首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prevalence and evolutionary consequences of cryptic female choice (CFC) remain highly controversial, not least because the processes underlying its expression are often concealed within the female reproductive tract. However, even when female discrimination is relatively easy to observe, as in numerous insect species with externally attached spermatophores, it is often difficult to demonstrate directional CFC for certain male phenotypes over others. Using a biological assay to separate male crickets into attractive or unattractive categories, we demonstrate that females strongly discriminate against unattractive males by removing their spermatophores before insemination can be completed. This results in significantly more sperm being transferred by attractive males than unattractive males. Males respond to CFC by mate guarding females after copulation, which increases the spermatophore retention of both attractive and unattractive males. Interestingly, unattractive males who suffered earlier interruption of sperm transfer benefited more from mate guarding, and they guarded females more vigilantly than attractive males. Our results suggest that postcopulatory mate guarding has evolved via sexual conflict over insemination times rather than through genetic benefits of biasing paternity toward vigorous males, as has been previously suggested.  相似文献   

2.
Mating is often accompanied by decreased female immune function across numerous animals systems, suggesting that immune suppression is a widespread reproductive cost. However, the trade‐off between immunity and reproduction can be minimized when females have access to abundant nutrient resources. This observation suggests that the nuptial gifts provided by males in many insect systems may help to offset the common immunological cost to reproduction. In the present study, this hypothesis is tested in the ground cricket Allonemobius socius (Scudder), whose females receive a sizeable haemolymph‐based gift. Accordingly, male gift donation is controlled by covering the tibial spur (the source of the gift) of randomly chosen males with clear nail polish. The influence of sperm transfer on female immunity is disentangled from that of the nuptial gift by also examining females who fail to receive sperm during mating (spermatophore transfer has a 40% failure rate in virgin males). It is predicted that females who receive a nuptial gift will exhibit superior immune function compared with those who receive no gift. The results show that sperm transfer reduces female immune function, which is an expected immunological cost of reproduction. By contrast to the prediction, nuptial gifts do not minimize the immunological cost of reproduction in this system. Unexpectedly, the receipt of a gift appears to decrease female immune function independent of sperm transfer. The findings suggest that the nuptial gift, similar to sperm, signals the female to begin her reproductive investment, causing limited resources to be reallocated from immune function.  相似文献   

3.
Female house crickets are attracted to male calling song containing a relatively high number of syllables per ‘chirp’, which tends to be produced by large males. In a previous study, we showed that this song characteristic is also positively and independently correlated with haemocyte load, an important determinant of the ability to produce an encapsulation response in insects. Females will therefore tend to select males with high encapsulation ability (and large body size) as mates. The present study demonstrates that variation in haemocyte load and body size, together with a second parameter of immune function (the ability to encapsulate a synthetic substrate), is heritable in the same population. Moreover, all three traits are shown to be positively genetically correlated. In favouring males that produce calling song with the preferred characteristics, females should therefore also tend to produce larger offspring with a greater ability to produce an encapsulation response.  相似文献   

4.
One of the most common life history trade-offs in animals is the reduction in survivorship with increasing reproductive effort. Despite the prevalence of this pattern, its underlying physiological mechanisms are not well understood. Here we test the hypothesis that immune suppression mediates this phenotypic trade-off by manipulating reproductive effort and measuring immune function and mortality rates in the striped ground cricket, Allonemobius socius. Because A. socius males provide females with a hemolymph-based nuptial gift during copulation, and many structural components of immunity reside in the hemolymph, we also predicted that sexual selection may differentially affect how disease resistance evolves in males and females. We found that an increased mating effort resulted in a reduced immune ability, coupled with an increased rate in age-specific mortality for both sexes. Thus, immune suppression appears to be a link between reproductive effort and cost in this system. In addition, males and females appeared to differentially invest in several aspects of immunity prior to mating, with males exhibiting a higher concentration of circulating hemocytes and a superior bacterial defense capability. This pattern may be the result of previously established positive selection on gift size due to its affect on female fecundity. In short, female choice for larger gifts may lead to a sexually dimorphic immune ability.  相似文献   

