreas, kidneys, ovaries, and testes. Groups of woodchucks experimentally infected with a standardized inoculum of WHV were sacrificed at different times over a 65-week period beginning in the preacute phase of viral infection and continuing to the period of serologic recovery or the establishment of chronic infections and subsequent hepatocellular carcinoma (B. E. Korba, P. J. Cote, F. V. Wells, B. Baldwin, H. Popper, R. H. Purcell, B. C. Tennant, and J. L. Gerin, J. Virol. 63:1360-1370, 1989). Tissues from an additional group of long-term (2 to 3 years) chronic WHV carriers which had been infected with the same WHV inocula were also examined. Viral DNA replication intermediates were found in all four tissues during the acute phase of WHV infection. However, WHV DNA replication intermediates were observed only in the kidneys of a small proportion of the chronically infected animals. Following the acute phase of infection, WHV DNA was present only in the pancreas, kidneys, and ovaries of the chronically infected woodchucks. A progressive evolution of different WHV genomic forms related to the replicative state of WHV was observed in these tissues. Histologic evaluation of these four tissues revealed only minimal, localized lesions which were not correlated with the state of WHV activity. The observations compiled in this study further extend the tissue tropism of WHV.  相似文献   

6.
In vitro proliferation of peripheral blood mononuclear cells was used to measure virus-specific cell-mediated immunity (vCMI) following neonatal woodchuck hepatitis virus (WHV) infection. Fifteen neonates were inoculated with the W8 strain of WHV. In 11, infection was resolved, and 4 became chronic carriers. Nineteen neonates were inoculated with the W7 strain and all became chronic carriers. Seven age-matched uninfected woodchucks served as controls. Virologic and vCMI profiles among the W8 and W7 infections were compared and related to the outcome of infection. Resolving woodchucks had robust, acute-phase vCMI to WHV antigens (core, surface, and x) and to several nonoverlapping core peptides. The acute-phase vCMI was associated temporally with the clearance of viral DNA and of surface antigen from serum at 14 to 22 weeks postinfection. In contrast, in approximately half of the W8 and W7 infections that progressed to chronicity, no significant acute-phase vCMI was detected. In the remaining carriers, acute-phase vCMI was observed, but it was less frequent and incomplete compared to that of resolved woodchucks. Serum viral load developed less rapidly in those carriers that had evidence of acute-phase vCMI, but it was still increased compared to that of resolving woodchucks. Thus, vigorous and multispecific acute-phase vCMI was associated with resolution of neonatal WHV infection. Absent or incomplete acute-phase vCMI was associated with the progression to chronic infection. By analogy, these results suggest that the onset of chronic hepatitis B virus (HBV) infection in humans may be associated with deficiencies in the primary T-cell response to acute HBV infection.  相似文献   

7.
Woodchuck hepatitis virus (WHV) infection is known to be endemic in areas of the mid-Atlantic states but is apparently absent from populations in New York and much of New England. Blood samples of 40 woodchucks (Marmota monax) from New York and from Delaware were examined by starch gel electrophoresis, and 18 monomorphic and six polymorphic protein-coding genetic systems were identified. Mendelian inheritance of variants of the six polymorphic systems was confirmed in 52 laboratory offspring of the original samples. Average heterozygosity of 0.066 in New York woodchucks and 0.039 in Delaware woodchucks were high values for mammals, although similar to those of other sciurids. Significant heterogeneity between samples from New York and Delaware woodchucks was observed at two loci (peptidase with glycyl leucine-4 and phosphogluconate dehydrogenase), suggesting that these populations were genetically distinct. Whether there are genetically determined differences in response to WHV infection remains to be determined experimentally.  相似文献   

8.
Binding sites for polymerized albumin on hepatitis B virus components were reported in human hepatitis B virus chronic carriers predominantly with active viral replication (HB e antigen positive). The presence of comparable albumin-binding sites in the woodchuck hepatitis virus (WHV) model was examined on WHV components obtained from woodchucks with active viral replication (DNA polymerase positive). Binding sites for polymerized woodchuck serum albumin were not detected on the intact WHV virion, on 22-nm woodchuck hepatitis surface antigen (WHsAg), or on WHsAg polypeptides. Woodchuck albumin was not detected in purified 22-nm WHsAg, and anti-albumin antibodies were not detected in WHV chronic-carrier woodchucks. Our results in the WHV model argue against a role for viral polyalbumin-binding sites in tissue- and host-specific virus infectivity.  相似文献   

9.
Lymphoid cells were purified from the spleens of 15 woodchucks and examined for the presence of woodchuck hepatitis virus (WHV). Lymphoid cells from the spleens of eight of eight chronically infected animals contained high levels of WHV RNA and DNA. A 100-fold lower level of WHV DNA was found in the spleen from one of five animals that had recovered from acute WHV infections 2 years before this analysis. No WHV nucleic acids were observed in either of two uninfected animals. WHV DNA patterns in the lymphoid cells from the spleens of the chronically infected animals, which included the presence of single-stranded DNA and RNA-DNA hybrid molecules, were identical to those observed in WHV-infected liver. WHV DNA in these cells was present in intact, 27-nm core particles which also contained the endogenous DNA polymerase activity. These results indicate that the spleen is a site of active WHV DNA replication and is most likely a major source of WHV-infected cells in the circulating lymphoid cell population.  相似文献   

10.
Two chimpanzees immunized with woodchuck hepatitis virus (WHV) surface antigen (WHsAg) developed antibodies cross-reactive with hepatitis B virus (HBV) surface antigen (HBsAg). After challenge with HBV, one animal was completely protected and the other experienced a subclinical infection, without evidence of liver disease. Three woodchucks immunized with HBsAg developed antibodies to HBsAg which did not cross-react with WHsAg. After challenge with WHV, all three woodchucks developed typical acute infections with associated hepatic lesions. Serological studies with the cross-reactive antibodies raised in chimpanzees suggested that the protective epitopes of WHsAg were related to the group a specificity of HBsAg. These studies indicated that cross-protective epitopes are shared by HBV and WHV; however, the humoral response to these epitopes can vary among species.  相似文献   

11.
12.
The peripheral blood lymphocytes (PBL) of five hepatitis B virus (HBV)-infected chimpanzees and 17 woodchuck hepatitis virus (WHV)-infected woodchucks were examined for the presence of viral DNA and RNA. HBV DNA was detected in the PBL of three of three chronically infected chimpanzees but in neither of two animals with acute HBV infection. WHV DNA was found in the PBL of 11 of 13 chronically infected woodchucks and in the PBL and bone marrow of 1 of 4 woodchucks with antibody to WHV surface antigen. Viral DNA in the PBL and bone marrow was episomal, primarily existing as multimers with some monomeric forms. Integrated HBV DNA was detected in the PBL of one chronically infected chimpanzee, but only for a brief period. Viral RNA was also detected in the PBL, although less frequently than was DNA. HBV RNA in chimpanzee PBL existed as 3.8- and 7.5-kilobase species, while 2.3- and 3.8-kilobase WHV RNA was found in woodchuck PBL. Subfractionation of PBL isolated from the chronically infected chimpanzees demonstrated that HBV DNA and RNA were located in B and T cells. No HBV DNA was detected in the macrophages. These results, along with the recent reports of HBV nucleic acids in the PBL of human patients, suggest that infection of PBL may be a general phenomenon associated with the pathology of hepadnaviruses.  相似文献   