5.
Central to the conceptual basis of ecological immunity is the notion that immune effector systems are costly to produce, run, and/or maintain. Using the mealworm beetle, Tenebrio molitor, as a model we investigated two aspects of the costs of innate immunity. We conducted an experiment designed to identify the cost of an induced immune response, and the cost of constitutive investment in immunity, as well as potential interactions. The immune traits under consideration were the encapsulation response and prophylactic cuticular melanization, which are mechanistically linked by the melanin-producing phenoloxidase cascade. If immunity is costly, we predicted reduced longevity and/or fecundity as a consequence of investment in either immune trait. We found a measurable longevity cost associated with producing an inducible immune response (encapsulation). In contrast to other studies, this cost was expressed under ad libitum feeding conditions. We found no measurable costs for constitutive investment in immunity (prophylactic investment in cuticular colour).  相似文献   

6.
7.
8.
1. Mormon crickets form large migratory bands that march over rangeland in the western United States seeking salt and protein. Immune defence is particularly relevant to survival in migratory bands, but little is known about the role of nutrition in insect immunocompetence. We hypothesised that immune defences are compromised in these migratory bands due to nutrient limitations. 2. In a migratory band in Utah, we investigated whether access to a protein relative to a carbohydrate diet would immediately reduce migratory activity, as had been shown for Mormon crickets in a previous study in Idaho, and whether the protein diet would enhance immune defence responses. 3. Radio‐tracking Mormon crickets in the field, we found that locomotor activity was significantly and positively associated with body mass. Body mass‐adjusted locomotor activity declined marginally following access to a protein diet, whereas spontaneous phenoloxidase (PO) activity was enhanced by the same diet. The encapsulation response and lysozyme‐like activity were directly proportional to body mass, but unaffected by the dietary treatments in the short term. Within 6 h of feeding on protein or carbohydrates, Mormon crickets exhibited measurable effects on the immune system. 4. We conclude that nutrition impacts immune function in migrating insects in the field. Spontaneous PO activity may be limited by dietary deficiency in a protein‐seeking band of Mormon crickets.  相似文献   

9.
The emergent field of evolutionary biology that studies disparities between the evolutionary interests of alleles expressed in the two sexes, or sexual conflict, promises to offer novel insights into male-female coevolution and speciation. Our theoretical understanding of basic concepts is, however, still incomplete. In a recent perspective paper, Pizzari and Snook provided a framework for understanding sexually antagonistic coevolution and for distinguishing this process from other models of male-female coevolution and suggested an experimental protocol to test for sexually antagonistic coevolution. Here, I show that the framework is flawed, primarily because it is built upon the mistaken assumption that male and female fitness can evolve independently. Further, while the empirical strategy advocated has indeed offered important insights in the past, it does not allow unambiguous discrimination between competing hypotheses.  相似文献   

10.
Magurran  Anne E. 《Genetica》2001,(1):463-474
Recent investigations have highlighted the importance of sexual conflict in the evolution of reproductive isolation. Examination of the Trinidadian guppy (Poecilia reticulata) shows how geographic variation in sexual conflict can mediate the emergence of isolating mechanisms. On the basis of pre-mating behaviour guppy females appear to be winning the battle of the sexes in low risk localities whereas males are apparently ahead in high-predation environments. However, the conclusion that sexual selection (through female choice) is replaced by sexual coercion of females (as a consequence of sneaky mating) in predator rich (and productive) assemblages takes no account of post-copulatory mechanisms. Recent work on sperm competition in guppies suggests coevolution between males and females may also occur in the post-mating, pre-zygotic arena. The potential for the evolution of reproductive isolation at each stage of the mating sequence is assessed.  相似文献   

11.
Mating can affect female immunity in multiple ways. On the one hand, the immune system may be activated by pathogens transmitted during mating, sperm and seminal proteins, or wounds inflicted by males. On the other hand, immune defences may also be down‐regulated to reallocate resources to reproduction. Ants are interesting models to study post‐mating immune regulation because queens mate early in life, store sperm for many years, and use it until their death many years later, while males typically die after mating. This long‐term commitment between queens and their mates limits the opportunity for sexual conflict but raises the new constraint of long‐term sperm survival. In this study, we examine experimentally the effect of mating on immunity in wood ant queens. Specifically, we compared the phenoloxidase and antibacterial activities of mated and virgin Formica paralugubris queens. Queens had reduced levels of active phenoloxidase after mating, but elevated antibacterial activity 7 days after mating. These results indicate that the process of mating, dealation and ovary activation triggers dynamic patterns of immune regulation in ant queens that probably reflect functional responses to mating and pathogen exposure that are independent of sexual conflict.  相似文献   