13.
Specific activation of T cells appears to be a prerequisite for viral clearance during hepatitis B virus (HBV) infection. The T-cell response to HBV core protein is essential in determining an acute or chronic outcome of HBV infection, but how this immune response contributes to the course of infection remains unclear. This is due to results obtained from humans, which are restricted to phenomenological observations occurring during the clinical onset after HBV infection. Thus, a useful animal model is needed. Characterization of the T-cell response to the core protein (WHcAg) of woodchuck hepatitis virus (WHV) in woodchucks contributes to the understanding of these mechanisms. Therefore, we investigated the response of woodchuck peripheral blood mononuclear cells (PBMCs) to WHcAg and WHcAg-derived peptides, using our 5-bromo-2'-deoxyuridine assay. We demonstrated WHcAg-specific proliferation of PBMCs and nylon wool-nonadherent cells from acutely WHV-infected woodchucks. Using a cross-reacting anti-human T-cell (CD3) antiserum, we identified nonadherent cells as woodchuck T cells. T-cell epitope mapping with overlapping peptides, covering the entire WHcAg, revealed T-cell responses of acutely WHV-infected woodchucks to peptide1-20, peptide100-119, and peptide112-131. Detailed epitope analysis in the WHcAg region from amino acids 97 to 140 showed that T cells especially recognized peptide97-110. Establishment of polyclonal T-cell lines with WHcAg or peptide97-110 revealed reciprocal stimulation by peptide97-110 or WHcAg, respectively. We vaccinated woodchucks with peptide97-110 or WHcAg to prove the importance of this immunodominant T-cell epitope. All woodchucks immunized with peptide97-110 or WHcAg were protected. Our results show that the cellular immune response to WHcAg or to one T-cell epitope protects woodchucks from WHV infection.  相似文献   

14.
A number of naturally occurring hepatitis B virus mutants that cannot synthesize the virus precore protein have been identified. Such mutants have been associated with more severe forms of hepatitis, including fulminant hepatitis. The most common mutation observed is a substitution of G to A in the distal precore gene that converts a codon specifying Trp (TGG) to a termination codon (TAG). Using oligonucleotide-directed mutagenesis, we have produced the same point mutation in the precore gene of an infectious clone of woodchuck hepatitis virus (WHV). Transfection of mutant WHV DNA into the livers of adult woodchucks resulted in replication of the mutant in three of three susceptible animals. Levels of virus replication and transient elevations in liver enzymes in serum were similar to those of adult animals infected with wild-type WHV. Virions, found to possess mutant precore genes by polymerase chain reaction amplification and DNA sequencing, were recovered from the serum of one of the animals and inoculated subcutaneously into neonatal woodchucks. They produced infection in all five animals studied. The level of virus replication in neonatal animals infected with this mutant virus was comparable to that found in neonatal woodchucks infected with wild-type WHV, but none of five woodchucks infected with the precore mutant virus as neonates became chronic virus carriers. It was concluded that the precore gene of the WHV genome is not essential for virus replication in the natural host but may be important for chronic infection.  相似文献   

15.
Menne S  Tennant BC  Gerin JL  Cote PJ 《Journal of virology》2007,81(19):10614-10624
Treatment of chronic hepatitis B virus (HBV) infection could combine potent antiviral drugs and therapeutic vaccines to overcome immunological tolerance and induce the recovery phenotype to protect against disease progression. Conventional vaccination of woodchucks chronically infected with the woodchuck hepatitis virus (WHV) elicited differential T-cell response profiles depending on whether or not carriers were treated with the potent antiviral drug clevudine (CLV), which significantly reduces viral and antigen loads. The differential T-cell responses defined both CLV-dependent and CLV-independent epitopes of the pre-S and S regions of the WHV envelope protein. Only combined treatment involving CLV and conventional vaccine therapeutically restored the T-cell response profile of chronic WHV carrier woodchucks to that seen in prophylactic vaccination and in recovery from acute WHV infection. The results have implications for mechanisms of immunological tolerance operating in chronic HBV infection and suggest that such combined chemoimmunotherapy may be useful for treatment of humans with chronic HBV infection.  相似文献   

16.
Woodchuck hepatitis virus (WHV) is an established model for human hepatitis B virus. The kinetics of virus and host responses in serum and liver during acute, self-limited WHV infection in adult woodchucks were studied. Serum WHV DNA and surface antigen (WHsAg) were detected as early as 1 to 3 weeks following experimental infection and peaked between 1 and 5 weeks postinfection. Thereafter, serum WHsAg levels declined rapidly and became undetectable, while WHV DNA levels became undetectable much later, between 4 and 20 weeks postinfection. Decreasing viremia correlated with transient liver injury marked by an increase in serum sorbitol dehydrogenase (SDH) levels. Clearance of WHV DNA from serum was associated with the normalization of serum SDH. Circulating immune complexes (CICs) of WHsAg and antibodies against WHsAg (anti-WHs) that correlated temporarily with the peaks in serum viremia and WHs antigenemia were detected. CICs were no longer detected in serum once free anti-WHs became detectable. The detection of CICs around the peak in serum viremia and WHs antigenemia in resolving woodchucks suggests a critical role for the humoral immune response against WHsAg in the early elimination of viral and subviral particles from the peripheral blood. Individual kinetic variation during WHV infections in resolving woodchucks infected with the same WHV inoculum and dose is likely due to the outbred nature of the animals, indicating that the onset and magnitude of the individual immune response determine the intensity of virus inhibition and the timing of virus elimination from serum.  相似文献   