12.
When females mate with multiple partners within a single reproductive cycle, sperm from rival males may compete for fertilization of a limited number of ova, and females may bias the fertilization of their ova by particular sperm. Over evolutionary timescales, these two forms of selection shape both male and female reproductive physiology when females mate multiply, yet in monogamous systems, post-copulatory sexual selection is weak or absent. Here, we examine how divergent mating strategies within a genus of closely related mice, Peromyscus, have shaped the evolution of reproductive traits. We show that in promiscuous species, males exhibit traits associated with increased sperm production and sperm swimming performance, and females exhibit traits that are predicted to limit sperm access to their ova including increased oviduct length and a larger cumulus cell mass surrounding the ova, compared to monogamous species. Importantly, we found that across species, oviduct length and cumulus cell density are significantly correlated with sperm velocity, but not sperm count or relative testes size, suggesting that these female traits may have coevolved with increased sperm quality rather than quantity. Taken together, our results highlight how male and female traits evolve in concert and respond to changes in the level of post-copulatory sexual selection.  相似文献   

13.
Immune defence is hypothesized to be a trait that bears significant fitness costs as well as benefits in that mounting a defence depreciates the value of other life‐history traits. Thus the cost of mounting an immune response could affect the evolution of both the immune system and correlated life history traits. In this study we examined, by means of a diallel cross of four inbred lines, the genetic basis of two measures of immune function, metabolic rate and several traits in the sand cricket, Gryllus firmus. We specifically addressed the following questions: (1) is immune function determined primarily by genetic constitution or correlations with phenotypic traits that could reduce the effectiveness of the immune response; (2) do the two measures of immune function covary; (3) What are the contributions of additive, nonadditive and maternal effects to the immune function? As estimates of immune function, we used lytic activity and encapsulation rate. We found that inbred crickets were smaller than individuals from the crossed lines and took longer to develop. However, inbred lines did not differ from the crossed lines in immune function nor metabolic rates, suggesting that increased homozygosity has little or no effect on these traits in G. firmus. We found that both immune parameters showed significant genetic variation but no consistent relationships with the other phenotypic traits (metabolic rate, head width, body mass, development time and activity). There was significant additive genetic variation only in encapsulation rate, but, with the exception of the activity measure, significant nonadditive and reciprocal variances were found in all traits. Metabolic rate of crickets was heritable, but there was neither phenotypic nor genetic association between metabolic rate and the two parameters of immune function. Further, there was no correlation between these two measures. Females showed a higher encapsulation response than males, but there was no sex differences in lytic activity. Our study indicates that genetic variation in immune parameters can be a very significant contributor to phenotypic variation in immune function.  相似文献   

14.
Males and females often have different requirements during early development, leading to sex-specific interactions between developing offspring. In polytocous mammals, competition for limited resources in utero may be asymmetrical between the sexes, and androgens produced by male foetuses could have adverse effects on the development of females, with potentially long-lasting consequences. We show here, in an unmanaged population of Soay sheep, that female lambs with a male co-twin have reduced birth weight relative to those with a female co-twin, while there was no such effect in male twins. In addition, females with a male co-twin had lower lifetime breeding success, which appeared to be mainly driven by differences in first-year survival. These results show that sex-specific sibling interactions can have long-term consequences for survival and reproduction, with potentially important implications for optimal sex allocation.  相似文献   

15.
Post‐copulatory sexual selection, and sperm competition in particular, is a powerful selective force shaping the evolution of sperm morphology. Although mounting evidence suggests that post‐copulatory sexual selection influences the evolution of sperm morphology among species, recent evidence also suggests that sperm competition influences variation in sperm morphology at the intraspecific level. However, contradictory empirical results and limited taxonomic scope have led to difficulty in assessing the generality of sperm morphological responses to variation in the strength of sperm competition. Here, we use phylogenetically controlled analyses to explore the effects of sperm competition on sperm morphology and variance in sharks, a basal vertebrate group characterized by wide variation in rates of multiple mating by females, and consequently sperm competition risk. Our analyses reveal that shark species experiencing greater levels of sperm competition produce sperm with longer flagella and that sperm flagellum length is less variable in species under higher sperm competition risk. In contrast, neither the length of the sperm head and midpiece nor variation in sperm head and midpiece length was associated with sperm competition risk. Our findings demonstrate that selection influences both the inter‐ and intraspecific variation in sperm morphology and suggest that the flagellum is an important target of sexual selection in sharks. These findings provide important insight into patterns of selection on the ejaculate in a basal vertebrate lineage.  相似文献   

16.
A pathogen survey of the black field cricket, Teleogryllus commodus, in the Western District of Victoria, Australia, during 1979 revealed that cricket paralysis virus (CrPV) was present in 42.7% of the 232 sites sampled. The fungus Metarhizium anisopliae was detected in 5.2% of the sites and represents a new pathogen record for T. commodus. The distribution of both pathogens throughout the sites sampled appeared to be random. There was a positive correlation between sample size and the likelihood of detecting a pathogen, while analysis showed that approximately 30% of the sites were probably virus free. The results are discussed in terms of the potential of CrPV and M. anisopliae as biological control agents for the black field cricket.  相似文献   

17.
It is generally believed that resource holding potential reliablyreflects male quality, but empirical evidence showing this isscarce. Here we show that the outcome of male-male competitionmay predict male immunocompetence in the territorial damselfly,Calopteryx virgo (Odonata: Calopterygidae). We staged contestsbetween 27 pairs of males and found that winners of the contestsshowed higher immunocompetence, measured as encapsulation response,compared with that of losers. Furthermore, the winners had largerfat reserves. We also collected 29 males that had not been usedin staged contests, and found that in these males encapsulationresponse correlated positively with an individual's fat reserves.Both immunocompetence and resource holding potential seem todepend on energy reserves, suggesting a trade-off between parasiteresistance and energetically costly territorial behavior. Theresults suggest that the outcome of male-male contest can beused to predict male quality in terms of immune defense.  相似文献   

18.
Avirulent strains of the endoparasitoid Leptopilina boulardi succumb to a blood cell-mediated melanotic encapsulation response in host larvae of Drosophila melanogaster. Virulent wasp strains effectively abrogate the cellular response with substances introduced into the host that specifically target and effectively suppress one or more immune signaling pathways, including elements that control phenoloxidase-mediated melanotic encapsulation. The present study implicates involvement of the Drosophila Toll pathway in cellular innate immunity by regulating the serine protease inhibitor Serpin 27A (Spn27A), which normally functions as a negative regulator of phenoloxidase. The introduction of Spn27A into normally highly immune competent D. melanogaster larvae significantly reduced their ability to form melanotic capsules around eggs of L. boulardi. This study confirms the role of Spn27A in the melanization cascade and establishes that this pathway and associated blood cell responses can be activated by parasitization. The activation of phenoloxidase and the site-specific localization of the ensuing melanotic response are such critical components of the blood cell response that Spn27A and the signaling elements mediating its activity are likely to represent prime targets for immune suppression by L. boulardi.  相似文献   

19.
In house crickets [Acheta domesticus (L.)] a single mating early in adult life sufficed to induce egg laying for the duration of the life of a female. Female house crickets mated readily shortly after adult emergence but oviposition did not commence until about 12–14 days after emergence, even though females matured eggs by 7 days. The egg-laying factor associated with mating remained active during prolonged periods of substrate deprivation during which the female did not oviposit. If the spermatophore was removed prematurely shortly after a mating, the long-term, egg-laying response was truncated and was correlated with a dramatic decline in the fertility of eggs which were oviposited. The egg-laying stimulus appeared to act in the spermatheca, apparently through neural means, since denervation of the spermatheca abolished mating-induced oviposition. These results indicate that the oviposition factor found in the testes is able to act for long periods of time and has to be present continually in order to be effective. Furthermore, the long-term oviposition stimulus in the house cricket may be different from prostaglandin E2 which induces a prompt ovipositional response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号