17.
Immunosuppression is known to influence the state of chronic hepatitis B virus infection, and is thought to increase the risk of developing chronic infection in newly exposed individuals. Cyclosporin A (CsA), an immunosuppressive agent that inhibits Th cell function, was administered to woodchucks chronically infected with woodchuck hepatitis virus (WHV), and resulted in a decreased severity of chronic hepatitis and an increased viremia during the treatment. Adult woodchucks inoculated with WHV and given CsA for 14 wk had increased viremias, decreased acute phase liver injury, and developed chronic infections at a higher rate compared with immunocompetent woodchucks given virus alone (chronicity in seven of seven WHV + CsA + vs zero of nine WHV + CsA-; p less than 0.001). These results in a relevant animal model of hepatitis B virus infection indicate: 1) that liver injury in acute hepadnavirus infections is immune-mediated and not a direct cytopathic effect of virus replication; 2) that Th cells function in the inflammatory response and in the immunologic control of hepadnavirus infection; and 3) that suppression of Th cell function in acute hepadnavirus infection decreases liver injury but alters the outcome of infection in favor of chronicity. These results also suggest continued challenges in the application of CsA in liver transplantation for hepatitis B virus-induced diseases.  相似文献   

18.
19.
In this study, the kinetic patterns of woodchuck hepatitis virus (WHV) infection were monitored in the liver and the five primary components of the lymphoid system (peripheral blood lymphocytes, lymph nodes, bone marrow, spleen, and thymus). Groups of woodchucks experimentally infected with a standardized inoculum of WHV were sacrificed at different times over a 65-week period beginning in the preacute phase of viral infection and continuing to the period of serologic recovery or the establishment of chronic infections and subsequent hepatocellular carcinoma. Infection by WHV was not limited to the liver but involved the major components of the lymphoid system during all stages of virus infection. A complex series of kinetic patterns was observed for the appearance of WHV DNA in the different lymphoid compartments and the liver during the entire course of viral infection. A progressive evolution of different WHV genomic forms related to the replicative state of WHV was also observed. Lymphoid cells of the bone marrow were the first cells in which WHV DNA was detected, followed in order by the liver, the spleen, peripheral blood lymphocytes, lymph nodes, and finally the thymus. Several differences were observed in the cellular WHV DNA patterns between woodchucks that developed chronic WHV infections and those that serologically recovered from acute WHV infections. The observations compiled in this study indicate that the host lymphoid system is intimately involved in the natural history of hepadnavirus infections from the earliest stages of virus entry.  相似文献   

20.
Hepatitis D virus (HDV) superinfection of hepatitis B virus (HBV) carriers causes severe liver disease and a high rate of chronicity. Therefore, a vaccine protecting HBV carriers from HDV superinfection is needed. To protect from HDV infection an induction of virus-specific T cells is required, as antibodies to the two proteins of HDV, p24 and p27, do not neutralize the HBV-derived envelope of HDV. In mice, HDV-specific CD8+ and CD4+ T cell responses were induced by a DNA vaccine expressing HDV p27. In subsequent experiments, seven naive woodchucks were immunized with a DNA prime and adenoviral boost regimen prior to simultaneous woodchuck hepatitis virus (WHV) and HDV infection. Five of seven HDV-immunized woodchucks were protected against HDV infection, while acute self-limiting WHV infection occurred as expected. The two animals with the breakthrough had a shorter HDV viremia than the unvaccinated controls. The DNA prime and adenoviral vector boost vaccination protected woodchucks against HDV infection in the setting of simultaneous infection with WHV and HDV. In future experiments, the efficacy of this protocol to protect from HDV infection in the setting of HDV superinfection will need to be proven.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号